首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenically driven climatic change is expected to reshape global patterns of species distribution and abundance. Given recent links between genetic variation and environmental patterns, climate change may similarly impact genetic population structure, but we lack information on the spatial and mechanistic underpinnings of genetic–climate associations. Here, we show that current genetic variability of Canada lynx (Lynx canadensis) is strongly correlated with a winter climate gradient (i.e. increasing snow depth and winter precipitation from west‐to‐east) across the Pacific‐North American (PNO) to North Atlantic Oscillation (NAO) climatic systems. This relationship was stronger than isolation by distance and not explained by landscape variables or changes in abundance. Thus, these patterns suggest that individuals restricted dispersal across the climate boundary, likely in the absence of changes in habitat quality. We propose habitat imprinting on snow conditions as one possible explanation for this unusual phenomenon. Coupling historical climate data with future projections, we also found increasingly diverging snow conditions between the two climate systems. Based on genetic simulations using projected climate data (2041–2070), we predicted that this divergence could lead to a threefold increase in genetic differentiation, potentially leading to isolated east–west populations of lynx in North America. Our results imply that subtle genetic structure can be governed by current climate and that substantive genetic differentiation and related ecological divergence may arise from changing climate patterns.  相似文献   

2.
During the last two centuries, lynx populations have undergone severe declines and extinctions in Europe. The Alpine lynx, once distributed across the whole Alpine arc, became extinct due to direct human prosecution and deprivation of its main prey in the 1930s. Similar to the Iberian lynx Lynx pardinus , its taxonomy has been subject to several controversies. Moreover, knowing the taxonomic status of the Alpine lynx will help to define conservation units of extant lynx populations in Europe. In this study, we investigated two mitochondrial DNA regions in museum specimens ( n =15) representing the autochthonous Alpine population and in samples from extant Eurasian lynx Lynx lynx populations in Europe and Asia ( n =17). Phylogenetic analysis (cytochrome b , 345 bp) placed the Alpine lynx within the Eurasian lynx lineage. Among all individuals examined, seven different haplotypes (control region, 300 bp) were observed but no unique Alpine haplotype was discovered. Haplotypes of the extinct Alpine population were identical to previously described haplotypes in Scandinavian lynx signifying a recent genetic ancestry with current European populations. Moreover, our genetic data suggest two distinct glacial refugia for the Carpathian and Balkan population. Overall this study demonstrates that historical DNA from extinct populations can help to disentangle the phylogenetic relationships and historical biogeography of taxa with only a limited number of extant populations remaining.  相似文献   

3.
  • 1 The Eurasian lynx Lynx lynx occupies a variety of environmental and climatic conditions, and the majority of present‐day European populations have either recovered from severe demographic bottlenecks, or are living in fragmented habitat. These factors may have affected the genetic variability of lynx populations. We summarize available data on genetics, population status and ecology of these felids to shed light on the pattern and mechanisms behind their genetic variability and population differentiation in Europe.
  • 2 Genetic studies conducted so far, based on mtDNA and microsatellites, have shown that the Eurasian lynx has low to moderate genetic variability. Variability is lowest in the north (Scandinavian bottlenecked population), but is also low in the Carpathian region. A trend towards loss of genetic variation has been noted in fragmented and reintroduced populations. Genetically, the populations are highly differentiated from each other.
  • 3 There are clear relationships between the pattern of lynx genetic variability, differentiation between the populations, and such factors as population history (demographic bottlenecks), social interactions and habitat fragmentation. The genetic divergence between lynx populations is also strongly correlated with the depth and duration of snow cover.
  • 4 Our review provides evidence that the lynx is undergoing significant genetic differentiation, due to several factors. To enable better planning of conservation programmes for the Eurasian lynx, researchers should identify the Evolutionarily Significant Units among its populations, using different classes of molecular markers.
  相似文献   

4.
The Iberian lynx (Lynx pardinus), one of the world's most endangered cat species, is vulnerable due to habitat loss, increased fragmentation of populations, and precipitous demographic reductions. An understanding of Iberian lynx evolutionary history is necessary to develop rational management plans for the species. Our objectives were to assess Iberian lynx genetic diversity at three evolutionary timescales. First we analyzed mitochondrial DNA (mtDNA) sequence variation to position the Iberian lynx relative to other species of the genus LYNX: We then assessed the pattern of mtDNA variation of isolated populations across the Iberian Peninsula. Finally we estimated levels of gene flow between two of the most important remaining lynx populations (Do?ana National Park and the Sierra Morena Mountains) and characterized the extent of microsatellite locus variation in these populations. Phylogenetic analyses of 1613 bp of mtDNA sequence variation supports the hypothesis that the Iberian lynx, Eurasian lynx, and Canadian lynx diverged within a short time period around 1.53-1.68 million years ago, and that the Iberian lynx and Eurasian lynx are sister taxa. Relative to most other felid species, genetic variation in mtDNA genes and nuclear microsatellites were reduced in Iberian lynx, suggesting that they experienced a fairly severe demographic bottleneck. In addition, the effects of more recent reductions in gene flow and population size are being manifested in local patterns of molecular genetic variation. These data, combined with recent studies modeling the viability of Iberian lynx populations, should provide greater urgency for the development and implementation of rational in situ and ex situ conservation plans.  相似文献   

5.
Determining the molecular signatures of adaptive differentiation is a fundamental component of evolutionary biology. A key challenge is to identify such signatures in wild organisms, particularly between populations of highly mobile species that undergo substantial gene flow. The Canada lynx (Lynx canadensis) is one species where mainland populations appear largely undifferentiated at traditional genetic markers, despite inhabiting diverse environments and displaying phenotypic variation. Here, we used high‐throughput sequencing to investigate both neutral genetic structure and epigenetic differentiation across the distributional range of Canada lynx. Newfoundland lynx were identified as the most differentiated population at neutral genetic markers, with demographic modelling suggesting that divergence from the mainland occurred at the end of the last glaciation (20–33 KYA). In contrast, epigenetic structure revealed hidden levels of differentiation across the range coincident with environmental determinants including winter conditions, particularly in the peripheral Newfoundland and Alaskan populations. Several biological pathways related to morphology were differentially methylated between populations, suggesting that epigenetic modifications might explain morphological differences seen between geographically peripheral populations. Our results indicate that epigenetic modifications, specifically DNA methylation, are powerful markers to investigate population differentiation in wild and non‐model systems.  相似文献   

6.
Habitat fragmentation can have profound effects on the distribution of genetic variation within and between populations. Previously, we showed that in the ornate dragon lizard, Ctenophorus ornatus, lizards residing on outcrops that are separated by cleared agricultural land are significantly more isolated and hold less genetic variation than lizards residing on neighbouring outcrops connected by undisturbed native vegetation. Here, we extend the fine‐scale study to examine the pattern of genetic variation and population structure across the species' range. Using a landscape genetics approach, we test whether land clearing for agricultural purposes has affected the population structure of the ornate dragon lizard. We found significant genetic differentiation between outcrop populations (FST = 0.12), as well as isolation by distance within each geographic region. In support of our previous study, land clearing was associated with higher genetic divergences between outcrops and lower genetic variation within outcrops, but only in the region that had been exposed to intense agriculture for the longest period of time. No other landscape features influenced population structure in any geographic region. These results show that the effects of landscape features can vary across species' ranges and suggest there may be a temporal lag in response to contemporary changes in land use. These findings therefore highlight the need for caution when assessing the impact of contemporary land use practices on genetic variation and population structure.  相似文献   

7.
To investigate whether changes in land use and associated forest patch turnover affected genetic diversity and structure of the forest herb Primula elatior, historical data on landscape changes were combined with a population genetic analysis using dominant amplified fragment length polymorphism markers. Based on nine topographic maps, landscape history was reconstructed and forest patches were assigned to two age classes: young (less than 35 years) and old (more than 35 years). The level of differentiation among Primula populations in recently established patches was compared with the level of differentiation among populations in older patches. Genetic diversity was independent of population size (P > 0.05). Most genetic variation was present within populations. Within-population diversity levels tended to be higher for populations located in older forests compared with those for populations located in young forests (Hj = 0.297 and 0.285, respectively). Total gene diversity was also higher for old than for young populations (Ht = 0.2987 and 0.2828, respectively). The global fixation index FST averaged over loci was low, but significant. Populations in older patches were significantly more differentiated from each other than were populations in recently established patches and they showed significant isolation by distance. In contrast, no significant correlations between pairwise geographical distance and FST were found for populations in recently established patches. The location of young and old populations in the studied system and altered gene flow because of increased population density and decreased inter-patch distances between extant populations may explain the observed lower genetic differentiation in the younger populations. This study exemplifies the importance of incorporating data on historical landscape changes in population genetic research at the landscape scale.  相似文献   

8.
Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) in potato (Solanum tuberosum L.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.  相似文献   

9.
Despite extensive research into the mechanisms underlying population cyclicity, we have little understanding of the impacts of numerical fluctuations on the genetic variation of cycling populations. Thus, the potential implications of natural and anthropogenically‐driven variation in population cycle dynamics on the diversity and evolutionary potential of cyclic populations is unclear. Here, we use Canada lynx Lynx canadensis matrix population models, set up in a linear stepping‐stone, to generate demographic replicates of biologically realistic cycling populations. Overall, increasing cycle amplitude predictably reduced genetic diversity and increased genetic differentiation, with cyclic effects increased by population synchrony. Modest dispersal rates (1–3% of the population) between high and low amplitude cyclic populations did not diminish these effects suggesting that spatial variation in cyclic amplitude should be reflected in patterns of genetic diversity and differentiation at these rates. At high dispersal rates (6%) groups containing only high amplitude cyclic populations had higher diversity and lower differentiation than those mixed with low amplitude cyclic populations. Negative density‐dependent dispersal did not impact genetic diversity, but did homogenize populations by reducing differentiation and patterns of isolation by distance. Surprisingly, temporal changes in diversity and differentiation throughout a cycle were not always consistent with population size. In particular, negative density‐dependent dispersal simultaneously decreased differences in genetic diversity while increasing differences in genetic differentiation between numerical peaks and nadirs. Combined, our findings suggest demographic changes at fine temporal scales can impact genetic variation of interacting populations and provide testable predictions relating population cyclicty to genetic variation. Further, our results suggest that including realistic demographic and dispersal parameters in population genetic models and using information from temporal changes in genetic variation could help to discern complex demographic scenarios and illuminate population dynamics at fine temporal scales.  相似文献   

10.
We analyzed the genotypes of Eurasian lynx (Lynx lynx) from three populations in the westernmost part of the species main range. One population was situated at the distribution edge (NE Poland) and the two other (Latvia and Estonia) were located within the main, contiguous range of the species. The aim was to determine if the genetic composition varied among these populations and if there was evidence of isolation among them. Based on microsatellite allele frequencies, we found the allelic richness in Polish lynx to be lower than that in lynx from Latvia and Estonia. We also found significant differentiation among the lynx populations, with the NE Poland population forming a distinct genetic group relative to the two other populations (R ST = 0.15 and 0.22, P < 0.0001). We suggest that genetic differentiation among lynx populations is the result of habitat insularisation that limits gene flow. This finding emphasizes the necessity to consider the lynx genetic differentiation in conservation planning of this species in Poland.  相似文献   

11.
An understanding of the relative roles of historical and contemporary factors in structuring genetic variation is a fundamental, but understudied aspect of geographic variation. We examined geographic variation in microsatellite DNA allele frequencies in bull trout (Salvelinus confluentus, Salmonidae) to test hypotheses concerning the relative roles of postglacial dispersal (historical) and current landscape features (contemporary) in structuring genetic variability and population differentiation. Bull trout exhibit relatively low intrapopulation microsatellite variation (average of 1.9 alleles per locus, average He = 0.24), but high levels of interpopulation divergence (F(ST) = 0.39). We found evidence of historical influences on microsatellite variation in the form of a decrease in the number of alleles and heterozygosities in populations on the periphery of the range relative to populations closer to putative glacial refugia. In addition, one region of British Columbia that was colonized later during deglaciation and by more indirect watershed connections showed less developed and more variable patterns of isolation by distance than a similar region colonized earlier and more directly from refugia. Current spatial and drainage interconnectedness among sites and the presence of migration barriers (falls and cascades) within individual streams were found to be important contemporary factors influencing historical patterns of genetic variability and interpopulation divergence. Our work illustrates the limited utility of equilibrium models to delineate population structure and patterns of genetic diversity in recently founded populations or those inhabiting highly heterogeneous environments, and it highlights the need for approaches incorporating a landscape context for population divergence. Substantial microsatellite DNA divergence among bull trout populations may also signal divergence in traits important to population persistence in specific environments.  相似文献   

12.
Landscape features such as mountains, rivers, and ecological gradients may strongly affect patterns of dispersal and gene flow among populations and thereby shape population dynamics and evolutionary trajectories. The landscape may have a particularly strong effect on patterns of dispersal and gene flow in amphibians because amphibians are thought to have poor dispersal abilities. We examined genetic variation at six microsatellite loci in Columbia spotted frogs (Rana luteiventris) from 28 breeding ponds in western Montana and Idaho, USA, in order to investigate the effects of landscape structure on patterns of gene flow. We were particularly interested in addressing three questions: (i) do ridges act as barriers to gene flow? (ii) is gene flow restricted between low and high elevation ponds? (iii) does a pond equal a ‘randomly mating population’ (a deme)? We found that mountain ridges and elevational differences were associated with increased genetic differentiation among sites, suggesting that gene flow is restricted by ridges and elevation in this species. We also found that populations of Columbia spotted frogs generally include more than a single pond except for very isolated ponds. There was also evidence for surprisingly high levels of gene flow among low elevation sites separated by large distances. Moreover, genetic variation within populations was strongly negatively correlated with elevation, suggesting effective population sizes are much smaller at high elevation than at low elevation. Our results show that landscape features have a profound effect on patterns of genetic variation in Columbia spotted frogs.  相似文献   

13.
Population viability might become compromised by the loss of genetic diversity and the accumulation of inbreeding resulting from population decline and fragmentation. The Iberian lynx (Lynx pardinus) provides a paradigmatic example of a species at the verge of extinction, and because of the well‐documented and different demographic histories of the two remaining populations (Doñana and Andújar), it provides the opportunity to evaluate the performance of analytical methods commonly applied to recently declined populations. We used mitochondrial sequences and 36 microsatellite markers to evaluate the current genetic status of the species and to assess the genetic signatures of its past history. Mitochondrial diversity was extremely low with only two haplotypes, alternatively fixed in each population. Both remnant populations have low levels of genetic diversity at microsatellite markers, particularly the population from Doñana, and genetic differentiation between the two populations is high. Bayesian coalescent‐based methods suggest an earlier decline starting hundreds of years ago, while heterozygosity excess and M‐ratio tests did not provide conclusive and consistent evidence for recent bottlenecks. Also, a model of gene flow received overwhelming support over a model of pure drift. Results that are in conflict with the known recent demography of the species call for caution in the use of these methods, especially when no information on previous demographic history is available. Overall, our results suggest that current genetic patterns in the Iberian lynx are mainly the result of its recent decline and fragmentation and alerts on possible genetic risks for its persistence. Conservation strategies should explicitly consider this threat and incorporate an integrated genetic management of wild, captive and re‐introduced populations, including genetic restoration through translocations.  相似文献   

14.
Defining populations and identifying ecological and life-history characteristics affecting genetic structure is important for understanding species biology and hence, for managing threatened or endangered species or populations. In this study, populations of the world's largest indigenous Atlantic salmon (Salmo salar) stock were first inferred using model-based clustering methods, following which life-history and habitat variables best predicting the genetic diversity of populations were identified. This study revealed that natal homing of Atlantic salmon within the Teno River system is accurate at least to the tributary level. Generally, defining populations by main tributaries was observed to be a reasonable approach in this large river system, whereas in the mainstem of the river, the number of inferred populations was fewer than the number of distinct sampling sites. Mainstem and headwater populations were genetically more diverse and less diverged, while each tributary fostered a distinct population with high genetic differentiation and lower genetic diversity. Population structure and variation in genetic diversity among populations were poorly explained by geographical distance. In contrast, age-structure, as estimated by the proportion of multisea-winter spawners, was the most predictive variable in explaining the variation in the genetic diversity of the populations. This observation, being in agreement with theoretical predictions, emphasizes the essence of large multisea-winter females in maintaining the genetic diversity of populations. In addition, the unique genetic diversity of populations, as estimated by private allele richness, was affected by the ease of accessibility of a site, with more difficult to access sites having lower unique genetic diversity. Our results show that despite this species' high capacity for migration, tributaries foster relatively closed populations with little gene flow which will be important to consider when developing management strategies for the system.  相似文献   

15.
Aim The aim of this study was to understand the roles of landscape features in shaping patterns of contemporary and historical genetic diversification among populations of the Andean tree frog (Hypsiboas andinus) across spatial scales. Location Andes mountains, north‐western Argentina, South America. Methods Mitochondrial DNA control region sequences were utilized to assess genetic differentiation among populations and calculate population pair‐wise genetic distances. Three models of movement, namely traditional straight‐line distance and two effective distances based on habitat classification, were examined to determine which of these explained the most variation in pair‐wise population genetic differentiation. The two habitat classifications were based on digital vegetation and hydrology layers that were generated from a 90‐m resolution digital elevation model (DEM) and known relationships between elevation and habitat. Mantel tests were conducted to test for correlations between geographic and genetic distance matrices and to estimate the percentage variation explained by each type of geographic distance. To investigate the location of possible barriers to gene flow, we used Monmonier’s maximum difference algorithm as implemented in barrier 2.2. Results At both geographic scales, effective distances explained more variation in genetic differentiation than did straight‐line distance. The least‐cost distances based on the simple classification performed better than the more detailed habitat classification. We controlled for the effects of historical range fragmentation determined from previous nested clade analyses, and therefore evaluated the effect of different distances on the genetic variation attributable to more recent factors. Effective distances identified populations that were highly divergent as a result of isolation in unsuitable habitats. The proposed locations of barriers to gene flow identified using Monmonier’s maximum difference algorithm corresponded well with earlier analyses and supported findings from our partial Mantel tests. Main conclusions Our results indicate that landscape features have been important in both historical and contemporary genetic structuring of populations of H. andinus at both large and small spatial scales. A landscape genetic perspective offers novel insights not provided by traditional phylogeographic studies: (1) effective distances can better explain patterns of differentiation in populations, especially in heterogeneous landscapes where barriers to dispersal may be common; and (2) least‐cost path analysis can help to identify corridors of movement between populations that are biologically more realistic.  相似文献   

16.
Populations of species located at southern range edges may be particularly vulnerable to the effects of climate change as warming temperatures and subsequent changes to ecosystems exceed species-specific tolerances. One such species is Canada lynx (Lynx canadensis), a cold-adapted mesocarnivore that maintains a large core population in Alaska, USA, and Canada but exists within several peripheral populations in the contiguous United States. Increases in temperature, declines in snow pack, and climate-influenced increases in fire frequency and intensity, could negatively affect lynx populations, threatening their long-term persistence in the continental United States. Despite these threats, our understanding of broad-scale effects on lynx occupancy and the extent of current lynx distribution in many of these peripheral populations is minimal. We conducted an occupancy survey of lynx in Washington, USA, using a spatially extensive camera-trapping array covering 7,000 km2 of potential lynx habitat. We used the resulting database of detection data to develop single-season occupancy models to examine the abiotic and biotic effects on current lynx occupancy and predict future lynx distribution based on climate change forecasts. Our results show lynx occupancy across the Washington landscape is restricted and dictated largely by abiotic factors, disturbance regimes, and distance from source populations in Canada. Predictions of future distribution suggest lynx will be increasingly challenged by climatic changes, particularly at the southern and lower elevation portions of their range in Washington. Our results paint an alarming picture for lynx persistence in Washington that is relevant to current deliberations regarding lynx delisting from the Endangered Species Act. Our simple camera design was a highly effective method for surveying lynx across broad spatial scales, and could be a key monitoring tool for lynx that is easy to implement by researchers and government agencies. © 2020 The Wildlife Society.  相似文献   

17.
Over the past ~40 years, several attempts were made to reintroduce Eurasian lynx to suitable habitat within their former distribution range in Western Europe. In general, limited numbers of individuals have been released to establish new populations. To evaluate the effects of reintroductions on the genetic status of lynx populations we used 12 microsatellite loci to study lynx populations in the Bohemian–Bavarian and Vosges–Palatinian forests. Compared with autochthonous lynx populations, these two reintroduced populations displayed reduced genetic diversity, particularly the Vosges–Palatinian population. Our genetic data provide further evidence to support the status of ‘endangered’ and ‘critically endangered’ for the Bohemian–Bavarian and Vosges–Palatinian populations, respectively. Regarding conservation management, we highlight the need to limit poaching, and advocate additional translocations to bolster genetic variability.  相似文献   

18.
Shifts in species distributions due to environmental change may affect the spatial pattern of genetic structure within a species' range, including possible changes to the adaptive potential of populations. We investigated spatial patterns of neutral genetic diversity and differentiation at the southern edge of the Canada lynx Lynx canadensis distribution in Ontario, Canada. We analyzed provincial fur harvest records (1972–2010) and collected and genotyped lynx pelt samples (2007–2009) from 702 lynx at 14 microsatellite loci. We show that the southern range boundary of lynx in central Canada has contracted northward by > 175 km since the 1970s, and that high winter temperature, low snow depth, and low proportion of suitable habitat are strongly correlated with low neutral genetic diversity and high genetic differentiation at the trailing range edge. Our work tests fundamental ideas about species range limits and demonstrates that environmental conditions can have a marked influence on neutral genetic structure. Our results suggest that changes in environmental conditions will result in further loss of genetic diversity and possibly reduce adaptive potential in southern peripheral lynx populations.  相似文献   

19.
Harvesting of wildlife populations by humans is usually targeted by sex, age or phenotypic criteria, and is therefore selective. Selective harvesting has the potential to elicit a genetic response from the target populations in several ways. First, selective harvesting may affect population demographic structure (age structure, sex ratio), which in turn may have consequences for effective population size and hence genetic diversity. Second, wildlife-harvesting regimes that use selective criteria based on phenotypic characteristics (e.g. minimum body size, horn length or antler size) have the potential to impose artificial selection on harvested populations. If there is heritable genetic variation for the target characteristic and harvesting occurs before the age of maturity, then an evolutionary response over time may ensue. Molecular ecological techniques offer ways to predict and detect genetic change in harvested populations, and therefore have great utility for effective wildlife management. Molecular markers can be used to assess the genetic structure of wildlife populations, and thereby assist in the prediction of genetic impacts by delineating evolutionarily meaningful management units. Genetic markers can be used for monitoring genetic diversity and changes in effective population size and breeding systems. Tracking evolutionary change at the phenotypic level in the wild through quantitative genetic analysis can be made possible by genetically determined pedigrees. Finally, advances in genome sequencing and bioinformatics offer the opportunity to study the molecular basis of phenotypic variation through trait mapping and candidate gene approaches. With this understanding, it could be possible to monitor the selective impacts of harvesting at a molecular level in the future. Effective wildlife management practice needs to consider more than the direct impact of harvesting on population dynamics. Programs that utilize molecular genetic tools will be better positioned to assess the long-term evolutionary impact of artificial selection on the evolutionary trajectory and viability of harvested populations.  相似文献   

20.
Ancient DNA (aDNA) analyses have proven to be important tools in understanding human population dispersals, settlement patterns, interactions between prehistoric populations, and the development of regional population histories. Here, we review the published results of sixty-three human populations from throughout the Americas and compare the levels of diversity and geographic patterns of variation in the ancient samples with contemporary genetic variation in the Americas in order to investigate the evolution of the Native American gene pool over time. Our analysis of mitochondrial haplogroup frequencies and prehistoric population genetic diversity presents a complex evolutionary picture. Although the broad genetic structure of American prehistoric populations appears to have been established relatively early, we nevertheless identify examples of genetic discontinuity over time in select regions. We discuss the implications this finding may have for our interpretation of the genetic evidence for the initial colonization of the Americas and its subsequent population history.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号