首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purified Ca2+ ATPase of the erythrocyte plasma membrane has been submitted to controlled trypsin proteolysis under conditions that favor either its (putative) E1 or E2 configurations. The former configuration has been forced by treating the enzyme with Ca2+-saturated calmodulin, the latter with vanadate and Mg2+. The E1 conformation leads to the accumulation of a polypeptide of Mr 85 KDa which still binds calmodulin, the E2 conformation to the accumulation of one of Mr 81 KDa which does not. Both fragments arise from the hydrolysis of a transient 90 KDa product which has Ca2+-calmodulin dependent ATPase activity, and which retains the ability to pump Ca2+ in reconstituted liposomes. Highly enriched preparations of the 85 and 81 KDa fragments have been obtained and reconstituted into liposomes. The former has limited ATPase and Ca2+ transport ability and is not stimulated by calmodulin. The latter has much higher ATPase and Ca2+ transport activity. It is proposed that the Ca2+ pumping ATPase of erythrocytes plasma membrane contains a 9 KDa domain which is essential for the interaction of the enzyme with calmodulin and for the full expression of the hydrolytic and transport activity. This putative 9 KDa sequence contains a 4 KDa "inhibitory" domain which limits the activity of the ATPase. In the presence of this 4 KDa sequence, i.e., when the enzyme is degraded to the 85 KDa product, calmodulin can still be bound, but no longer stimulates ATPase and Ca2+ transport.  相似文献   

2.
The calmodulin-sensitive Ca2+ -pumping ATPase was purified to virtual homogeneity from erythrocytes. The purified enzyme exists in two functional states, having low and high Ca2+ affinity. Transition from low to high affinity is induced by 1) calmodulin; 2) acidic phospholipids, long-chain polyunsaturated fatty acids, polyphosphoinositides; and 3) a controlled proteolytic treatment with trypsin or chymotrypsin. The ATPase can be reconstituted into liposomes, where it pumps Ca2+ in exchange for H+ with a stoichiometry to ATP approaching 1. The purified enzyme can be fragmented by trypsin into a number of transient and of limit polypeptides, of which the most interesting from the functional standpoint are the following: 1) a limit polypeptide of Mr 76,000 that contains the active site (i.e., the sequence where the acyl-phosphate is formed); 2) a limit polypeptide of Mr 33,500 that binds the hydrophobic photoactivable label 3-trifluoromethyl-3-(m-(125I-iodophenyl]-diazirine, and is thus presumably the most hydrophobic portion of the molecule; and 3) a transient polypeptide of Mr 90,000 and a limit polypeptide of Mr 25,000-28,000, which specifically bind azido-modified, 125 I-labeled calmodulin. The transient 90,000-dalton calmodulin receptor is rapidly degraded to the 81,000-76,000 limit polypeptide. It can be isolated from the other proteolysis products on calmodulin affinity chromatography columns. The isolated 90,000-dalton fragment is a fully competent, calmodulin-sensitive ATPase that pumps Ca2+ into reconstituted liposomes.  相似文献   

3.
Trypsin activation of the red cell Ca2+-pump ATPase is calcium-sensitive   总被引:2,自引:0,他引:2  
Stimulation of the calmodulin-independent activity of the red cell Ca2+-pump ATPase by trypsin treatment (of calmodulin free red cell membranes) is sensitive to Ca2+ in a concentration range near the KCa of the transport site. The Ca2+ requirement for this effect is absolute, whereas the calmodulin sensitivity of the ATPase can be abolished by sufficient trypsin attack in the absence of Ca2+, although Ca2+ accelerates inactivation. This indicates that the two effects of trypsin are due to at least two distinct cleavage sites in the pump protein.  相似文献   

4.
The kinetics of active Ca2+ transport in inside-out red cell membrane vesicles and the Ca2+-ATPase activity of the purified Ca2+ pump were studied and the effects of calmodulin, acidic phospholipids, and controlled trypsinization were compared. In the presence of calmodulin the maximal rate and the apparent affinity of the pump for Ca2+ were greatly increased in both preparations. The lowest value of Km(Ca) was between 0.5 and 0.7 microM depending on the concentration of calmodulin and on the enzyme preparation. Positive cooperativity for Ca2+ activation with a Hill coefficient of 1.6-1.7 was observed in all cases. When acidic phospholipids (phosphatidylinositol 4-phosphate was routinely used) were added to the inside-out vesicles or to the purified enzyme, maximal transport rates equal to those obtained with calmodulin were measured but the Km(Ca) decreased to 0.25 microM and the positive cooperativity disappeared (the Hill coefficient approached 1). Highly active, calmodulin-independent proteolytic fragments of molecular mass of 81 and 76 kDa were produced with controlled trypsinization. When the trypsin treatment was directed to obtain primarily the 81-kDa fragment, the preparation showed characteristics similar to those of the intact Ca2+ pump in the presence of calmodulin; that is, the same Vmax was obtained, the Km(Ca2+) was 0.5-0.6 microM, and the Hill coefficient was about 1.6. Addition of phosphatidylinositol 4-phosphate or allowing further proteolysis to produce the 76-kDa fragment, shifted the Km(Ca) to 0.25 and reduced the Hill coefficient to 1, without changes in the maximal rate. Based on these results it is suggested that the maximal velocity and the Ca2+ affinity on the erythrocyte Ca2+ pump may be regulated independently and that independent polypeptide regions of the enzyme are involved in the regulations.  相似文献   

5.
The Ca2+-pumping ATPase has been isolated from calf heart sarcolemma by calmodulin affinity chromatography (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 3263-3270) as a polypeptide of Mr about 140,000. The purified enzyme has high affinity for Ca2+ in the presence of calmodulin (Km about 0.4 microM) but shifts to a low affinity state (Km about 20 microM) in its absence. Calmodulin increases also the Vmax of the enzyme. The effects of calmodulin are mimicked by phosphatidylserine and by a limited proteolytic treatment of the enzyme with trypsin. The purified ATPase can be reconstituted in asolectin liposomes, where it pumps Ca2+ with an approximate stoichiometry to ATP of 1. The purified (and reconstituted) enzyme is not phosphorylated by added ATP and cAMP-dependent protein kinase under conditions where the enzyme in situ is stimulated concomitant with the phosphorylation of the sarcolemmal membrane (Caroni, P., and Carafoli, E. (1981) J. Biol. Chem. 256, 9371-9373). Hence, the target of the regulatory phosphorylation system is not the ATPase molecule. The purified ATPase cross-reacts with an antibody raised against the erythrocyte Ca2+-pumping ATPase. Under the same conditions, the purified sarcoplasmic reticulum Ca2+-ATPase does not react. The proteolytic splitting pattern of the purified heart sarcolemma and erythrocyte enzymes are similar but not identical.  相似文献   

6.
Highly purified tryptic peptides of calmodulin have been obtained by high-performance liquid chromatography. Tryptic cleavage of calmodulin in the presence of Ca2+ results in two main fragments which have been identified by analysis of the amino acid composition as 1-77 and 78-148. In the absence of Ca2+, trypsin cleavage yields fragments 1-106, 1-90, and 107-148. Only fragments 78-148 and 1-106 are still able to stimulate the purified Ca2+-ATPase of erythrocytes, albeit much less efficiently on a molar basis, than intact calmodulin. On the other hand, the same fragments were unable to stimulate the calmodulin-dependent cyclic nucleotide phosphodiesterase, even at 1000-fold molar excess (shown also by Newton, D.L., Oldewurtel, M.D., Krinks, M.H., Shiloach, J., and Klee, C.B. (1984) J. Biol. Chem. 259, 4419-4426). This points to the importance of the carboxyl-terminal half of calmodulin and especially of Ca2+-binding region III in the interaction of calmodulin with the Ca2+-ATPase and provides clear evidence that calmodulin interacts differently with different targets. Oxidation of methionine(s) of fragment 78-148 with N-chlorosuccinimide removes the ability of this fragment to stimulate the ATPase.  相似文献   

7.
The clathrin-coated vesicle proton-translocating complex is composed of a maximum of eight major polypeptides. Of these potential subunits, only the 17-kDa component, which is a proton pore, has been defined functionally (Sun, S.Z., Xie, X. S., and Stone, D. K. (1987) J. Biol. Chem. 262, 14790-14794). ATPase-and proton-pumping activities of the 200-fold purified proton-translocating complex are supported by Mg2+, whereas Ca2+ will only activate ATP hydrolysis. Like Mg2+-activated ATPase activity, Ca2+-supported ATP hydrolysis is inhibited by N-ethylmaleimide, NO3-, and an inhibitory antibody and is stimulated by Cl- and phosphatidylserine. Thus, Ca2+ prevents coupling of ATPase activity to vectoral proton movement, and Ca2+-activated ATPase activity is a partial reaction useful for analyzing the subunit structure required for ATP hydrolysis. The 530-kDa holoenzyme was dissociated with 3 M urea and subcomplexes, and isolated subunits were partially resolved by glycerol gradient centrifugation. No combination of these components yielded Mg2+-activated ATPase or proton pumping. Ca2+-activated ATP hydrolysis was not catalyzed by a subcomplex containing the 70- and 58-kDa subunits but was restored by recombination of the 70-, 58-, 40-, and 33-kDa polypeptides, indicating that these are subunits of the clathrin-coated vesicle proton pump which are necessary for ATP hydrolysis.  相似文献   

8.
The domain structures of the Escherichia coli Rep and Helicase II proteins and their ligand-dependent conformational changes have been examined by monitoring the sensitivity of these helicases to proteolysis by trypsin and chymotrypsin. Limited treatment of unliganded Rep protein (73 kDa) with trypsin results in cleavage at a single site in its carboxyl-terminal region, producing a 68-kDa polypeptide which is stabilized in the presence of ATP, ADP, or adenosine 5'-O-thiotriphosphate) (ATP gamma S). The purified 68-kDa Rep tryptic polypeptide retains single-stranded (ss) DNA binding, DNA unwinding (helicase), and full ATPase activities. When bound to ssDNA, the Rep protein can be cleaved by trypsin at an additional site in its carboxyl-terminal region, producing a 58-kDa polypeptide that also retains ssDNA binding and ATPase activities. This 58-kDa Rep tryptic polypeptide can also be produced by further tryptic treatment of the 68-kDa Rep tryptic polypeptide when the latter is bound to ssDNA. This 58-kDa polypeptide displays a lower affinity for ssDNA indicating that the 10-kDa carboxyl-terminal peptide facilitates Rep protein binding to ssDNA. The 58-kDa Rep tryptic polypeptide is also stabilized in the presence of nucleotides. Based on these and previous studies that showed that the 68-kDa Rep tryptic polypeptide cannot support DNA replication in a system that is dependent upon the phi X174 cis-A protein (Arai, N. & Kornberg, A. (1981) J. Biol. Chem. 256, 5294-5298), we conclude that the carboxyl-terminal end (approximately 5 kDa) of the Rep protein is not required for its helicase or ATPase activities. However, we suggest that this region of the Rep protein is important for its interactions with the phi X174 cis-A protein. Limited treatment of unliganded Helicase II protein (82 kDa) with chymotrypsin results in cleavage after Tyr254, producing a 29-kDa amino-terminal polypeptide and a 53-kDa carboxyl-terminal polypeptide, which remain associated under nondenaturing conditions. This chymotrypsin cleavage reduces the ssDNA binding activity and eliminates the ssDNA-dependent ATPase and helicase activities of the Helicase II protein. The binding of ATP, ADP, ATP gamma S, and/or DNA to Helicase II protein results in protection of this site (Tyr254) from cleavage by chymotrypsin. Limited treatment of Helicase II protein with trypsin results in cleavage near its carboxyl-terminal end producing two polypeptides with apparent Mr = 72,000, in a manner similar to that observed with the Rep protein; these polypeptides are also stabilized by binding ATP or single-stranded DNA.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
The purified erythrocyte Ca2+ pump has been exposed to trypsin under conditions designed to enrich the fragments of molecular mass 90, 85, 81, and 76 kDa, respectively. In SDS-polyacrylamide gels, these fragments are accompanied by a product of molecular mass about 33 kDa. N- and C-terminal sequencing of the fragments blotted on PVDF membranes has located the four high molecular mass fragments and the 33-kDa fragment within the pump structure. The work has extended previous work on the organization of the calmodulin-interacting domain of the pump (Zurini et al., 1984; Benaim et al., 1984) and has tentatively placed the domain of the pump which interacts with acidic phospholipids between transmembrane helices 2 and 3.  相似文献   

10.
The plasma membrane Ca2+ pump ATPase from porcine aorta was isolated by the calmodulin affinity chromatographic method of Kosk-Kosicka et al. (Kosk-Kosicka, D., Scaillet, S., and Inesi, G. (1986) J. Biol. Chem. 261, 3333-3338). Its activity was restored by adding either phosphatidylcholine or phosphatidylserine. Cyclic GMP-dependent protein kinase (G-kinase) stimulated the enzyme in a concentration-dependent manner. However, phosphatidylinositol kinase (PI-kinase) activity was not detected in the enzyme preparation, and the presence of phosphatidylinositol was not necessary for stimulation by G-kinase. Furthermore, adenosine, a potent PI-kinase inhibitor, did not affect the stimulation. The enzyme preparation contained three major proteins, with molecular masses of 240, 145, and 135 kDa, as assessed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The 240- and 135-kDa proteins were phosphorylated in association with the stimulation by G-kinase, but only the phosphorylation of the 240-kDa protein was dependent on the G-kinase concentration. A purified enzyme without the 240-kDa protein, prepared by our previous method (Imai, S., Yoshida, Y., and Sun, H.-T. (1990) J. Biochem. (Tokyo) 107, 755-761), was not activated by G-kinase. Immunoblotting with an antibody against the human erythrocyte Ca2+ pump revealed that the 135-kDa protein corresponded to one of the isoforms of the plasma membrane Ca2+ pump. These results suggest that the phosphorylation of the 240-kDa protein is responsible for stimulation of the plasma membrane Ca2+ pump ATPase by G-kinase.  相似文献   

11.
Peripheral and integral subunits of the tonoplast H+-ATPase from oat roots   总被引:10,自引:0,他引:10  
The subunit organization of the tonoplast H+-pumping ATPase from oat roots (Avena sativa L. var. Lang) was investigated. Tonoplast vesicles were treated with low ionic strength solutions (0.1 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffer or 0.1 mM Na EDTA), carbonate, or a chaotropic reagent (KI), and then centrifuged to give a soluble fraction and a pellet. Treatments with low ionic strength solutions or KI resulted in 70-80% reduction in the membrane-associated ATPase activity, but did not affect the K+-stimulated pyrophosphatase activity. Polypeptides of 72, 60, and 41 kDa were solubilized from tonoplast vesicles by these wash treatments. These polypeptides reacted with polyclonal antibodies against the holoenzyme of tonoplast ATPase (anti-ATPase) and copurified with the tonoplast ATPase activity during gel filtration chromatography (Sepharose CL-6B). Mono-specific antibody against the 72- or 60-kDa polypeptide reacted with the solubilized 72- or 60-kDa polypeptide, respectively. However, the N,N-[14C]dicyclohexylcarbodiimide-binding 16-kDa polypeptide and a 13-kDa polypeptide that also reacted with anti-ATPase and copurified with the tonoplast ATPase activity during gel filtration remained in the pellets after the wash treatments. We conclude that the 72- and 60-kDa polypeptides appear to be peripheral subunits of the tonoplast ATPase and that the 16-kDa polypeptide is probably embedded in the membrane bilayer. Additional subunits of the ATPase complex may include a 41-kDa (peripheral) and a 13-kDa (integral) polypeptide. Based on these results, a working model of the tonoplast ATPase analogous to the F1F0-ATPase is proposed.  相似文献   

12.
We have shown previously (Brooker, R.J., and Slayman, C.W. (1982) J. Biol. Chem. 257, 12051-12055; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 222-226) that the plasma membrane [H+]-ATPase of Neurospora crassa is inhibited by N-ethylmaleimide (NEM), which reacts at an essential nucleotide-protectable site on the Mr = 104,000 polypeptide. The present study demonstrates that Mg2+ has a biphasic effect on NEM inhibition. At low concentrations (0.01-0.1 mM, Mg2+ decreases the sensitivity of the enzyme to NEM, while at high concentrations (greater than 1 mM), it enhances sensitivity. These effects are seen in the presence or absence of nucleotides (ATP, ADP). Mg2+ also acts in a concentration-dependent way to influence the degradation of the ATPase by trypsin. Low concentrations of Mg2+ have little or no effect on tryptic inactivation of ATPase activity or on the disappearance of the Mr = 104,000 polypeptide and the stepwise appearance of Mr = 100,000 and 91,000 tryptic fragments. High concentrations of Mg2+ decrease the rate of inactivation, and a new fragment of Mr = 98,000 is seen. Taken together, the NEM and trypsin results indicate that the Neurospora [H+]-ATPase possesses high and low affinity Mg2+ binding sites which affect the conformation of the enzyme. The divalent cation specificity of the sites has also been investigated. Co2+, Mn2+, and (to a lesser extent) Ni2+ mimic the behavior of Mg2+, but Ca2+ has a different effect, at least at the high affinity site. It appears to bind to that site, based on its ability to inhibit ATP hydrolysis (in the presence of Mg2+), but does not offer protection against NEM inhibition. The results suggest a way in which Ca2+ may serve as a physiological regulator of the ATPase.  相似文献   

13.
The millimolar Ca2+-requiring form of the Ca2+-dependent proteinase from chicken breast skeletal muscle contains two subunit polypeptides of 80 and 28 kDa, just as the analogous forms of this proteinase from other tissues do. Incubation with Ca2+ at pH 7.5 causes rapid autolysis of the 80-kDa polypeptide to 77 kDa and of the 28-kDa polypeptide to 18 kDa. Autolysis of the 28-kDa polypeptide is slightly faster than autolysis of the 80-kDa polypeptide and is 90-95% complete after 10 s at 0 degrees C. Autolysis for 15 s at 0 degrees C converts the proteinase from a form requiring 250-300 microM Ca2+ to one requiring 9-10 microM Ca2+ for half-maximal activity, without changing its specific activity. The autolyzed proteinase has a slightly lower pH optimum (7.7 vs. 8.1) than the unautolyzed proteinase. The autolyzed proteinase is not detected in tissue extracts made immediately after death; therefore, the millimolar Ca2+-requiring proteinase is largely, if not entirely, in the unautolyzed form in situ.  相似文献   

14.
A calmodulin-dependent protein phosphatase (calcineurin) was converted to an active, calmodulin-independent form by a Ca2+-dependent protease (calpain I). Proteolysis could be blocked by ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid, leupeptin, or N-ethylmaleimide, but other protease inhibitors such as phenylmethanesulfonyl fluoride, aprotinin, benzamidine, diisopropyl fluorophosphate, and trypsin inhibitor were ineffective. Phosphatase proteolyzed in the absence of calmodulin was insensitive to Ca2+ or Ca2+/calmodulin; the activity of the proteolyzed enzyme was greater than the Ca2+/calmodulin-stimulated activity of the unproteolyzed enzyme. Proteolysis of the phosphatase in the presence of calmodulin proceeded at a more rapid rate than in its absence, and the proteolyzed enzyme retained a small degree of sensitivity to Ca2+/calmodulin, being further stimulated some 15-20%. Proteolytic stimulation of phosphatase activity was accompanied by degradation of the 60-kilodalton (kDa) subunit; the 19-kDa subunit was not degraded. In the absence of calmodulin, the 60-kDa subunit was sequentially degraded to 58- and 45-kDa fragments; the 45-kDa fragment was incapable of binding 125I-calmodulin. In the presence of calmodulin, the 60-kDa subunit was proteolyzed to fragments of 58, 55 (2), and 48 kDa, all of which retained some ability to bind calmodulin. These data, coupled with our previous report that the human platelet calmodulin-binding proteins undergo Ca2+-dependent proteolysis upon platelet activation [Wallace, R. W., Tallant, E. A., & McManus, M. C. (1987) Biochemistry 26, 2766-2773], suggest that the Ca2+-dependent protease may have a role in the platelet as an irreversible activator of certain Ca2+/calmodulin-dependent reactions.  相似文献   

15.
Previous work has shown that the tryptic degradation pattern of the Neurospora plasma membrane H+-ATPase varies with the presence and absence of ligands, thus providing information about conformational states of the enzyme (Addison, R., and Scarborough, G. A. (1982) J. Biol. Chem. 257, 10421-10426; Brooker, R. J., and Slayman, C. W. (1983) J. Biol. Chem. 258, 8827-8832). In the present study, sites of tryptic cleavage have been mapped by immunoblotting with N- and C-terminal specific antibodies and by direct sequencing of proteolytic products after electro-transfer to polyvinylidene difluoride filters. In the absence of ligands (likely to represent the E1 conformation), trypsin cleaved the 100-kDa ATPase polypeptide at three sites very near the N terminus: Lys-24, Lys-36, and Arg-73. Removal of the first 36 amino acid residues only slightly affected ATPase activity, but removal of the subsequent 37 residues inactivated the enzyme completely. In the presence of vanadate and Mg2+ (E2 conformation), the rate of trypsinolysis at Arg-73 was greatly reduced, and enzyme activity was protected. In addition, a new cleavage site near the C terminus (Arg-900) became accessible to trypsin. Both effects of vanadate occurred at micromolar concentrations, well within the range previously measured for vanadate inhibition of ATPase activity. Taken together, these results suggest that the Neurospora ATPase undergoes significant conformational changes at both termini of the polypeptide during its reaction cycle.  相似文献   

16.
It was reported by Frasch et al. (Frasch, W. D., Green, J., Caguiat, J., and Mejia, A. (1989) J. Biol. Chem. 264, 5064-5069) that washing spinach thylakoid membranes with 1 M LiCl caused the release of the beta subunit of chloroplast F1 (CF1) which, existing as 180-kDa complexes of beta 3, retained considerable ATPase activity. We repeated their procedures and confirmed that a CF1 beta-like 55-kDa polypeptide was a major constituent of the 1 M LiCl-washed extract. However, the extract contained another polypeptide of which the Mr was 14,000, and these two polypeptides comprised a complex with approximate Mr 550,000 that had the same mobility in native polyacrylamide gel electrophoresis as that of ribulose-1,5-bisphosphate carboxylase. Only very low ATPase activity, less than 1% of the reported value, was detected for the extract and the purified complex. Antibody against the beta subunit of F1 from a thermophilic bacterium PS3 showed a clear cross-reactivity with the CF1 beta subunit but not with the 55-kDa polypeptide. Analysis of the N-terminal amino acid sequences of the 55- and 14-kDa polypeptides and the whole complex revealed that the complex was ribulose-1,5-bisphosphate carboxylase and that the 55- and 14-kDa polypeptides were its large and small subunits, respectively.  相似文献   

17.
In partially purified preparations of the vacuolar ATPase from Neurospora crassa, the two most prominent components are polypeptides of Mr = 70,000 and 60,000. We previously reported the isolation of the gene vma-1, which encodes the Mr = 70,000 polypeptide, and presented evidence that the polypeptide contains the site of ATP hydrolysis (Bowman, E. J., Tenney, K., and Bowman, B. J. (1988) J. Biol. Chem. 263, 13994-14001). We now report the isolation of a gene (designated vma-2), that encodes the Mr = 60,000 polypeptide. Analysis of the DNA sequence shows that the polypeptide has 513 amino acids and a molecular mass of 56,808 daltons (and will thus be referred to as the 57-kDa polypeptide). It is fairly rich in polar amino acids and has no apparent membrane-spanning domains. The vma-2 gene contains five short introns (55-71 bases), all clustered in the 5' end of the coding region. The gene maps to the right arm of linkage group II, near 5 S RNA gene 3. Thus, it is unlinked to vma-1 and to other known ATPase genes in N. crassa. The 57-kDa polypeptide shows 25% amino acid sequence identity with the vma-1 gene product. It shows essentially the same degree of similarity (25-28%) to both the alpha and beta subunits of F0F1 ATPases. Analysis of specific regions of the 57-kDa polypeptide, however, suggests it may have a function like that of the alpha subunit in F0F1 ATPases. The data indicate that all four types of ATPase polypeptides have evolved from a common ancestor and that the vacuolar-type ATPases have a structure surprisingly similar to that of the F0F1 ATPases.  相似文献   

18.
In inside-out red cell membrane vesicles active calcium transport and the formation of the enzyme-phosphate complex (EP) of the calcium pump were simultaneously investigated and the effects of a limited proteolytic digestion examined. In order to visualize the proteolyzed EP forms we have induced the formation of a maximum level EP from [gamma-32P]ATP in the presence of Ca2+ + La3+ and applied a good-resolution acidic discontinuous sodium dodecyl sulfate-polyacrylamide gel electrophoresis system. Proteolysis of inside-out vesicle membranes by trypsin, Pronase, papain, or chymotrypsin produces a calmodulin-like activation of the calcium pump, abolishes its calmodulin sensitivity, and decreases the original 140-kDa EP complex to a limit polypeptide of 80 kDa. Trypsin digestion produces another major intermediary fragment of 90 kDa, which is still a low-activity calmodulin-sensitive form of the pump. The red cell calcium pump is activated by trypsin both in the absence and presence of Ca2+ during digestion although the rate of activation and the appearance of the 80-kDa polypeptide are enhanced by Ca2+. If proteolytic digestion is carried out by chymotrypsin, a calmodulin-insensitive maximum activation of the calcium pump coincides with the formation of a 125-130-kDa EP-forming polypeptide. Chymotrypsin and carboxypeptidase A have synergistic effects on the formation of this latter high-activity species. Based on these data we suggest a probable molecular arrangement for the functional parts of the red cell membrane calcium pump.  相似文献   

19.
Subunit composition of vacuolar membrane H(+)-ATPase from mung bean   总被引:11,自引:0,他引:11  
The vacuolar H(+)-ATPase from mung bean hypocotyls was solubilized from the membrane with lysophosphatidycholine and purified by QAE-Toyopearl column chromatography. The purified ATPase was active only in the presence of exogenous phospholipid and was inhibited by nitrate, dicyclohexyl carbodiimide and Triton X-100, but not by vanadate or azide. Dodecyl sulfate/polyacrylamide gel electrophoresis of the purified ATPase yielded ten polypeptides of molecular masses of 68 kDa, 57 kDa, 44 kDa, 43 kDa, 38 kDa, 37 kDa 32 kDa, 16 kDa, 13 kDa and 12 kDa. All polypeptides remained in the peak activity fraction after glycerol density gradient centrifugation. Nine of them, excluding the 43-kDa polypeptide, comigrated in a polyacrylamide gradient gel in the presence of 0.1% Triton X-100. The 16-kDa polypeptide could be labeled with [14C]dicyclohexylcarbodiimide. The amino-terminal amino acid sequence of the isolated 68-kDa polypeptide generally agreed with that deduced from the cDNA for the carrot 69-kDa subunit [Zimniak, L., Dittrich, P., Gogarten, J. P., Kibak, H. & Taiz, L. (1988) J. Biol. Chem. 263, 9102-9112]. Thus, mung bean vacuolar H(+)-ATPase seems to consist of nine distinct subunits.  相似文献   

20.
Stimulation of the calmodulin-independent activity of the red cell Ca2+-pump ATPase by trypsin treatment (of calmodulin free red cell membranes) is sensitive to Ca2+ in a concentration range near the KCa of the transport site. The Ca2+ requirement for this effect is absolute, whereas the calmodulin sensitivity of the ATPase can be abolished by sufficient trypsin attack in the absence of Ca2+, although Ca2+ accelerates inactivation. This indicates that the two effects of trypsin are due to at least two distinct cleavage sites in the pump protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号