首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is proposed that patching, capping and endocytosis, and cell locomotion are manifestations of a single process whereby the cell discards foreign materials. Capping results from the binding to the cell surface of particulate (or molecular) objects which cannot function as immovable substratum. This might be described as unsuccessful or abortive cell adhesion in that the particles adhere to the cell rather than the cell adhering to the substratum. Lateral particle movements on the cell surface membrane are effected by the submembranous microfilament-microtubule system, resulting in capping without displacement of the cell. Successful adhesion of the cell to a substratum renders capping and endocytosis impossible and the cell attempts to discard the substratum by mechanisms analogous to capping. The cell achieves this by lateral movement and detachment of the trailing edge.The concept of abortive adhesion leading to capping has been amplified by the development of molecular models of normal and neoplastic cell adhesion in vitro in the presence and absence of serum. In these models, the normal cells have molecule A (adhesion sites) on their surface; they can spread on the substratum in the absence of serum. In the presence of serum, the A molecules on the normal cell surface bind with B molecules in serum, which may be substratum-bound or free in suspension. Binding of free B molecules with cell surface A molecules results in blockage of adhesion sites; these are cleared via capping. New adhesion sites (A molecules) are produced at the active edges of the cell. Binding of cell surface A molecules with the substratum bound B molecules results in cell adhesion. Transformed cells do not have A molecules on their surface; they cannot spread in the absence of serum. The transformed cells may recruit A molecules from the serum to attain deformability and spreading.These models also relate to capping of gold or resin particles, cell locomotion and regulation of cell division, and lectin-induced agglutination of transformed cells.  相似文献   

2.
The crawling motion of Dictyostelium discoideum on substrata involves a number of coordinated events including cell contractions and cell protrusions. The mechanical forces exerted on the substratum during these contractions have recently been quantified using traction force experiments. Based on the results from these experiments, we present a biomechanical model of the contraction phase of Dictyostelium discoideum motility with an emphasis on the adhesive properties of the cell-substratum contact. Our model assumes that the cell contracts at a constant rate and is bound to the substratum by adhesive bridges that are modeled as elastic springs. These bridges are established at a spatially uniform rate while detachment occurs at a spatially varying, load-dependent rate. Using Monte Carlo simulations and assuming a rigid substratum, we find that the cell speed depends only weakly on the detachment kinetics of the cell-substratum interface, in agreement with experimental data. By varying the parameters that control the adhesive and contractile properties of the cell, we are able to make testable predictions. We also extend our model to include a flexible substrate and show that our model is able to produce substratum deformations and force patterns that are quantitatively and qualitatively in agreement with experimental data.  相似文献   

3.
Two morphological types of appendages, an anchor-like appendage and a peritrichate fibril-type appendage, have been observed on cells of an adhesive bacterium, Acinetobacter sp. strain Tol 5, by use of recently developed electron microscopic techniques. The anchor extends straight to the substratum without branching and tethers the cell body at its end at distances of several hundred nanometers, whereas the peritrichate fibril attaches to the substratum in multiple places, fixing the cell at much shorter distances.  相似文献   

4.
Cultured embryonic heart cells release a powerful inducer of neurite outgrowth into the surrounding medium. The present report demonstrates that these cells also deposit material which induces neurite outgrowth directly onto their culture substratum. Thus, embryonic heart cells condition both the culture medium and the culture substratum with respect to neurite outgrowth. Conditioned substrata were prepared by incubating heart cell monolayers in EDTA until the cells released from the substratum and were discarded. When dissociated neurons from ciliary or sympathetic chain ganglia were plated in fresh medium onto a conditioned substratum, neurite outgrowth was initiated in 80–95% of the neurons within 60 min. The neurite-inducing activity is trypsin sensitive, but is not inactivated by antibodies to the cell attachment protein fibronectin, by the membrane-solubilizing detergent Triton X-100, or by the enzymes collagenase, RNase, or DNase. The factor in conditioned medium which also induces neurite outgrowth depends for its activity on attachment to an artificial polyornithine substratum, under which condition it appears to promote adhesion of neuronal filopodia to the substratum. Thus, neurite outgrowth in these two culture systems occurs only if the substratum is conditioned by the appropriate extracellular materials: conditioned either directly by the deposition of heart cell products or indirectly by the binding of a conditioned medium factor to the polyornithine substratum. These substratum-conditioning factors may be related to those components of the extracellular matrix which support neurite outgrowth in vivo.  相似文献   

5.
Living cells are constantly subjected to various mechanical stimulations, such as shear flow, osmotic pressure, and hardness of substratum. They must sense the mechanical aspects of their environment and respond appropriately for proper cell function. Cells adhering to substrata must receive and respond to mechanical stimuli from the substrata to decide their shape and/or migrating direction. In response to cyclic stretching of the elastic substratum, intracellular stress fibers in fibroblasts and endothelial, osteosarcoma, and smooth muscle cells are rearranged perpendicular to the stretching direction, and the shape of those cells becomes extended in this new direction. In the case of migrating Dictyostelium cells, cyclic stretching regulates the direction of migration, and not the shape, of the cell. The cells migrate in a direction perpendicular to that of the stretching. However, the molecular mechanisms that induce the directional migration remain unknown. Here, using a microstretching device, we recorded green fluorescent protein (GFP)-myosin-II dynamics in Dictyostelium cells on an elastic substratum under cyclic stretching. Repeated stretching induced myosin II localization equally on both stretching sides in the cells. Although myosin-II-null cells migrated randomly, myosin-II-null cells expressing a variant of myosin II that cannot hydrolyze ATP migrated perpendicular to the stretching. These results indicate that Dictyostelium cells accumulate myosin II at the portion of the cell where a large strain is received and migrate in a direction other than that of the portion where myosin II accumulated. This polarity generation for migration does not require the contraction of actomyosin.  相似文献   

6.
Alix (ALG-2-interacting protein X), a cytoplasmic adaptor protein involved in endosomal sorting and actin cytoskeleton assembly, is required for the maintenance of fibroblast morphology. As Alix has sequence similarity to adhesin in Entamoeba histolytica, and we observed that Alix is secreted, we determined whether extracellular Alix affects fibroblast morphology. Here, we demonstrate that secreted Alix is deposited on the substratum of non-immortalized WI38 fibroblasts. Antibody binding to extracellular Alix retards WI38 cell adhesion and spreading on fibronectin and vitronectin. Alix knockdown in WI38 cells reduces spreading and fibronectin assembly, and the effect is partially complemented by coating recombinant Alix on the cell substratum. Immortalized NIH/3T3 fibroblasts deposit less Alix on the substratum and have defects in α5β1-integrin functions. Coating recombinant Alix on the culture substratum for NIH/3T3 cells promotes α5β1-integrin-mediated cell adhesions and fibronectin assembly, and these effects require the aa 605–709 region of Alix. These findings demonstrate that a sub-population of Alix localizes extracellularly and regulates integrin-mediated cell adhesions and fibronectin matrix assembly.  相似文献   

7.
Greenhouse studies were conducted to examine the effects of crude oil on the growth of Spartinaalterniflora Loisel. and S. cynosuroides (L.) Roth from North Carolina. The way in which crude oil came into contact with the plant tissue and/or substratum was an important factor in determining the responses of both species to oil pollution. Plants recovered from a single application of oil to aerial tissue with relatively little impact on productivity. The presence of an oil layer on the surface of an overlying layer of water had little impact on existing aerial portions of S. alterniflora plants; however, regrowth following harvest was completely inhibited. Incorporation of oil into the substratum significantly reduced aerial productivity and regrowth of S. alternflora and S. cynosuroides. Observations suggest that decreased productivity and regrowth may have been caused by decreased root and rhizome growth. Regrowth potential of S. alterniflora grown in oiled substratum was greater in fine-textured marsh substratum than in sand substratum.  相似文献   

8.
The structure of the brachiolar arms and adhesive disk of the brachiolaria larvae of Stichaster australis (Verrill) and Coscinasterias calamaria (Gray) was determined from light microscopy and from scanning and transmission electron microscopy. The structure of these organs was very similar in both species.The brachiolar arms are comprised of a stem region terminating in a crown of adhesive papillae which are made up of a variety of secretory cell types. Principal among these are elongated cells producing very electron-dense secretory particles, which are released at the free cell surface attached to cilia. Secretory particles appear to be important in temporary attachment of the brachiolar arms to the substratum. Ciliary sense cells, possibly used in the recognition of specific substrata are located at the tip of adhesive papillae.The adhesive disk is comprised of large cells packed with secretory droplets and elongated intracellular fibres. In the attached adhesive disk, secretory droplets are lost, having formed the cement that attaches the disk to the substratum. It appears that adhesive papillae lateral to the adhesive disk hold the disk in position close to the substratum during secretion and hardening of the cement. The intracellular fibres are the principal anchoring structures running from microvilli (locked into the attachment cement) on the surface of the disk to the underlying connective tissue of the attachment stalk.  相似文献   

9.
The surface activity and locomotion of deep cells of the Fundulus blastoderm were studied in vivo with time-lapse cinemicrography. During late cleavage, the surfaces of the blastomeres begin to undulate gently. By early blastula, these undulations increase gradually in amplitude and hemispherical surface protrusions called blebs appear. These blebs form and retract rapidly, and at mid blastula some may be seen adhering to the surfaces of other cells. At the same time, they often expand into elongate lobopodia. Cell locomotion is first evident in mid blastula and continues throughout gastrulation. During locomotion, the leading edge of a deep cell behaves in various ways. When blebs and lobopodia adhere to a substratum (other deep cells, the undersurface of the enveloping layer, or the periblast) and retract, the cell may move in the direction of the shortening cell process. Alternatively, blebs and lobopodia may adhere, but not shorten. Locomotion is accomplished rather by protoplasmic flow into the protrusion. Blebs and lobopodia also may flatten and spread on the substratum as lamellipodia. Variations in the contact and locomotory behavior of deep cells and in the rate of their movement during blastula and gastrula stages are described in detail.  相似文献   

10.
Vegetative and developed amoebae of Dictyostelium discoideum gain traction and move rapidly on a wide range of substrata without forming focal adhesions. We used two independent assays to quantify cell-substrate adhesion in mutants and in wild-type cells as a function of development. Using a microfluidic device that generates a range of hydrodynamic shear stress, we found that substratum adhesion decreases at least 10 fold during the first 6 hr of development of wild type cells. This result was confirmed using a single-cell assay in which cells were attached to the cantilever of an atomic force probe and allowed to adhere to untreated glass surfaces before being retracted. Both of these assays showed that the decrease in substratum adhesion was dependent on the cAMP receptor CAR1 which triggers development. Vegetative cells missing talin as the result of a mutation in talA exhibited slightly reduced adhesive properties compared to vegetative wild-type cells. In sharp contrast to wild-type cells, however, these talA mutant cells did not show further reduction of adhesion during development such that after 5 hr of development they were significantly more adhesive than developed wild type cells. In addition, both assays showed that substrate adhesion was reduced in 0 hr cells when the actin cytoskeleton was disrupted by latrunculin. Consistent with previous observations, substrate adhesion was also reduced in 0 hr cells lacking the membrane proteins SadA or SibA as the result of mutations in sadA or sibA. However, there was no difference in the adhesion properties between wild type AX3 cells and these mutant cells after 6 hr of development, suggesting that neither SibA nor SadA play an essential role in substratum adhesion during aggregation. Our results provide a quantitative framework for further studies of cell substratum adhesion in Dictyostelium.  相似文献   

11.
All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell''s height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning.  相似文献   

12.
On agar plates, daughter cells of Escherichia coli mutually slide and align side-by-side in parallel during the first round of binary fission. This phenomenon has been previously attributed to an elastic material that restricts apparently separated bacteria from being in string. We hypothesize that the interaction between bacteria and the underneath substratum may affect the arrangement of the daughter bacteria. To test this hypothesis, bacterial division on hyaluronic acid (HA) gel, as an alternative substratum, was examined. Consistent with our proposition, the HA gel differs from agar by suppressing the typical side-by-side alignments to a rare population. Examination of bacterial surface molecules that may contribute to the daughter cells'' arrangement yielded an observation that, with disrupted lpp, the E. coli daughter cells increasingly formed non-typical patterns, i.e. neither sliding side-by-side in parallel nor forming elongated strings. Therefore, our results suggest strongly that the early cell patterning is affected by multiple interaction factors. With oscillatory optical tweezers, we further demonstrated that the interaction force decreased in bacteria without Lpp, a result substantiating our notion that the side-by-side sliding phenomenon directly reflects the strength of in-situ interaction between bacteria and substratum.  相似文献   

13.
The purpose of this study was to test the hypothesis that foraging sand fiddler crabs. Uca pugilator (Bosc), move through the habitat in response to low substratum food levels even though these movements may take the crabs considerable distances from the safety of the burrow area. Chl a and ATP concentrations were used as measures of food density in foraged and unforaged substratum. Field and laboratory feeding experiments showed that crab foraging intensity in a habitat patch was directly correlated with food density in the patch either in the presence or absence of alternative food patches. Other experiments showed that sand fiddlers can respond to differences in food level on a scale of millimeters and do this by probing the substratum with minor chelae. Food levels in aggregations of non-ingested particles harvested by sand fiddlers, feeding pellets, correspond to low foraging intensities predicted from foraging experiments and crabs exhibit low foraging intensities on substratum patches derived from feeding pellets. Substratum food levels in two distinct areas corresponded to high predicted foraging intensities and there was no consistent trend in the level of food in the burrow vs. the nonburrow microhabitats. These results suggest that the movements of foraging sand fiddlers are to some extent controlled by the reduction in substratum food levels due to feeding during a single foraging episode. Sand fiddlers can extract over 70% of the food from harvested substratum over a broad range of substratum food densities but harvest only 42% of the available substratum.  相似文献   

14.
Avian embryonic myoblasts respond to a continuously stretching substratum in vitro by fusing into skeletal myofibers which are oriented parallel to the direction of substratum movement. The rate of stretch is critical for optimal orientation to occur. A speed of 0.2 mm per hour gives optimal orientation and rates of stretch faster or slower than this decreases the percentage of oriented fibers. The ratio of the rate of myofiber development to the rate of substratum stretch for optimal in vitro myofiber orientation is comparable to the in vivo ratio of the rate of myofiber development to the rate of bone elongation. Thus, this in vitro system supports the idea that mechanical force may be an important element in morphogenesis of skeletal muscle.  相似文献   

15.
A theoretical analysis of the detachment of bacteria adhering to substratum surfaces upon the passage of an air-liquid interface is given, together with experimental results for bacterial detachment in the absence and presence of a conditioning film on different substratum surfaces. Bacteria (Streptococcus sobrinus HG1025, Streptococcus oralis J22, Actinomyces naeslundii T14V-J1, Bacteroides fragilis 793E, and Pseudomonas aeruginosa 974K) were first allowed to adhere to hydrophilic glass and hydrophobic dimethyldichlorosilane (DDS)-coated glass in a parallel-plate flow chamber until a density of 4 × 106 cells cm−2 was reached. For S. sobrinus HG1025, S. oralis J22, and A. naeslundii T14V-J1, the conditioning film consisted of adsorbed salivary components, while for B. fragilis 793E and P. aeruginosa 974K, the film consisted of adsorbed human plasma components. Subsequently, air bubbles were passed through the flow chamber and the bacterial detachment percentages were measured. For some experimental conditions, like with P. aeruginosa 974K adhering to DDS-coated glass and an air bubble moving at high velocity (i.e., 13.6 mm s−1), no bacteria detached upon passage of an air-liquid interface, while for others, detachment percentages between 80 and 90% were observed. The detachment percentage increased when the velocity of the passing air bubble decreased, regardless of the bacterial strain and substratum surface hydrophobicity involved. However, the variation in percentages of detachment by a passing air bubble depended greatly upon the strain and substratum surface involved. At low air bubble velocities the hydrophobicity of the substratum had no influence on the detachment, but at high air bubble velocities all bacterial strains were more efficiently detached from hydrophilic glass substrata. Furthermore, the presence of a conditioning film could either inhibit or stimulate detachment. The shape of the bacterial cell played a major role in detachment at high air bubble velocities, and spherical strains (i.e., streptococci) detached more efficiently than rod-shaped organisms. The present results demonstrate that methodologies to study bacterial adhesion which include contact with a moving air-liquid interface (i.e., rinsing and dipping) yield detachment of an unpredictable number of adhering microorganisms. Hence, results of studies based on such methodologies should be referred as “bacterial retention” rather than “bacterial adhesion”.  相似文献   

16.
The long-term culture of dissociated rat sympathetic neurons requires strong adhesion of the neuronal processes to the culture substratum. A variety of artificial and cell-derived substrata was examined for their effects on the survival, neurite outgrowth, and neurotransmitter development of these neurons. Compared to dried collagen films, both three-dimensional hydrated collagen gels and surfaces coated with basic polymers provided a substratum highly adherent for developing neurons. Polylysine and polyornithine were most suitable for long-term culture when covalently linked with glutaraldehyde to an underlying layer of dried gelatin. Dissociated neurons also attached strongly to a substratum of killed nonneuronal cells fixed by paraformaldehyde, heat, ethanol, or trichloroacetic acid. In addition, an extracellular, substrate-associated material apparently produced by nonneuronal cells (rat cardiac myocytes and associated fibroblasts) promoted the long-term adhesion of growing neurites. The adhesive property of this microexudate was sensitive to trypsin, periodate, and alkali, but resistant to hyaluronidase, chondroitinase, 8 M urea, and 0.5 M acetic acid. Similar characteristics have been reported for fibronectin, an extracellular glycoprotein produced by many cells and cell lines. This protein, or one with similar features, may function in vivo in the extension and guidance of neuronal fibers. The choice and development of neurotransmitter function were unaffected by the various substrata tested, with one exception. Nonneuronal cells fixed with paraformaldehyde caused a significant induction of cholinergic properties similar to that seen with nonneuronal conditioned medium.  相似文献   

17.
By ultrafiltration of conditioned synthetic medium from Hartmannella cultures through membranes of decreasing pore diameter, six fractions of large molecular substances were obtained. These fractions can be divided into two classes with different physiological properties (molecular weight above and below 30 000). The fractions of higher molecular weight, when added to Hartmannella cultures, temporarily inhibit cell adhesion to the substratum, cell motility and cytokinesis, without interfering with nuclear division; as a result polynuclear cells are formed. Amoebae adapt quickly to the changed medium; attachment and movement are resumed within hours, and polynuclear cells disappear within a few days.  相似文献   

18.
Adhesion of Biodegradative Anaerobic Bacteria to Solid Surfaces   总被引:4,自引:2,他引:2       下载免费PDF全文
In order to exploit the ability of anaerobic bacteria to degrade certain contaminants for bioremediation of polluted subsurface environments, we need to understand the mechanisms by which such bacteria partition between aqueous and solid phases, as well as the environmental conditions that influence partitioning. We studied four strictly anaerobic bacteria, Desulfomonile tiedjei, Syntrophomonas wolfei, Syntrophobacter wolinii, and Desulfovibrio sp. strain G11, which theoretically together can constitute a tetrachloroethylene- and trichloroethylene-dechlorinating consortium. Adhesion of these organisms was evaluated by microscopic determination of the numbers of cells that attached to glass coverslips exposed to cell suspensions under anaerobic conditions. We studied the effects of the growth phase of the organisms on adhesion, as well as the influence of electrostatic and hydrophobic properties of the substratum. Results indicate that S. wolfei adheres in considerably higher numbers to glass surfaces than the other three organisms. Starvation greatly decreases adhesion of S. wolfei and Desulfovibrio sp. strain G11 but seems to have less of an effect on the adhesion of the other bacteria. The presence of Fe3+ on the substratum, which would be electropositive, significantly increased the adhesion of S. wolfei, whereas the presence of silicon hydrophobic groups decreased the numbers of attached cells of all species. Measurements of transport of cells through hydrophobic-interaction and electrostatic-interaction columns indicated that all four species had negatively charged cell surfaces and that D. tiedjei and Desulfovibrio sp. strain G11 possessed some hydrophobic cell surface properties. These findings are an early step toward understanding the dynamic attachment of anaerobic bacteria in anoxic environments.  相似文献   

19.
Normal attachment and spreading of baby hamster kidney cells onto a non-living substratum requires the presence of a specific serum component adsorbed to the substratum surface and Ca2+ ions in the medium. In the absence of the adsorbed serum factor or Ca2+ ions cells attach but do not spread. Thus, although the initial rate of BHK cell attachment is faster in serum-free medium than serum-containing medium, no cell spreading occurs in serum-free medium. Adsorption of serum onto the substratum results in a lag phase in the time course of cell attachment which can be eliminated by blocking the negatively charged groups of the serum components adsorbed to the substratum surface; blocking positively charged groups or free sulfhydryl groups of the adsorbed serum components is without effect. The requirement for serum components can be substituted for by adsorbing molecules such as concanavalin A or polycationic ferritin to the substratum surface; however, only ConA results in normal morphology of cell spreading. The data are discussed in terms of a non-electrostatic direct cell-substratum binding model of cell attachment.  相似文献   

20.
The preferences of aquatic invertebrate species for specific substrata at the river bottom have been subject of many studies. Several authors classified the substratum preferences of species or higher taxonomic units. Most of these compilations, however, are based on literature analyses and expert knowledge as opposed to the analysis of original data. To enhance our knowledge of invertebrate substratum preferences, we applied a ‘Multi-level pattern’ analysis based on almost 1000 substrate-specific invertebrate samples. The samples were taken in 18 streams in Germany, the Netherlands and Austria, comprising a total of 40 sampling sites and equally covering lowland and mountain streams. The main objectives of our analysis were (I) to derive substratum preferences of taxa in lowland and mountain streams, (II) to compare the preferences with existing data and (III) to compare species substratum associations between lowland and mountain streams. Of the 290 taxa analyzed, 188 were associated significantly to specific substrata. Twenty-five taxa in lowland streams and 51 taxa in mountain streams prefer one or two substratum types (of nine substratum types considered in total). In contrast, 112 species (mountain streams n = 84, lowland streams n = 28) are associated significantly with a broader range of substrata. We compared the classifications derived from our data analysis with those provided in the freshwaterecology.info database (www.freshwaterecology.info). Our results support the existing classifications of substratum preferences in most cases (70%). For 25 species, substratum preferences for both lowland and mountain streams were derived, many of them indicating different substratum associations in the two stream groups. As substratum preferences differed between closely related species, preferences should always be given at the species level as opposed to coarser taxonomic units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号