首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A Zibert  E Wimmer 《Journal of virology》1992,66(12):7368-7373
The human poliovirus receptor (hPVR) is a glycoprotein with three immunoglobulin-like extracellular domains, of which the N-terminal domain (V-type domain) is necessary and sufficient for virus binding and uptake. The effect of N glycosylation of the V domain of hPVR on binding and entry of poliovirus was studied. Stable mouse L-cell lines were generated that express PVR-specific cDNA. One of the cell lines expressed a mutant of hPVR, in which both asparagine residues of the two N-glycosylation sites of the V domain were changed to aspartate (N105D) and serine (N120S), respectively. In the second mutant cell line, the portion of the cDNA encoding the V domain of hPVR was substituted by the homologous sequence of the recently isolated PVR cDNA from monkey cells. This V domain naturally lacks both N glycosylation sites and encodes D105 and S120 at the respective positions of the open reading frame. Absence of N glycosylation at these sites was demonstrated by in vitro translation of the two mutant coding sequences in the presence of microsomal membranes. Both PVR mutant cell lines were capable of poliovirus binding and replication. However, binding of anti-PVR monoclonal antibody D171 and protection from viral replication by this antibody were observed only with the glycosylation mutant carrying the human V domain. In contrast, infection of the cell line expressing the monkey-human hybrid receptor was not blocked even though monkey cells are fully protected by monoclonal antibody D171. The data suggest that N glycosylation of the V domain of hPVR is not essential for viral replication in human tissues and that differential glycosylation of hPVR at these sites is likely not a determinant of viral tissue tropism. Furthermore, the virus binding site and the epitope recognized by monoclonal antibody D171 do not appear to overlap.  相似文献   

2.
The ability of a virus to attach to a susceptible host cell is of utmost importance for the initiation of viral life cycle. Cell surface proteins called viral receptors mediate the initial steps of virus attachment and uptake. Poliovirus (PV) is one of the most studied animal viruses and its interaction with its cellular receptor, the human poliovirus receptor (hPVR) has been well characterized. This review will present our current understanding of the PV/hPVR interaction at the genetic and biochemical level. In addition, we will also discuss the implications of the PV/hPVR interaction on PV tissue tropism and the evolution of the three PV serotypes.  相似文献   

3.
The human poliovirus receptor alpha is a serine phosphoprotein.   总被引:2,自引:0,他引:2       下载免费PDF全文
J A Bibb  G Bernhardt    E Wimmer 《Journal of virology》1994,68(9):6111-6115
The human receptors for poliovirus (hPVR) are members of the immunoglobulin superfamily. Whereas the two membrane-bound isoforms, hPVR alpha and hPVR delta, share identical three-domain extracellular portions, their C-terminal cytoplasmic parts differ considerably. This feature is well conserved in the corresponding monkey proteins AGM alpha 1, AGM delta 1, and AGM alpha 2. The cellular function of these proteins is presently unknown. In this short communication we report that hPVR alpha and possibly also AGM alpha 1 and AGM alpha 2, but not the delta isoforms, are phosphoproteins. The phosphorylation occurs at a serine in the cytoplasmic tails of these receptors. We further present evidence suggesting that the kinase responsible for the phosphorylation is calcium/calmodulin kinase II.  相似文献   

4.
The lack of efficient methods for concentrating viruses in water samples leads to underreporting of viral contamination in source water. A novel strategy for viral concentration was developed using the expression of target virus receptors on bacterial cells. Poliovirus type 1, the most studied enterovirus, was used as a surrogate for enteric viruses. The human poliovirus receptor (hPVR) gene was expressed on the surface of Escherichia coli cells by using the ice nucleation protein (INP) gene. The hPVR gene was ligated to the 3' end of the INP gene after the removal of the stop codon. The resulting open reading frame (ORF) was used for the projection of hPVR onto the outer membrane of E. coli. Gene expression was tested by SDS-PAGE, Western blot, and dot blot analyses, and virion capture ability was confirmed by transmission electron microscopy. The application of engineered E. coli cells for capturing viruses in 1-liter samples of source and drinking water resulted in 75 to 99% procedural recovery efficiency. Cell surface display of viral receptors on bacterial cells opens a new prospect for an efficient and inexpensive alternative tool for capturing and concentrating waterborne viruses in water samples.  相似文献   

5.
Polypeptides of amino acids 1 to 241 (PVR241) and 1 to 330 (PVR330) of the human poliovirus receptor (hPVR) were produced in a baculovirus expression system. PVR241 contained extracellular domains 1 and 2 of hPVR, and PVR330 contained extracellular domains 1, 2, and 3. These peptides were purified by immunoaffinity column chromatography with an anti-hPVR monoclonal antibody (MAb). After the purification, PVR241 and PVR330 appeared to retain their native conformation as judged by reactivity with an anti-PVR MAb that recognized domain 1 of hPVR in a conformation-dependent manner. The virulent Mahoney strain of poliovirus type 1 was mixed with the purified PVRs in various concentrations. An average of at least 43 PVR330 molecules were able to bind to one virion particle under the conditions used. The equilibrium dissociation constant between the PVR330 molecule and the PVR binding site (canyon) on the virion was determined to be 4.50 ± (0.86) × 10−8 M at 4°C. Higher rates of conformational change of the virus (160S) to 135S and 80S particles were observed as the concentration of PVR330 was increased. In this in vitro system, the ratio of the amount of the 135S particle to that of the 80S particle seemed to be always constant. After the disappearance of the 160S particle, the amount of the 80S particle was not increased by further incubation at 37°C. These results suggested that the 80S particle was not derived from the 135S particle under the conditions used in this study.  相似文献   

6.
Nucleotides (nt) 108 to 742 of an infectious cDNA clone of poliovirus (PV) Mahoney strain, including the corresponding region of the internal ribosome entry site (IRES), was replaced by nt 28 to 710 of hepatitis C virus (HCV) cDNA corresponding to the whole HCV IRES. A chimeric PV (2A-369) was generated by transfecting mammalian cells with an RNA transcribed in vitro from the cDNA. To examine replicating capacity of virus 2A-369 in the brain and liver of a mouse model for poliomyelitis, a new mouse model (MPVRTg25-61) that is transgenic for human PV receptor (hPVR; CD155) was generated in order to obtain a higher expression level of hPVR in the liver than those of hPVRTg mouse lines generated by us so far. The transgene used was constructed by combining a putative regulatory region of the mouse PVR homolog and the whole structural region of the hPVR gene. Virus 2A-369 replicated well in the liver of MPVRTg25-61 but not in the brain, whereas control Mahoney virus replicated well both in the liver and in the brain. The data suggest that the HCV IRES works more efficiently in the liver than in the brain and that PV IRES works well both in the liver and in the brain. The results support the notion that tissue-specific activity of IRES may be reflected in tissue tropism of a virus whose specific translation initiation is driven by IRES, that is, an IRES-dependent virus tropism.  相似文献   

7.
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic mice carrying the human PV receptor (hPVR/CD155) gene. Here, we demonstrated by using an immunoelectron microscope that PV particles exist on vesicle structures in nerve terminals of neuromuscular junctions. We also demonstrated in glutathione S-transferase pull-down experiments that the dynein light chain, Tctex-1, interacts directly with the cytoplasmic domain of hPVR. In the axons of differentiated rat PC12 cells transfected with expression vectors for hPVRs, vesicles composed of PV and hPVR alpha, as well as a mutant hPVR alpha (hPVRM alpha) that had a reduced ability to bind Tctex-1, colocalized with Tctex-1. However, vesicles containing PV, dextran, and hPVR alpha had only retrograde motion, while those containing PV, dextran, and hPVRM alpha had anterograde or retrograde motion. Topical application of the antimicrotubule agent vinblastine to the sciatic nerve reduced the amount of virus transported from the calf to the spinal cord. These results suggest that direct efficient interaction between the cytoplasmic domain and Tctex-1 is essential for the efficient retrograde transport of PV-containing vesicles along microtubules in vivo.  相似文献   

8.
Ohka S 《Uirusu》2006,56(1):51-58
It is considered there are two main pathways for poliovirus dissemination towards the central nervous system in humans. One is the pathway through the blood brain barrier. The orally ingested virus invades into the blood circulation, and then the virus permeates into the central nervous system through the blood brain barrier. The other is the neural pathway. In this pathway, the intramuscularly-inoculated virus is transported through the axons from the synapse to the cell body in the central nervous system. We have developed the oral infection system using the mouse models. Moreover, we proposed the possibility that PV is transcytosed through the brain capillary epithelia in a specific manner. As for the neural pathway, we have proved that PV is endocytosed into CD155 containing vesicles and the vesicles are retrogradely transported in the axon of rat primary motor neuron. We have also shown that the cytoplasmic dynein takes part in the transport.  相似文献   

9.
A dependence of poliovirus on an unorthodox translation initiation mode can be targeted selectively to drive viral protein synthesis and cytotoxicity in malignant cells. Transformed cells are naturally susceptible to poliovirus, due to widespread ectopic upregulation of the poliovirus receptor, Necl-5, in ectodermal/neuroectodermal cancers. Viral tumor cell killing and the host immunologic response it engenders produce potent, lasting antineoplastic effects in animal tumor models. Clinical application of this principle depends on unequivocal demonstration of safety in primate models for paralytic poliomyelitis. We conducted extensive dose-range-finding, toxicity, biodistribution, shedding, and neutralizing antibody studies of the prototype oncolytic poliovirus recombinant, PVS-RIPO, after intrathalamic inoculation in Macaca fascicularis. These studies suggest that intracerebral PVS-RIPO inoculation does not lead to viral propagation in the central nervous system (CNS), does not cause histopathological CNS lesions or neurological symptoms that can be attributed to the virus, is not associated with extraneural virus dissemination or replication and does not induce shedding of virus with stool. Intrathalamic PVS-RIPO inoculation induced neutralizing antibody responses against poliovirus serotype 1 in all animals studied.  相似文献   

10.
Poliovirus (PV), when injected intramuscularly into the calf, is incorporated into the sciatic nerve and causes an initial paralysis of the inoculated limb in transgenic (Tg) mice carrying the human PV receptor (hPVR/CD155) gene. We have previously demonstrated that a fast retrograde axonal transport process is required for PV dissemination through the sciatic nerves of hPVR-Tg mice and that intramuscularly inoculated PV causes paralytic disease in an hPVR-dependent manner. Here we showed that hPVR-independent axonal transport of PV was observed in hPVR-Tg and non-Tg mice, indicating that several different pathways for PV axonal transport exist in these mice. Using primary motor neurons (MNs) isolated from these mice or rats, we demonstrated that the axonal transport of PV requires several kinetically different motor machineries and that fast transport relies on a system involving cytoplasmic dynein. Unexpectedly, the hPVR-independent axonal transport of PV was not observed in cultured MNs. Thus, PV transport machineries in cultured MNs and in vivo differ in their hPVR requirements. These results suggest that the axonal trafficking of PV is carried out by several distinct pathways and that MNs in culture and in the sciatic nerve in situ are intrinsically different in the uptake and axonal transport of PV.In humans, paralytic poliomyelitis results from the invasion of the central nervous system by circulating poliovirus (PV), probably via the blood-brain barrier. This conclusion is supported by the finding that circulating PV after intravenous inoculation in mice appears to cross the blood-brain barrier at a high rate in a human PV receptor (hPVR/CD155)-independent manner (44). After the virus enters the central nervous system, it replicates in neurons, especially in motor neurons (MNs), inducing the cell death that causes paralytic poliomyelitis. Along with this route of dissemination, a neuron-specific pathway has been reported in humans (31), monkeys (18), and PV-sensitive transgenic (Tg) mice carrying the hPVR gene (34, 37). This neuron-specific pathway appears to be important in causing “provocation poliomyelitis,” which is triggered by injuries after PV ingestion (11). Using differentiated PC12 cells and a PV-sensitive Tg mouse line, we have shown that intramuscularly inoculated PV is taken up by endocytosis at synapses.hPVR is a member of the immunoglobulin (Ig) superfamily, with three linked extracellular Ig-like domains, followed by a membrane-spanning domain and a cytoplasmic domain. Two membrane-bound forms (α and δ) and two secreted forms (β and γ) of hPVR derived by alternative splicing are likely to be expressed in human cells (23). Membrane-bound hPVRs are considered to play important roles in the early steps of infection, such as the binding of the virus to the cell surface, its entry into the cell, and the uncoating of the virus. The N-terminal Ig-like domain harbors the sites for PV binding, and anti-hPVR monoclonal antibodies (MAbs) directed against this region block PV infection (9, 24, 39).hPVR has the ability to alter the conformation of PV from the 160S intact infectious particle to a 135S particle from which the viral capsid protein VP4 is missing (2, 29). PV-related materials recovered from the sciatic nerves of PV-sensitive Tg mice after intramuscular inoculation with PV were mainly composed of intact 160S virions. The amount of 160S particles recovered was greatly reduced by coinjection with MAb p286, which specifically recognizes hPVR (34). Thus, most of the intramuscularly inoculated PV is incorporated into the sciatic nerves of PV-sensitive Tg mice as intact particles in an hPVR-dependent manner. This surprising finding might be due to either of two alternative, yet not mutually exclusive, possibilities: (i) a small number of PVRs bound per virion does not result in a conformational change in the viral capsid with a loss of VP4, but it is sufficient to induce endocytosis of the virus on the cell surface, or (ii) a cellular inhibitor(s) of PV uncoating may exist in the endocytic pathway responsible for PV uptake and transport in Tg mice (34).This mouse strain also allowed us to demonstrate that PV inoculated into the calf was incorporated into the sciatic nerve and retrogradely transported through the axons as intact virion particles. Furthermore, PV dissemination via the neural pathway has been found to rely on a fast retrograde axonal transport system and was inhibited by MAb p286 (34). Moreover, the efficient direct interaction of the hPVR cytoplasmic domain with Tctex-1, a light chain of cytoplasmic dynein (21), has been suggested to play an important role in retrograde transport, together with microtubule integrity (33). Cytoplasmic dynein, a minus-end-directed microtubule-based motor complex (13, 14, 17, 43), is implicated in the transport of early and late endosomes, lysosomes, synaptic vesicles, and endoplasmic reticulum along microtubules (1, 8, 13, 14, 17, 43). Notwithstanding the recent progress in the understanding of PV trafficking, the molecular determinants of the axonal transport of PV in MNs have not yet been elucidated.Despite the importance of axonal retrograde transport in health and disease, the direct visualization of retrograde transport and its quantitative analysis have been hampered by the lack of a reliable assay for living MNs. Such an assay was established in MNs by using a nontoxic fluorescent fragment of tetanus toxin (TeNT HC), which binds to MNs and is retrogradely transported (28). Here, we applied this assay to the visualization of PV in living MNs.We employed hPVR-Tg and non-Tg mice, together with cultured MNs isolated from these mice, to clarify the mechanisms of axonal retrograde transport of PV. Experiments involving cultured MNs showed that the entry and axonal transport of PV are strictly hPVR dependent. However, hPVR-independent axonal transport of PV can be observed in non-Tg as well as in hPVR-Tg mice, suggesting that multiple axonal transport routes for PV are present in vivo.  相似文献   

11.
Polarized epithelial cells represent the primary barrier to virus infection of the host, which must also be traversed prior to virus dissemination from the infected organism. Although there is considerable information available concerning the release of enveloped viruses from such cells, relatively little is known about the processes involved in the dissemination of nonenveloped viruses. We have used two polarized epithelial cell lines, Vero C1008 (African green monkey kidney epithelial cells) and Caco-2 (human intestinal epithelial cells), infected with poliovirus and investigated the process of virus release. Release of poliovirus was observed to occur almost exclusively from the apical cell surface in Caco-2 cells, whereas infected Vero C1008 cells exhibited nondirectional release. Structures consistent with the vectorial transport of virus contained within vesicles or viral aggregates were observed by electron microscopy. Treatment with monensin or ammonium chloride partially inhibited virus release from Caco-2 cells. No significant cell lysis was observed at the times postinfection when extracellular virus was initially detected, and transepithelial resistance and vital dye uptake measurements showed only a moderate decrease. Brefeldin A was found to significantly and specifically inhibit poliovirus biosynthetic processes by an as yet uncharacterized mechanism. The vectorial release of poliovirus from the apical (or luminal) surface of human intestinal epithelial cells has significant implications for viral pathogenesis in the human gut.  相似文献   

12.
A method is described for testing the ability of soluble laundry-bag material to contain Escherichia coli and poliovirus. Two types of this material were tested. Only one provided a real barrier to the dissemination of pathogenic micro-organisms.  相似文献   

13.
Survival of Virus in Chilled, Frozen, and Processed Oysters   总被引:8,自引:6,他引:2       下载免费PDF全文
Samples of whole and shucked Pacific and Olympia oysters, contaminated with 10(4)-plaque-forming units (PFU) of poliovirus Lsc-2ab per ml, were held refrigerated at two temperatures, 5 and - 17.5 C. To study the survival of virus in the oysters under these conditions, samples were assayed for virus content at weekly intervals for as long as 12 weeks. Results indicated that poliovirus would survive in refrigerated oysters for a period varying from 30 to 90 days, depending upon temperature. The survival rate varied from 10 to 13%. To study the extent of the hazard presented by oysters contaminated with virus, samples of whole and shucked Pacific oysters contaminated with 10(4) PFU of poliovirus Lsc-2ab per ml were heat processed in four ways: by stewing, frying, baking, and steaming. Results indicated that virus in oysters withstood these methods of processing. The survival rate varied from 7 to 10% and appeared dependent upon the processing method used. Heat penetration studies showed that the internal temperature in the oyster was not sufficient to inactivate all of the virus present. These results suggest that not only fresh but also refrigerated and cooked oysters can serve as vectors for the dissemination of virus disease if the shellfish are harvested from a polluted area.  相似文献   

14.
The public health aspects of the use of wastewater in agriculture and the effects of the drip irrigation method on the contamination of vegetables were studied. The method used was to simulate enteric microorganisms' dissemination by contaminated irrigation water in the field. The vegetables were irrigated with an effluent inoculated with a high titer of traceable microorganisms: poliovirus vaccine and a drug-resistant Escherichia coli. The dissemination of the marker organisms in the field was followed, and the effects of certain manipulations of the drip irrigation method on the contamination of the crops by the effluent were examined. It was shown that drip irrigation under plastic sheet cover with the drip lines placed either on the soil surface or buried at a depth of 10 cm significantly reduced crop contamination from inoculated irrigation water even when massive doses of bacteria and viruses were used. The microbial contamination was found to persist in the irrigation pipes and in the soil for at least 8 and 18 days, respectively. The data indicate that the recovery of the marker organisms was affected by soil texture and environmental conditions.  相似文献   

15.
The public health aspects of the use of wastewater in agriculture and the effects of the drip irrigation method on the contamination of vegetables were studied. The method used was to simulate enteric microorganisms' dissemination by contaminated irrigation water in the field. The vegetables were irrigated with an effluent inoculated with a high titer of traceable microorganisms: poliovirus vaccine and a drug-resistant Escherichia coli. The dissemination of the marker organisms in the field was followed, and the effects of certain manipulations of the drip irrigation method on the contamination of the crops by the effluent were examined. It was shown that drip irrigation under plastic sheet cover with the drip lines placed either on the soil surface or buried at a depth of 10 cm significantly reduced crop contamination from inoculated irrigation water even when massive doses of bacteria and viruses were used. The microbial contamination was found to persist in the irrigation pipes and in the soil for at least 8 and 18 days, respectively. The data indicate that the recovery of the marker organisms was affected by soil texture and environmental conditions.  相似文献   

16.
Poliovirus is an enteric virus that rarely invades the human central nervous system (CNS). To identify barriers limiting poliovirus spread from the periphery to CNS, we monitored trafficking of 10 marked viruses. After oral inoculation of susceptible mice, poliovirus was present in peripheral neurons, including vagus and sciatic nerves. To model viral trafficking in peripheral neurons, we intramuscularly injected mice with poliovirus, which follows a muscle–sciatic nerve–spinal cord–brain route. Only 20% of the poliovirus population successfully moved from muscle to brain, and three barriers limiting viral trafficking were identified. First, using light-sensitive viruses, we found limited viral replication in peripheral neurons. Second, retrograde axonal transport of poliovirus in peripheral neurons was inefficient; however, the efficiency was increased upon muscle damage, which also increased the transport efficiency of a non-viral neural tracer, wheat germ agglutinin. Third, using susceptible interferon (IFN) α/β receptor knockout mice, we demonstrated that the IFN response limited viral movement from the periphery to the brain. Surprisingly, the retrograde axonal transport barrier was equivalent in strength to the IFN barrier. Illustrating the importance of barriers created by the IFN response and inefficient axonal transport, IFN α/β receptor knockout mice with muscle damage permitted 80% of the viral population to access the brain, and succumbed to disease three times faster than mice with intact barriers. These results suggest that multiple separate barriers limit poliovirus trafficking from peripheral neurons to the CNS, possibly explaining the rare incidence of paralytic poliomyelitis. This study identifies inefficient axonal transport as a substantial barrier to poliovirus trafficking in peripheral neurons, which may limit CNS access for other viruses.  相似文献   

17.
Arboviruses such as yellow fever virus (YFV) are transmitted between arthropod vectors and vertebrate hosts. While barriers limiting arbovirus population diversity have been observed in mosquitoes, whether barriers exist in vertebrate hosts is unclear. To investigate whether arboviruses encounter bottlenecks during dissemination in the vertebrate host, we infected immunocompetent mice and immune-deficient mice lacking alpha/beta interferon (IFN-α/β) receptors (IFNAR−/− mice) with a pool of genetically marked viruses to evaluate dissemination and host barriers. We used the live attenuated vaccine strain YFV-17D, which contains many mutations compared with virulent YFV. We found that intramuscularly injected immunocompetent mice did not develop disease and that viral dissemination was restricted. Conversely, 32% of intramuscularly injected IFNAR−/− mice developed disease. By following the genetically marked viruses over time, we found broad dissemination in IFNAR−/− mice followed by clearance. The patterns of viral dissemination were similar in mice that developed disease and mice that did not develop disease. Unlike our previous results with poliovirus, these results suggest that YFV-17D encounters no major barriers during dissemination within a vertebrate host in the absence of the type I IFN response.  相似文献   

18.
以脊髓灰质炎病毒(以下简称脊灰病毒)为载体构建的重组体活病毒可以做为探讨脊灰病毒的抗原结构和特性的有益手段。在构建重组有甲型肝炎病毒小片段抗原多肽的重组脊灰病毒基础上,分析了脊灰病毒VP1上中和抗原位点I的空间构象特点,并探讨了插入的外源抗原片段对其空间结构的可能影响。  相似文献   

19.
Poliovirus proteinase was studied in vitro in lysates from poliovirus-infected HeLa cells. Preincubation of these lysates caused (i) a reduction in poliovirus proteinase activity and (ii) a partial dependence on exogenous mRNA for optimal translation. Proteins translated from endogenous poliovirus RNA in preincubated extracts from virus-infected HeLa cells are poorly cleaved. This cleavage deficiency is alleviated by adding fresh poliovirus RNA to the translation system, thus, allowing re-initiation to occur. This suggests that the poliovirus proteinase is highly unstable.  相似文献   

20.
CD44 is not required for poliovirus replication.   总被引:1,自引:1,他引:0       下载免费PDF全文
The identification of a monoclonal antibody, AF3, which recognizes a single isoform of the cell surface protein CD44 and preferentially blocks binding of serotype 2 poliovirus to HeLa cells, suggested that CD44 might be an accessory molecule to Pvr, the cell receptor for poliovirus, and that it could play a role in the function of the poliovirus receptor site. We show here that only AF3 blocks binding of serotype 2 poliovirus to HeLa cells and, in contrast to a previously published report, that the anti-CD44 monoclonal antibodies A3D8 and IM7 are unable to block binding of poliovirus. To determine whether CD44 is involved in poliovirus infection, we analyzed the replication of all three serotypes of poliovirus in human neuroblastoma cells which lack or express CD44 and in mouse neuroblastoma cells which lack Pgp-1, the mouse homolog of human CD44, and which express Pvr. All three poliovirus serotypes replicate with normal kinetics and to normal levels in the absence or presence of CD44 or in the absence of Pgp-1. Furthermore, the binding affinity constants of all three poliovirus serotypes for Pvr are unaffected by the presence or absence of CD44 in the human neuroblastoma cell line. We conclude that CD44 and Pgp-1 are not required for poliovirus replication and are unlikely to be involved in poliovirus pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号