首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Horizontal gene transfer (HGT) is thought to occur frequently in bacteria in nature and to play an important role in bacterial evolution, contributing to the formation of new species. To gain insight into the frequency of HGT in Vibrionaceae and its possible impact on speciation, we assessed the incidence of interspecies transfer of the lux genes (luxCDABEG), which encode proteins involved in luminescence, a distinctive phenotype. Three hundred three luminous strains, most of which were recently isolated from nature and which represent 11 Aliivibrio, Photobacterium, and Vibrio species, were screened for incongruence of phylogenies based on a representative housekeeping gene (gyrB or pyrH) and a representative lux gene (luxA). Strains exhibiting incongruence were then subjected to detailed phylogenetic analysis of horizontal transfer by using multiple housekeeping genes (gyrB, recA, and pyrH) and multiple lux genes (luxCDABEG). In nearly all cases, housekeeping gene and lux gene phylogenies were congruent, and there was no instance in which the lux genes of one luminous species had replaced the lux genes of another luminous species. Therefore, the lux genes are predominantly vertically inherited in Vibrionaceae. The few exceptions to this pattern of congruence were as follows: (i) the lux genes of the only known luminous strain of Vibrio vulnificus, VVL1 (ATCC 43382), were evolutionarily closely related to the lux genes of Vibrio harveyi; (ii) the lux genes of two luminous strains of Vibrio chagasii, 21N-12 and SB-52, were closely related to those of V. harveyi and Vibrio splendidus, respectively; (iii) the lux genes of a luminous strain of Photobacterium damselae, BT-6, were closely related to the lux genes of the lux-rib(2) operon of Photobacterium leiognathi; and (iv) a strain of the luminous bacterium Photobacterium mandapamensis was found to be merodiploid for the lux genes, and the second set of lux genes was closely related to the lux genes of the lux-rib(2) operon of P. leiognathi. In none of these cases of apparent HGT, however, did acquisition of the lux genes correlate with phylogenetic divergence of the recipient strain from other members of its species. The results indicate that horizontal transfer of the lux genes in nature is rare and that horizontal acquisition of the lux genes apparently has not contributed to speciation in recipient taxa.  相似文献   

3.
A chromosomal fragment of bacteria Photorhabdus luminescence Zm1, which contains the lux operon, was cloned into the vector pUC18. The hybrid clone containing plasmid pXen7 with the EcoRI fragment approximately 7-kb was shown to manifest a high level of bioluminescence. By subcloning and restriction analysis of the EcoRI fragment, the location of luxCDABE genes relative to restriction sites was determined. The nucleotide sequence of the DNA fragment containing the luxA and luxB genes encoding alpha- and beta-subunits of luciferase was determined. A comparison with the nucleotide sequences of luxAB genes in Hm and Hw strains of Ph. luminescence revealed 94.5 and 89.7% homology, respectively. The enterobacterial repetitive intergenic sequence (ERIC) of 126 bp typical for Hw strains was identified in the spacer between the luxD and luxA genes. The lux operon of Zm1 is assumed to emerge through recombination between Hm and Hw strains. Luciferase of Ph. luminescence was shown to possess a high thermal stability: its activity decreased by a factor of 10 at 44 degrees C for 30 min, whereas luciferases of marine bacteria Vibrio fischeri and Vibrio harveyi were inactivated by one order of magnitude at 44 degrees C for 1 and 6 min, respectively. The lux genes of Ph. luminescence are suggested for use in gene engineering and biotechnology.  相似文献   

4.
Helicobacter pylori possesses a homolog of the luxS gene, initially identified by its role in autoinducer production for the quorum-sensing system 2 in Vibrio harveyi. The genomes of several other species of bacteria, notably Escherichia coli, Salmonella enterica serovar Typhimurium, and Vibrio cholerae, also include luxS homologs. All of these bacteria have been shown to produce active autoinducers capable of stimulating the expression of the luciferase operon in V. harveyi. In this report, we demonstrate that H. pylori also synthesizes a functional autoinducer (AI-2) that can specifically activate signaling system 2 in V. harveyi. Maximal activity is produced during early log phase, and the activity is diminished when cells enter stationary phase. We show that AI-2 is not involved in modulating any of the known or putative virulence factors in H. pylori and that a luxS null mutant has a two-dimensional protein profile identical to that of its isogenic parent strain. We discuss the implications of having an AI-2-like quorum-sensing system in H. pylori and suggest possible roles that it may play in H. pylori infection.  相似文献   

5.
Abstract The luxA,B genes from the Gram-negative marine bacterium Vibrio harveyi MAV were used in Staphylococcus carnosus TM300 as a reporter system for regulated expression of xylose utilization. The luciferase genes were fused to the xyl operon from Staphylococcus xylosus C2a. Expression of bioluminescence was induced through addition of xylose and repressed in the presence of glucose. A method to quantitate bioluminescence directly from the culture is described.  相似文献   

6.
DNA coding for the alpha and beta subunits of Vibrio harveyi luciferase, the luxA and luxB genes, and the adjoining chromosomal regions on both sides of these genes (total of 18 kilobase pairs) was cloned into Escherichia coli. Using labeled DNA coding for the alpha subunit as a hybridization probe, we identified a set of polycistronic mRNAs (2.6, 4, 7, and 8 kilobases) by Northern blotting; the most prominent of these was the one 4 kilobases long. This set of mRNAs was induced during the development of bioluminescence in V. harveyi. Furthermore, the same set of mRNAs was synthesized in E. coli by a recombinant plasmid that contained a 12-kilobase pair length of V. harveyi DNA and expressed the genes for the luciferase subunits. A cloned DNA segment corresponding to the major 4-kilobase mRNA coded for the alpha and beta subunits of luciferase, as well as a 32,000-dalton protein upstream from these genes that could be specifically modified by acyl-coenzyme A and is a component of the bioluminescence system. V. harveyi mRNA that was hybridized to and released from cloned DNA encompassing the luxA and luxB genes was translated in vitro. Luciferase alpha and beta subunits and the 32,000-dalton polypeptide were detected among the products, along with 42,000- and 55,000-dalton polypeptides, which are encoded downstream from the lux genes and are thought to be involved in luminescence.  相似文献   

7.
L H Chen  T O Baldwin 《Biochemistry》1989,28(6):2684-2689
Numerous luciferase structural gene mutants of Vibrio harveyi have been generated by random mutagenesis and phenotypically characterized [Cline, T.W., & Hastings, J.W. (1972) Biochemistry 11, 3359-3370]. All mutants selected by Cline and Hastings for altered kinetics in the bioluminescence reaction had lesions in the alpha subunit. One of these mutants, AK-20, has normal or slightly enhanced thermal stability and enhanced FMNH2 binding affinity but a much-reduced quantum yield of bioluminescence and dramatically altered stability of the aldehyde-C4a-peroxydihydroflavin-luciferase intermediate (IIA), with a different aldehyde chain length dependence from that of the wild-type luciferase. To better understand the structural aspects of the aldehyde binding site in bacterial luciferase, we have cloned the luxAB genes from the V. harveyi mutant AK-20, determined the nucleotide sequence of the entire luxA gene, and determined the mutation to be TCT----TTT, resulting in a change of serine----phenylalanine at position 227 of the alpha subunit. To confirm that this alteration caused the altered kinetic properties of AK-20, we reverted the AK-20 luxA gene by oligonucleotide-directed site-specific mutagenesis to the wild-type sequence and found that the resulting enzyme is indistinguishable from the wild-type luciferase with respect to quantum yield, FMNH2 binding affinity, and intermediate IIA decay rates with 1-octanal, 1-decanal, and 1-dodecanal. To investigate the cause of the AK-20 phenotype, i.e., whether the phenotype is due to loss of the seryl residue or to the properties of the phenylalanyl residue, we have constructed mutants with alanine, tyrosine, and tryptophan at alpha 227.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
9.
The organization of the lux structural genes (A-E) in Photobacterium phosphoreum has been determined and a new gene designated as luxF discovered. The P. phosphoreum luminescence system was cloned into Escherichia coli using a pBR322 vector and identified by cross-hybridization with Vibrio fischeri lux DNA. The lux genes were located by specific expression of P. phosphoreum DNA fragments in the T7-phage polymerase/promoter system in E. coli and identification of the labeled polypeptide products. The luxA and luxB gene products (luciferase subunits) were shown to catalyze light emission in the presence of FMNH2, O2, and aldehyde. The luxC, luxD, and luxE gene products (fatty acid reductase subunits) responsible for aldehyde biosynthesis could be specifically acylated with 3H-labeled fatty acids. The order of the lux genes in P. phosphoreum was found to be luxCDABFE with luxF coding for a new polypeptide of 26 kDa. The presence of a new gene in the P. phosphoreum luminescence system between luxB and luxE as compared to the organization of the lux structural gene in V. fischeri and Vibrio harveyi (luxCDABE) demonstrates that the luminescent systems in the marine bacteria have significantly diverged. The discovery of the luxF gene provides the basis for elucidating the role of its gene product in the expression of luminescence in different marine bacteria.  相似文献   

10.
P Sévigny  F Gossard 《Gene》1990,93(1):143-146
A synthetic oligodeoxyribonucleotide harboring four new restriction sites was inserted into the luxB gene of Vibrio harveyi. This insertion did not disrupt the reading frame. An active beta-subunit was synthesized since a plasmid with both the luxA and mutated luxB genes conferred upon Escherichia coli the bacterial luciferase (Lux) phenotype in the presence of an aldehyde. Ligation of a piece of foreign DNA at these new cloning sites in the vector extinguish the Lux phenotype of the transformed bacteria. Therefore, the plasmid was used as a cloning vector, and recombinant DNA-containing bacteria were detected by the loss of bioluminescence. To create more versatile plasmids, the intergenic region of phage f1 was inserted outside of the lux genes. The selection by loss of bioluminescence presents several advantages over the white/blue selection of the lacZ gene on indicator plates.  相似文献   

11.
12.
The lux genes required for expression of luminescence have been cloned from a terrestrial bacterium, Xenorhabdus luminescens, and the nucleotide sequences of the luxA and luxB genes coding for the alpha and beta subunits of luciferase determined. The lux gene organization was closely related to that of marine bacteria from the Vibrio genus with the luxD gene being located immediately upstream and the luxE downstream of the luciferase genes, luxAB. A high degree of homology (85% identity) was found between the amino acid sequences of the alpha subunits of X. luminescens luciferase and the luciferase from a marine bacterium, Vibrio harveyi, whereas the beta subunits of the two luciferases had only 60% identity in amino acid sequence. The similarity in the sequences of the alpha subunits of the two luciferases was also reflected in the substrate specificities and turnover rates with different fatty aldehydes supporting the proposal that the alpha subunit almost exclusively controls these properties. The luciferase from X. luminescens was shown to have a remarkably high thermal stability being stable at 45 degrees C (t 1/2 greater than 3 h) whereas V. harveyi luciferase was rapidly inactivated at this temperature (t 1/2 = 5 min). These results indicate that the X. luminescens lux system may be the bacterial bioluminescent system of choice for application in coupled luminescent assays and expression of lux genes in eukaryotic systems at higher temperatures.  相似文献   

13.
14.
15.
16.
L Xi  K W Cho    S C Tu 《Journal of bacteriology》1991,173(4):1399-1405
Xenorhabdus luminescens HW is the only known luminous bacterium isolated from a human (wound) source. A recombinant plasmid was constructed that contained the X. luminescens HW luxA and luxB genes, encoding the luciferase alpha and beta subunits, respectively, as well as luxC, luxD, and a portion of luxE. The nucleotide sequences of these lux genes, organized in the order luxCDABE, were determined, and overexpression of the cloned luciferase genes was achieved in Escherichia coli host cells. The cloned luciferase was indistinguishable from the wild-type enzyme in its in vitro bioluminescence kinetic properties. Contrary to an earlier report, our findings indicate that neither the specific activity nor the size of the alpha (362 amino acid residues, Mr 41,389) and beta (324 amino acid residues, Mr 37,112) subunits of the X. luminescens HW luciferase was unusual among known luminous bacterial systems. Significant sequence homologies of the alpha and beta subunits of the X. luminescens HW luciferase with those of other luminous bacteria were observed. However, the X. luminescens HW luciferase was unusual in the high stability of the 4a-hydroperoxyflavin intermediate and its sensitivity to aldehyde substrate inhibition.  相似文献   

17.
18.
The lux operon is an uncommon gene cluster. To find the pathway through which the operon has been transferred, we sequenced the operon and both flanking regions in four typical luminous species. In Vibrio cholerae NCIMB 41, a five-gene cluster, most genes of which were highly similar to orthologues present in Gram-positive bacteria, along with the lux operon, is inserted between VC1560 and VC1563, on chromosome 1. Because this entire five-gene cluster is present in Photorhabdus luminescens TT01, about 1.5 Mbp upstream of the operon, we deduced that the operon and the gene cluster were transferred from V. cholerae to an ancestor of Pr. luminescens. Because in both V. fischeri and Shewanella hanedai, luxR and luxI were found just upstream of the operon, we concluded that the operon was transferred from either species to the other. Because most of the genes flanking the operon were highly similar to orthologues present on chromosome 2 of vibrios, we speculated that the operon of most species is located on this chromosome. The undigested genomic DNAs of five luminous species were analysed by pulsed-field gel electrophoresis and Southern hybridization. In all the species except V. cholerae, the operons are located on chromosome 2.  相似文献   

19.
The bioluminescence assay system using Vibrio harveyi reporter strains were used to examine quorum-sensing autoinducer (AI) activity from Mannheimia haemolytica A1 cell-free culture supernatant. We showed that M. haemolytica A1 cell-free culture supernatant contains molecules that can stimulate the quorum-sensing system that regulates the expression of the luciferase operon in V. harveyi. Specifically, M. haemolytica A1 can stimulate only the quorum system 2 but not system 1, suggesting that the culture supernatant only contains molecules similar to AI-2 of V. harveyi. The bioluminescence assay was also used to show that culture supernatants from related Pasteurellaceae organisms, Pasteurella multocida, Pasteurella trehalosi, Actinobacillus suis and Actinobacillus pleuropneumoniae, also contain AI-2-like molecules. This is consistent with the presence of a luxS homolog in the genomes of P. multocida and A. pleuropneumoniae. A luxS homolog was cloned by PCR from M. haemolytica A1 using sequencing data from the ongoing genome sequencing project. The cloned luxS(M.h.) was able to complement AI-2 production in the Escherichia coli DH5alpha luxS mutant. This is the first report of a quorum-sensing activity in M. haemolytica A1 and suggests that this bacterium utilizes this mechanism to regulate expression of genes under specific conditions.  相似文献   

20.
Regulation of quorum sensing in Vibrio harveyi by LuxO and sigma-54   总被引:3,自引:0,他引:3  
The bioluminescent marine bacterium Vibrio harveyi controls light production (lux) by an elaborate quorum-sensing circuit. V. harveyi produces and responds to two different autoinducer signals (AI-1 and AI-2) to modulate the luciferase structural operon (luxCDABEGH) in response to changes in cell-population density. Unlike all other Gram-negative quorum-sensing organisms, V. harveyi regulates quorum sensing using a two-component phosphorylation-dephosphorylation cascade. Each autoinducer is recognized by a cognate hybrid sensor kinase (called LuxN and LuxQ). Both sensors transduce information to a shared phosphorelay protein called LuxU, which in turn conveys the signal to the response regulator protein LuxO. Phospho-LuxO is responsible for repression of luxCDABEGH expression at low cell density. In the present study, we demonstrate that LuxO functions as an activator protein via interaction with the alternative sigma factor, sigma54 (encoded by rpoN). Our results suggest that LuxO, together with sigma54, activates the expression of a negative regulator of luminescence. We also show that phenotypes other than lux are regulated by LuxO and sigma54, demonstrating that in Vibrio harveyi, quorum sensing controls multiple processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号