首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Heterologous expression of cloned Drosophila nicotinic acetylcholine receptor (nAChR) subunits indicates that these proteins misfold when expressed in mammalian cell lines at 37°C. This misfolding can, however, be overcome either by growing transfected mammalian cells at lower temperatures or by the expression of Drosophila nAChR subunits in a Drosophila cell line. Whereas the Drosophila nAChR β subunit (SBD) cDNA, reported previously, lacked part of the SBD coding sequence, here we report the construction and expression of a full-length SBD cDNA. We have examined whether problems in expressing functional Drosophila nAChRs in either Xenopus oocytes or mammalian cell lines can be attributed to an inability of these expression systems to assemble correctly Drosophila nAChRs. Despite expression in what might be considered a more native cellular environment, we have been unable to detect functional nAChRs in a Drosophila cell line unless Drosophila nAChR subunit cDNAs are coexpressed with vertebrate nAChR subunits. Our results indicate that the folding of Drosophila nAChR subunits is temperature-sensitive and strongly suggest that the inability of these Drosophila nAChR subunits to generate functional channels in the absence of vertebrate subunits is due to a requirement for coassembly with as yet unidentified Drosophila nAChR subunits.  相似文献   

2.
Neuronal Nicotinic Receptors in Dementia with Lewy Bodies and Schizophrenia   总被引:9,自引:0,他引:9  
Neuronal nicotinic receptors have been implicated in schizophrenia on the basis of the high incidence of tobacco smoking in patients, abnormalities in cytisine and alpha-bungarotoxin (alphaBGT) binding in the hippocampus, and linkage between auditory P50 deficits and the region of chromosome 15 coding the alpha7 subunit. In another disease associated with psychosis, dementia with Lewy bodies (DLB), in which visual hallucinations predominate, reductions in nicotine binding have been identified in various cortical and subcortical regions. We investigated both alphaBGT and nicotine binding autoradiographically in different thalamic nuclei in autopsy brain tissue from patients with schizophrenia and DLB. AlphaBGT binding in the reticular nucleus was moderately reduced (25%) in schizophrenia and more extensively reduced (50%) in DLB. There were no significant alterations in nicotine binding in schizophrenia, and in DLB, a trend towards moderate reductions in most nuclei reached significance in the lateral dorsal nucleus. It is concluded that widespread abnormalities of thalamic nicotine are not implicated in schizophrenia or DLB, but that reticular alphaBGT binding may be involved to a lesser and greater extent in the pathophysiology or psychopathology of both disorders.  相似文献   

3.
Neosurugatoxin, a Specific Antagonist of Nicotinic Acetylcholine Receptors   总被引:8,自引:6,他引:2  
Neosurugatoxin (NSTX) (3 nM-30 nM), recently isolated from the Japanese ivory mollusc (Babylonia japonica) exerted a potent antinicotinic action in the isolated guinea pig ileum. Specific [3H]nicotine binding to rat forebrain membranes was saturable, reversible, and of high affinity. Nicotinic cholinergic agonists exhibited a markedly greater affinity for [3H]nicotine binding sites than a muscarinic agonist, oxotremorine. Although alpha-bungarotoxin had no effect on [3H]nicotine binding, low concentrations (1 nM-1 microM) of NSTX inhibited [3H]nicotine binding in the forebrain membranes and its IC50 value was 69 +/- 6 nM. On the other hand, NSTX did not affect muscarinic receptor binding in the brain. These data indicate that NSTX may be of appreciable interest as a neurotoxin with a selective affinity for ganglionic nicotinic receptors.  相似文献   

4.
To determine whether prolonged depolarization and/or changes in intracellular Ca2+ concentrations stimulate adaptive responses of neuronal nicotinic acetylcholine receptors, PC12 pheochromocytoma cells were grown in medium containing various concentrations of K+. Nicotinic receptor function was determined as carbachol-stimulated uptake of 86Rb+. Cells were exposed to 50 mM K+ for up to 4 days and then allowed to repolarize for 60 min. Under these conditions, no changes in basal or carbachol-stimulated uptake of 86Rb+ were observed. Furthermore, neither the time course of carbachol-stimulated uptake or the carbachol concentration dependence of 86Rb+ uptake was altered. Finally, concurrent depolarization did not affect the functional down-regulation produced by chronic exposure of the cells to carbachol. Thus, neuronal nicotinic acetylcholine receptors on PC12 cells do not appear to be regulated by depolarization or prolonged elevation of the intracellular Ca2+ level.  相似文献   

5.
Abstract: The effects of the nicotinic agonist (+)-anatoxin-a have been examined in four different preparations, representing at least two classes of neuronal nicotinic receptors. (+)-Anatoxin-a was most potent (EC50= 48 n M ) in stimulating 86Rb+ influx into M10 cells, which express the nicotinic receptor subtype comprising α4 and β2 subunits. A presynaptic nicotinic receptor mediating acetylcholine release from hippocampal synaptosomes was similarly sensitive to (+)-anatoxin-a (EC50= 140 n M ). α-Bungarotoxin-sensitive neuronal nicotinic receptors, studied using patch-clamp recording techniques, required slightly higher concentrations of this alkaloid for activation: Nicotinic currents in hippocampal neurons were activated by (+)-anatoxin-a with an EC50 of 3.9 γ M , whereas α7 homooligomers reconstituted in Xenopus oocytes yielded an EC50 value of 0.58 γ M for (+)-anatoxin-a. In these diverse preparations, (+)-anatoxin-a was between three and 50 times more potent than (–)-nicotine and ˜20 times more potent than acetylcholine, making it the most efficacious nicotinic agonist thus far described.  相似文献   

6.
7.
alpha-Bungarotoxin (alpha-BGT), a snake venom polypeptide, interacts potently and specifically with a nicotinic receptor population in neuronal tissue. However, the identity of this site is unclear, because, unlike at the neuromuscular junction and in electroplax, in nervous tissue the toxin does not block nicotinic cholinergic responses. Therefore, we sought endogenous compounds other than acetylcholine that could interact with the neuronal alpha-BGT site. In the present experiments, thymopoietin, a polypeptide isolated from the thymus, is shown to inhibit potently alpha-BGT binding to brain membranes in a dose-dependent manner (IC50 = 3.1 nM). This effect was not shared by a wide variety of other peptides, including thysplenin, a closely related polypeptide. Thymopoietin did not inhibit the binding of other radioligands known to interact with different populations of cholinergic receptors, such as [3H]nicotine and [3H]methylcarbachol, which bind to nicotinic receptors, or [3H]quinuclidinylbenzilate, which binds to muscarinic receptors. These results show that thymopoietin potently and specifically affects 125I-alpha-BGT binding to brain membranes and suggest that thymopoietin might be an endogenous ligand for alpha-BGT receptors in neuronal tissue.  相似文献   

8.
Abstract: Adrenal chromaffin cells contain at least two subtypes of nicotinic acetylcholine receptors (nAChRs). These studies were designed to identify and characterize the subtype of nAChR mediating adrenal catecholamine release using the monoclonal antibody mAb35, which recognizes the α-subunit of muscle nAChRs and cross-reacts with some neuronal nAChRs. Immunocytochemical studies demonstrated that mAb35 interacts with specific sites on cultured chromaffin cells. Pretreatment with mAb35 reduced nAChR-stimulated catecholamine release (IC50 of ∼10 n M ). mAb35 had no effects on release stimulated through non-nAChR mechanisms. Unlike agonist-induced nAChR desensitization, the mAb35-induced reduction in nAChR-mediated secretion developed slowly. Although not immediately reversible, nAChR-stimulated release recovered after mAb35 removal. However, unlike recovery from agonist pretreatment, recovery from mAb35 pretreatment was relatively slow and was partially blocked by vinblastine. Hybridization of adrenal chromaffin RNA with a rat α3 cDNA revealed two strong bands and two fainter bands: two higher-molecular-weight bands, 6.9 and 8.5 kb; a strong band of 3.2 kb; and a lower amount of a 2.3-kb RNA. With recovery of nAChR function after agonist or mAb35 treatment, no significant effects on α3 subunit mRNA levels were seen. In summary, these studies demonstrate the presence of mAb35-nAChRs on adrenal chromaffin cells and provide evidence that these receptors represent the major population that regulates secretory events in adrenal chromaffin cells.  相似文献   

9.
10.
Abstract: Neonicotinoids such as the insecticide imidacloprid (IMI) act as agonists at the insect nicotinic acetylcholine receptor (nAChR). Head membranes of Drosophila melanogaster and Musca domestica have a single high-affinity binding site for [3H]IMI with K D values of 1–2 n M and B max values of 560–850 fmol/mg of protein. Locusta and Periplaneta nAChRs isolated with an α-bungarotoxin (α-BGT)-agarose affinity column are known to be α-subunit homooligomers. This study uses 1 - [ N - (6 - chloro - 3 - pyridylmethyl) - N - ethyl]amino - 1 - amino-2-nitroethene (which inhibits [3H]IMI binding to Drosophila and Musca head membranes at 2–3 n M ) to develop a neonicotinoid-agarose affinity column. The procedure—introduction of Triton-solubilized Drosophila or Musca head membranes into this neonicotinoid-based column, elution with IMI, and analysis by lithium dodecyl sulfate-polyacrylamide gel electrophoresis—gives only three proteins (69, 66, and 61 kDa) tentatively assigned as putative subunits of the nAChR; the same three proteins are obtained with Musca using the α-BGT-agarose affinity column. Photoaffinity labeling of the Drosophila and Musca putative subunits from the neonicotinoid column with 125I-α-BGT-4-azidosalicylic acid gives a labeled derivative of 66–69 kDa. The yield is 2–5 µg of receptor protein from 1 g of Drosophila or Musca heads. Neonicotinoid affinity chromatography to isolate native Drosophila and Musca receptors will facilitate studies on the structure and function of insect nAChRs.  相似文献   

11.
To clarify the regulation of central histaminergic (HAergic) activity by cholinergic receptors, the effects of drugs that stimulate the cholinergic system on brain histamine (HA) turnover were examined, in vivo, in mice and rats. The HA turnover was estimated from the accumulation of tele-methylhistamine (t-MH) during the 90-min period after administration of pargyline (65 mg/kg, i.p.). In the whole brain of mice, oxotremorine, at doses higher than 0.05 mg/kg, s.c., significantly inhibited the HA turnover, this effect being completely antagonized by atropine but not by methylatropine. A large dose of nicotine (10 mg/kg, s.c.) also significantly inhibited the HA turnover. This inhibitory effect was antagonized by mecamylamine but not by atropine or hexamethonium. A cholinesterase inhibitor, physostigmine, at doses higher than 0.1 mg/kg, s.c., significantly inhibited the HA turnover. This effect was antagonized by atropine but not at all by mecamylamine. None of these cholinergic antagonists used affected the steady-state t-MH level or HA turnover by themselves. In the rat brain, physostigmine (0.1 and 0.3 mg/kg, s.c.) also decreased the HA turnover. This inhibitory effect of physostigmine was especially marked in the striatum and cerebral cortex where muscarinic receptors are present in high density. Oxotremorine (0.2 mg/kg, s.c.) and nicotine (1 mg/kg, s.c.) also decreased the HA turnover in the rat brain. However, these effects showed no marked regional differences. These results suggest that the stimulation of central muscarinic receptors potently inhibits the HAergic activity in the brain and that strong stimulation of central nicotinic receptors can also induce a similar effect.  相似文献   

12.
Nicotinic cholinergic receptor binding sites labeled by [3H]acetylcholine were measured in the cerebral cortices, thalami, striata, and hypothalami of rats lesioned by intraventricular injection of either 6-hydroxydopamine or 5, 7-dihydroxytryptamine. In addition, [3H]acetylcholine binding sites were measured in the cerebral cortices of rats lesioned by injection of ibotenic acid into the nucleus basalis magnocellularis. [3H]Acetylcholine binding was significantly decreased in the striata and hypothalami of both 6-hydroxydopamine- and 5,7-dihydroxytryptamine-lesioned rats. There was no change in binding in the cortex or thalamus by either lesion. Ibotenic acid lesions of the nucleus basalis magnocellularis, which projects cholinergic axons to the cortex, did not alter [3H]acetylcholine binding. These results provide evidence for a presynaptic location of nicotinic cholinergic binding sites on catecholamine and serotonin axons in the striatum and hypothalamus.  相似文献   

13.
烟碱型乙酰胆碱受体及其亚单位的结构功能   总被引:5,自引:0,他引:5  
烟碱型乙酰胆碱受体是配体门控的离子通道蛋白,每个受体由5个亚单位组成,每个亚单位具有4个跨膜α螺旋结构域。通道孔由5个亚单位的M2结构域(α螺旋)环绕围成,它们放射状地排列,使通道孔在膜中部逐渐变细。另外15个α螺旋相互盘绕,构成通道的外环。至今已确认了17种亚单位,它们由一个共同起源的基因家族编码,在中枢神经系统、周围神经系统和肌肉组织广泛表达。众多的亚单位,再加上组织表达的特异性导致受体类型的多样性,结果使该受体具有广泛的生理、药理特性和功能。进年来,基因敲除等现代遗传操作技术提供了在体内研究各类型受体的有效手段,使人类对该受体及亚单位的结构和功能有了长足的认识。  相似文献   

14.
Abstract: One of the problems faced when using heterologous expression systems to study receptors is that the pharmacological and physiological properties of expressed receptors often differ from those of native receptors. In the case of neuronal nicotinic receptors, one or two subunit cDNAs are sufficient for expression of functional receptors in Xenopus oocytes. However, the stoichiometries of nicotinic receptors in neurons are not known and expression patterns of mRNA coding for different nicotinic receptor subunits often overlap. Consequently, one explanation for the discrepancy between properties of native versus heterologously expressed nicotinic receptors is that more than two types of subunit are necessary for correctly functioning receptors. The Xenopus oocyte expression system was used to test the hypothesis that more than two types of subunit can coassemble; specifically, can two different β subunits assemble with an α subunit forming a receptor with unique pharmacological properties? We expressed combinations of cDNA coding for α3, β2, and β4 subunits. β2 and β4, in pairwise combination with α3, are differentially sensitive to cytisine and neuronal bungarotoxin (nBTX). α3β4 receptors are activated by cytisine and are not blocked by low concentrations of nBTX; acetylcholine-evoked currents through α3β2 receptors are blocked by both cytisine and low concentrations of nBTX. Coinjection of cDNA coding for α3, β2, and β4 into oocytes resulted in receptors that were activated by cytisine and blocked by nBTX, thus demonstrating inclusion of both β2 and β4 subunits in functional receptors.  相似文献   

15.
Abstract: Expression of the cloned neuronal nicotinic acetylcholine receptor (nAChR) α7 subunit in several cultured mammalian cell lines has revealed that the folding, assembly, and subcellular localization of this protein are critically dependent upon the nature of the host cell. In all cell lines that were examined, high levels of α7 protein were detected by metabolic labelling and immunoprecipitation after transfection with the cloned α7 cDNA. In contrast, elevated levels of α-bungarotoxin binding could be detected in only two of the nine cell lines. Both of these "α7-permissive" cell lines [rat phaeochromocytoma (PC12) and human neuroblastoma (SH-SY5Y)] express an endogenous α7 subunit. However, by expression of an epitope-tagged α7 subunit, it has been possible to show that the elevation in surface α-bungarotoxin binding in these two cell lines is due to expression of cDNA-encoded α7. The cell-specific misfolding of the neuronal nAChR α7 subunit is a phenomenon that is not shared by either the hetero-oligomeric muscle nAChR or the homo-oligomeric serotonin receptor 5-HT3 subunit. Our data also indicate that the cell-specific misfolding cannot be explained by a requirement for the coassembly with other known nAChR subunits and cannot be alleviated by treatments that have been reported to affect the assembly efficiency of other neurotransmitter-gated ion channels.  相似文献   

16.
Abstract: The effects of extracellular calcium on functional properties of nicotinic receptors from mouse thalamus were investigated. Previous studies have reported that calcium modulates the function of several neuronal nicotinic receptors. A 86Rb+ ion efflux assay was developed to measure nicotinic receptor function from brain tissue, and data indicate that α4β2 receptors may mediate this response. Using the 86Rb+ efflux assay, calcium effects on receptor activation, desensitization induced by high, activating and low, subactivating concentrations of agonist, and recovery from desensitization were examined. Effects of calcium on the kinetics of ligand binding were also investigated. Calcium modulated receptor activation by increasing the maximal response to nicotine in a concentration-dependent manner, without affecting the EC50 of nicotine. Barium, but not magnesium, mimicked the effects of calcium on receptor activation. The increase in receptor activation could not be explained by changes in the ratio of activatable to desensitized receptors as assessed by the kinetics of ligand binding. Desensitization following activation was unaffected by calcium. Calcium, barium, and magnesium, however, increased the potency of nicotine for desensitization induced by exposure to low, subactivating concentrations of nicotine. Recovery from desensitization was not modulated by calcium. These data suggest that calcium modulates various functional aspects of nicotinic receptors from mouse brain and may do so via different mechanisms.  相似文献   

17.
Abstract: The chronic administration of nicotine to animals has been shown to result in an increase in brain nicotinic acetylcholine receptor (nAChR) density. It has been suggested that this agonist-induced receptor up-regulation is a consequence of long-term nAChR desensitization in vivo. In this study, the effects of different nicotine doses and administration schedules as well as the resulting blood and brain nicotine levels were determined to assess the effect of in vivo nicotine concentration on nAChR density in the brain. Rats with indwelling subcutaneous cannulas were infused for 10 days with 0.6–4.8 mg/kg/day nicotine either 2×, 4×, or 8×/day or by constant infusion. The nAChR density in cortical, striatal, and hippocampal tissue measured by [3H]cytisine binding as well as the corresponding plasma and brain nicotine levels measured by GC analysis were determined. The results showed a dose-dependent increase in nAChR density with significant increases achieved at 2.4 mg/kg/day in all three brain areas. It is surprising that at this dose there was little difference between the constant infusion of nicotine and twice-daily administration, whereas more frequent periodic injections were actually less effective at up-regulating nAChRs. An analysis of the blood and brain levels of nicotine compared with the concentrations that produce nAChR desensitization suggests that in vivo desensitization alone is not sufficient for nAChR up-regulation to occur.  相似文献   

18.
Abstract: Stimulation of chick sympathetic neurons in culture by the cholinergic agonists acetylcholine, nicotine, and 1,1-dimethyl-4-phenylpiperazinium (all at 10–1,000 µmol/L) induced concentration-dependent increases of free calcium levels measured by fura 2 fluorescence in neuronal processes. The response evoked by acetylcholine had both nicotinic and muscarinic components, whereas that induced by 1,1-dimethyl-4-phenylpiperazinium was purely nicotinic. Tetrodotoxin (0.3 µmol/L) blocked completely the increase of intraterminal free calcium level evoked by electrical stimulation. On the other hand, stimulation with 1,1-dimethyl-4-phenylpiperazinium still evoked 20–25% of the control response in the presence of tetrodotoxin. The concentration-response relationship of 1,1-dimethyl-4-phenylpiperazinium stimulation did not differ in the absence and in the presence of tetrodotoxin. The nicotinic antagonists d -tubocurarine (10 µmol/L) and mecamylamine (10 µmol/L), but not α-bungarotoxin (125 nmol/L), prevented the increase of intraterminal free calcium level evoked by 1,1-dimethyl-4-phenylpiperazinium (100 µmol/L) in the presence of tetrodotoxin. These observations indicate the presence of nicotinic receptors on neuronal processes that increase the intraterminal concentration of free calcium and probably modulate transmitter release. Their pharmacological properties are similar to those of nicotinic receptors located on neuronal cell bodies.  相似文献   

19.
Standard treatment of poisoning by organophosphorus anticholinesterases uses atropine to reduce the muscarinic effects of acetylcholine accumulation and oximes to reactivate acetylcholinesterase (the effectiveness of which depends on the specific anticholinesterase), but does not directly address the nicotinic effects of poisoning. Bispyridinium molecules which act as noncompetitive antagonists at nicotinic acetylcholine receptors have been identified as promising compounds and one has been shown to improve survival following organophosphorus poisoning in guinea-pigs. Here, we have investigated the structural requirements for antagonism and compared inhibitory potency of these compounds at muscle and neuronal nicotinic receptors and acetylcholinesterase. A series of compounds was synthesised, in which the length of the polymethylene linker between the two pyridinium moieties was increased sequentially from one to ten carbon atoms. Their effects on nicotinic receptor-mediated calcium responses were tested in muscle-derived (CN21) and neuronal (SH-SY5Y) cells. Their ability to inhibit acetylcholinesterase activity was tested using human erythrocyte ghosts. In both cell lines, the nicotinic response was inhibited in a dose-dependent manner and the inhibitory potency of the compounds increased with greater linker length between the two pyridinium moieties, as did their inhibitory potency for human acetylcholinesterase activity in vitro. These results demonstrate that bispyridinium compounds inhibit both neuronal and muscle nicotinic receptors and that their potency depends on the length of the hydrocarbon chain linking the two pyridinium moieties. Knowledge of structure-activity relationships will aid the optimisation of molecular structures for therapeutic use against the nicotinic effects of organophosphorus poisoning.  相似文献   

20.
Genes encoding two three-finger toxins TFT-AF and TFT-VN, nucleotide sequences of which were earlier determined by cloning cDNA from venom glands of vipers Azemiops feae and Vipera nikolskii, respectively, were expressed for the first time in E. coli cells. The biological activity of these toxins was studied by electrophysiological techniques, calcium imaging, and radioligand analysis. It was shown for the first time that viper three-finger toxins are antagonists of nicotinic acetylcholine receptors of neuronal and muscle type.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号