首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of the mechanisms by which mutations in superoxide dismutase 1 (SOD1) cause familial amyotrophic lateral sclerosis (fALS) is proposed to involve the accumulation of detergent-insoluble, disulfide-cross-linked, mutant protein. Recent studies have implicated cysteine residues at positions 6 and 111 as critical in mediating disulfide cross-linking and promoting aggregation. In the present study, we used a panel of experimental and disease-linked mutations at cysteine residues of SOD1 (positions 6, 57, 111, and 146) in cell culture assays for aggregation to demonstrate that extensive disulfide cross-linking is not required for the formation of mutant SOD1 aggregates. Experimental mutants possessing only a single cysteine residue or lacking cysteine entirely were found to retain high potential to aggregate. Furthermore we demonstrate that aggregate structures in symptomatic SOD1-G93A mice can be dissociated such that they no longer sediment upon ultracentrifugation (i.e. appear soluble) under relatively mild conditions that leave disulfide bonds intact. Similar to other recent work, we found that cysteines 6 and 111, particularly the latter, play interesting roles in modulating the aggregation of human SOD1. However, we did not find that extensive disulfide cross-linking via these residues, or any other cysteine, is critical to aggregate structure. Instead we suggest that these residues participate in other features of the protein that, in some manner, modulate aggregation.  相似文献   

2.
Mutations in copper-zinc superoxide dismutase cause the neurodegenerative disease amyotrophic lateral sclerosis. Many of the mutant proteins have increased turnover in vivo and decreased thermal stability. Here we show that purified, metal-free superoxide dismutases are degraded in vitro by purified 20 S proteasome in the absence of ATP and without ubiquitinylation, whereas their metal-bound counterparts are not. The rate of degradation by the proteasome varied among the mutants studied, and the rate correlated with the in vivo half-life. The monomeric forms of both mutant and wild-type superoxide dismutase are particularly susceptible to degradation by the proteasome. Exposure of hydrophobic regions as a consequence of decreased thermal stability may allow the proteasome to recognize these molecules as non-native.  相似文献   

3.
Several of the superoxide dismutase-1 (SOD1) mutations linked to amyotrophic lateral sclerosis (ALS) lead to synthesis of structurally defective molecules, suggesting that any cytotoxic conformational species common for all mutations should be misfolded. SOD1 can be secreted and evidence from ALS model systems suggests that extracellular SOD1 may be involved in cytotoxicity. Three ELISAs specifically reacting with different sequence segments in misfolded SOD1 species were used for analysis of CSF from 38 neurological controls and from 96 ALS patients, 57 of whom were sporadic cases and 39 familial, including 22 patients carrying SOD1 mutations. Misfolded SOD1 was found in all samples. There were, however, no significant differences between patients with and without mutations, and between all the ALS patients and the controls. The estimated concentration of misfolded SOD1 in the interstitium of the CNS is a 1000 times lower than that required for appreciable cytotoxicity in model systems. The results argue against a direct cytotoxic role of extracellular misfolded SOD1 in ALS. Misfolded SOD1 in CSF cannot be used as a biomarker of ALS in patients with and without mutations in the enzyme.  相似文献   

4.
Abstract Dorfin is a RING-finger type ubiquitin ligase for mutant superoxide dismutase 1 (SOD1) that enhances its degradation. Mutant SOD1s cause familial amyotrophic lateral sclerosis (FALS) through the gain of unelucidated toxic properties. We previously showed that the accumulation of mutant SOD1 in the mitochondria triggered the release of cytochrome c, followed by the activation of the caspase cascade and induction of neuronal cell death. In the present study, therefore, we investigated whether Dorfin can modulate the level of mutant SOD1 in the mitochondria and subsequent caspase activation. We showed that Dorfin significantly reduced the amount of mutant SOD1 in the mitochondria, the release of cytochrome c and the activation of the following caspase cascade, thereby preventing eventual neuronal cell death in a neuronal cell model of FALS. These results suggest that reducing the accumulation of mutant SOD1 in the mitochondria may be a new therapeutic strategy for mutant SOD1-associated FALS, and that Dorfin may play a significant role in this.  相似文献   

5.
One familial form of the neurodegenerative disease, amyotrophic lateral sclerosis, is caused by gain-of-function mutations in the gene encoding copper/zinc superoxide dismutase (SOD-1). This study provides in vivo evidence that normally occurring oxidative modification to SOD-1 promotes aggregation and toxicity of mutant proteins. The oxidation of Trp-32 was identified as a normal modification being present in both wild-type enzyme and SOD-1 with the disease-causing mutation, G93A, isolated from erythrocytes. Mutating Trp-32 to a residue with a slower rate of oxidative modification, phenylalanine, decreased both the cytotoxicity of mutant SOD-1 and its propensity to form cytoplasmic inclusions in motor neurons of dissociated mouse spinal cord cultures.  相似文献   

6.
Mutant superoxide dismutase-1 (SOD1) has an unidentified toxic property that provokes ALS. Several ALS-linked SOD1 mutations cause long C-terminal truncations, which suggests that common cytotoxic SOD1 conformational species should be misfolded and that the C-terminal end cannot be involved. The cytotoxicity may arise from interaction of cellular proteins with misfolded SOD1 species. Here we specifically immunocaptured misfolded SOD1 by the C-terminal end, from extracts of spinal cords from transgenic ALS model mice. Associated proteins were identified with proteomic techniques. Two transgenic models expressing SOD1s with contrasting molecular properties were examined: the stable G93A mutant, which is abundant in the spinal cord with only a tiny subfraction misfolded, and the scarce disordered truncation mutant G127insTGGG. For comparison, proteins in spinal cord extracts with affinity for immobilized apo G93A mutant SOD1 were determined. Two-dimensional gel patterns with a limited number of bound proteins were found, which were similar for the two SOD1 mutants. Apart from neurofilament light, the proteins identified were all chaperones and by far most abundant was Hsc70. The immobilized apo G93A SOD1, which would populate a variety of conformations, was found to bind to a considerable number of additional proteins. A substantial proportion of the misfolded SOD1 in the spinal cord extracts appeared to be chaperone-associated. Still, only about 1% of the Hsc70 appeared to be associated with misfolded SOD1. The results argue against the notion that chaperone depletion is involved in ALS pathogenesis in the transgenic models and in humans carrying SOD1 mutations.  相似文献   

7.
The presence of the copper ion at the active site of human wild type copper-zinc superoxide dismutase (CuZnSOD) is essential to its ability to catalyze the disproportionation of superoxide into dioxygen and hydrogen peroxide. Wild type CuZnSOD and several of the mutants associated with familial amyotrophic lateral sclerosis (FALS) (Ala(4) --> Val, Gly(93) --> Ala, and Leu(38) --> Val) were expressed in Saccharomyces cerevisiae. Purified metal-free (apoproteins) and various remetallated derivatives were analyzed by metal titrations monitored by UV-visible spectroscopy, histidine modification studies using diethylpyrocarbonate, and enzymatic activity measurements using pulse radiolysis. From these studies it was concluded that the FALS mutant CuZnSOD apoproteins, in direct contrast to the human wild type apoprotein, have lost their ability to partition and bind copper and zinc ions in their proper locations in vitro. Similar studies of the wild type and FALS mutant CuZnSOD holoenzymes in the "as isolated" metallation state showed abnormally low copper-to-zinc ratios, although all of the copper acquired was located at the native copper binding sites. Thus, the copper ions are properly directed to their native binding sites in vivo, presumably as a result of the action of the yeast copper chaperone Lys7p (yeast CCS). The loss of metal ion binding specificity of FALS mutant CuZnSODs in vitro may be related to their role in ALS.  相似文献   

8.
Mutations in Cu,Zn-superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (ALS). It has been proposed that neuronal cell death might occur due to inappropriately increased Cu interaction with mutant SOD1. Using Cu immobilized metal-affinity chromatography (IMAC), we showed that mutant SOD1 (A4V, G85R, and G93A) expressed in transfected COS7 cells, transgenic mouse spinal cord tissue, and transformed yeast possessed higher affinity for Cu than wild-type SOD1. Serine substitution for cysteine at the Cys111 residue in mutant SOD1 abolished the Cu interaction on IMAC. C111S substitution reversed the accelerated degradation of mutant SOD1 in transfected cells, suggesting that the Cys111 residue is critical for the stability of mutant SOD1. Aberrant Cu binding at the Cys111 residue may be a significant factor in altering mutant SOD1 behavior and may explain the benefit of controlling Cu access to mutant SOD1 in models of familial ALS.  相似文献   

9.
Mutations in the Cu/Zn-superoxide dismutase (SOD1) gene cause familial amyotrophic lateral sclerosis (ALS) through the gain of a toxic function; however, the nature of this toxic function remains largely unknown. Ubiquitylated aggregates of mutant SOD1 proteins in affected brain lesions are pathological hallmarks of the disease and are suggested to be involved in several proposed mechanisms of motor neuron death. Recent studies suggest that mutant SOD1 readily forms an incorrect disulfide bond upon mild oxidative stress in vitro, and the insoluble SOD1 aggregates in spinal cord of ALS model mice contain multimers cross-linked via intermolecular disulfide bonds. Here we show that a non-physiological intermolecular disulfide bond between cysteines at positions 6 and 111 of mutant SOD1 is important for high molecular weight aggregate formation, ubiquitylation, and neurotoxicity, all of which were dramatically reduced when the pertinent cysteines were replaced in mutant SOD1 expressed in Neuro-2a cells. Dorfin is a ubiquityl ligase that specifically binds familial ALS-linked mutant SOD1 and ubiquitylates it, thereby promoting its degradation. We found that Dorfin ubiquitylated mutant SOD1 by recognizing the Cys(6)- and Cys(111)-disulfide cross-linked form and targeted it for proteasomal degradation.  相似文献   

10.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with an adult onset characterized by loss of both upper and lower motor neurons. In ~ 10% of cases, patients developed ALS with an apparent genetic linkage (familial ALS or fALS). Approximately 20% of fALS displays mutations in the SOD1 gene encoding superoxide dismutase 1. There are many proposed cellular and molecular mechanisms among which, mitochondrial dysfunctions occur early, prior to symptoms occurrence. In this review, we modeled the effect of mutant SOD1 protein via the formation of a toxic complex with Bcl2 on mitochondrial bioenergetics. Furthermore, we discuss that the shutdown of ATP permeation through mitochondrial outer membrane could lead to both respiration inhibition and temporary mitochondrial hyperpolarization. Moreover, we reviewed mitochondrial calcium signaling, oxidative stress, fission and fusion, autophagy and apoptosis in mutant SOD1-linked ALS. Functional defects in mitochondria appear early before symptoms are manifested in ALS. Therefore, mitochondrial dysfunction is a promising therapeutic target in ALS. This article is part of a Special Issue entitled: Misfolded Proteins, Mitochondrial Dysfunction, and Neurodegenerative Diseases.  相似文献   

11.
The mutations in superoxide dismutase 1 (SOD1) cause approximately 20% of familial amyotrophic lateral sclerosis cases. A toxic gain of function has been considered to be the cause of the disease, but its molecular mechanism remains uncertain. To determine whether the subcellular localization of mutant SOD1 is crucial to mutant SOD1-mediated cell death, we produced neuronal cell models with accumulation of SOD1 in each subcellular fraction/organelle, such as the cytosol, nucleus, endoplasmic reticulum, and mitochondria. We showed that the localization of mutant SOD1 in the mitochondria triggered the release of mitochondrial cytochrome c followed by the activation of caspase cascade and induced neuronal cell death without cytoplasmic mutant SOD1 aggregate formation. Nuclear and endoplasmic reticulum localization of mutant SOD1 did not induce cell death. These results suggest that the localization of mutant SOD1 in the mitochondria is critical in the pathogenesis of mutant SOD1-associated familial amyotrophic lateral sclerosis.  相似文献   

12.
Accumulating evidence indicates that abnormal conformation of mutant superoxide dismutase 1 (SOD1) is an essential feature underlying the pathogenesis of mutant SOD1-linked familial amyotrophic lateral sclerosis (ALS). Here we investigated the role of ubiquitin-proteasome pathway in the mutant SOD1-related cell death and the effect of oxidative stress on the misfolding of mutant SOD1. Transient overexpression of ubiquitin with human SOD1 (wild-type, ala4val, gly85arg, gly93ala) in Neuro2A cells decreased the amount of mutant SOD1, but not of wild-type, while only mutants were co-immunoprecipitated with poly-ubiquitin. Proteasome inhibition by lactacystin augmented accumulation of mutant SOD1 in the non-ionic detergent-insoluble fraction. The spinal cord lysates from mutant SOD1 transgenic mice showed multiple carbonylated proteins, including mutant SOD1 with SDS-resistant dimer formation. Furthermore, the treatment of hSOD1-expressing cells with hydrogen peroxide promoted the oligomerization, and detergent-insolubility of mutant SOD1 alone, and the oxidized mutant SOD1 proteins were more heavily poly-ubiquitinated. In Neuro2A cells stably expressing human SOD1 protein, the proteasome function measured by chymotrypsin-like activity, was decreased over time without a quantitative alteration of the 20S proteasomal component. Finally, primary motor neurons from the mouse embryonic spinal cord were more vulnerable to lactacystin than non-motor neurons. These results indicate that the sustained expression of mutant SOD1 leads to proteasomal inhibition and motor neuronal death, which in part explains the pathogenesis of mutant SOD1-linked ALS.  相似文献   

13.
High molecular weight detergent-insoluble complexes of superoxide dismutase 1 (SOD1) enzyme are a biochemical abnormality associated with mutant SOD1-linked familial amyotrophic lateral sclerosis (FALS). In the present study, SOD1 protein from spinal cords of transgenic FALS mice was fractionated according to solubility in saline, zwitterionic, non-ionic or anionic detergents. Both endogenous mouse SOD1 and mutant human SOD1 were least soluble in SDS, followed by NP-40 and CHAPS, with an eight-fold greater detergent resistance of mutant protein overall. Importantly, high molecular weight mutant SOD1 complexes were isolated with SDS-extraction only. To reproduce SOD1 aggregate pathology in vitro, primary fibroblasts were isolated and cultured from neonatal transgenic FALS mice. Fibroblasts expressed abundant mutant SOD1 without spontaneous aggregation over time with passage. Proteasomal inhibition of cultures using lactacystin induced dose-dependent aggregation and increased the SDS-insoluble fraction of mutant SOD1, but not endogenous SOD1. In contrast, paraquat-mediated superoxide stress in fibroblasts promoted aggregation of endogenous SOD1, but not mutant SOD1. Treatment of cultures with peroxynitrite or the copper chelator diethyldithiocarbamate (DDC) alone did not modulate aggregation. However, DDC inhibited lactacystin-induced mutant SOD1 aggregation in transgenic fibroblasts, while exogenous copper slightly augmented aggregation. These data suggest that SOD1 aggregates may derive from proteasomal or oxidation-mediated oligomerisation pathways from mutant and endogenous subunits respectively. Furthermore, these pathways may be affected by copper availability. We propose that non-neural cultures such as these transgenic fibroblasts with inducible SOD1 aggregation may be useful for rapid screening of compounds with anti-aggregation potential in FALS.  相似文献   

14.
Over 90 different mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause approximately 2% of amyotrophic lateral sclerosis (ALS) cases by an unknown mechanism. We engineered 14 different human ALS-related SOD1 mutants and obtained high yields of biologically metallated proteins from an Sf21 insect cell expression system. Both the wild type and mutant "as isolated" SOD1 variants were deficient in copper and were heterogeneous by native gel electrophoresis. By contrast, although three mutant SOD1s with substitutions near the metal binding sites (H46R, G85R, and D124V) were severely deficient in both copper and zinc ions, zinc deficiency was not a consistent feature shared by the as isolated mutants. Eight mutants (A4V, L38V, G41S, G72S, D76Y, D90A, G93A, and E133 Delta) exhibited normal SOD activity over pH 5.5-10.5, per equivalent of copper, consistent with the presumption that bound copper was in the proper metal-binding site and was fully active. The H48Q variant contained a high copper content yet was 100-fold less active than the wild type enzyme and exhibited a blue shift in the visible absorbance peak of bound Cu(II), indicating rearrangement of the Cu(II) coordination geometry. Further characterization of these as-isolated SOD1 proteins may provide new insights regarding mutant SOD1 enzyme toxicity in ALS.  相似文献   

15.
Determining the composition of aggregated superoxide dismutase 1 (SOD1) species associated with amyotrophic lateral sclerosis (ALS), especially with respect to co-aggregated proteins and post-translational modifications, could identify cellular or biochemical factors involved in the formation of these aggregates and explain their apparent neurotoxicity. The results of mass spectrometric and shotgun-proteomic analyses of SOD1-containing aggregates isolated from spinal cords of symptomatic transgenic ALS mice using two different isolation strategies are presented, including 1) resistance to detergent extraction and 2) size exclusion-coupled anti-SOD1 immunoaffinity chromatography. Forty-eight spinal cords from three different ALS-SOD1 mutant mice were analyzed, namely G93A, G37R, and the unnatural double mutant H46R/H48Q. The analysis consistently revealed that the most abundant proteins recovered from aggregate species were full-length unmodified SOD1 polypeptides. Although aggregates from some spinal cord samples contained trace levels of highly abundant proteins, such as vimentin and neurofilament-3, no proteins were consistently found to co-purify with mutant SOD1 in stoichiometric quantities. The results demonstrate that the principal protein in the high molecular mass aggregates whose appearance correlates with symptoms of the disease is the unmodified, full-length SOD1 polypeptide.  相似文献   

16.
We previously demonstrated that a heterotypic complex of the two rat asialoglycoprotein receptor subunits was assembled during cell-free translation (Sawyer, J. T., and D. Doyle. 1990. Proc. Natl. Acad. Sci. USA. 87:4854-4858). We have characterized this system further by analyzing polypeptide interactions under both reducing and oxidizing translation conditions. This report shows that the complex represents a heterogeneous interaction between reduced membrane proteins rather than a specific oligomeric structure. In the reduced state membrane proteins interact in this system to form aggregates of diverse size and composition. The aggregated nascent polypeptides interact with the immunoglobulin heavy chain binding protein but this protein is not an integral component of the aggregate. Aggregation occurs via the exoplasmic domain, rather than the transmembrane domain, and the folding of this domain by the formation of intramolecular disulfides, prevents the interaction from occurring. Additionally, the folded molecules containing intramolecular disulfides lack high affinity binding activity and thus appear to resemble the earliest folding intermediates seen in vivo (Olson, J. T., and M. D. Lane. 198. FASEB (Fed. Am. Soc. Exp. Biol.) J. 3:1618-1624). These results lead us to suggest that the formation of intramolecular disulfides during early biogenesis serves to prevent nonspecific associations between nascent polypeptides.  相似文献   

17.
Although more than 100 mutations have been identified in the copper/zinc superoxide dismutase (Cu/Zn-SOD) in familial amyotrophic lateral sclerosis (FALS), the mechanism responsible for FALS remains unclear. The finding of the present study shows that FALS-causing mutant Cu/Zn-SOD proteins (FALS mutant SODs), but not wild-type SOD, are barely detected by three monoclonal antibodies (mAbs) in Western blot analyses. The enzyme-linked immunosorbent assay for denatured FALS mutant SODs by dithiothreitol, SDS, or heat treatment also showed a lowered immunoreactivity against the mAbs compared with wild-type SOD. Because all the epitopes of these mAbs are mapped within the Greek key loop (residues 102-115 in human Cu/Zn-SOD), these data suggest that different conformational changes occur in the loop between wild-type and FALS mutant SODs during the unfolding process. Circular dichroism measurements revealed that the FALS mutant SODs are sensitive to denaturation by dithiothreitol, SDS, or heat treatment, but these results do not completely explain the different recognition by the mAbs between wild-type and FALS mutant SODs under the denatured conditions. The study on the conformational changes in local areas monitoring with mAbs may provide a new insight into the etiology of FALS.  相似文献   

18.
A major hallmark of mutant superoxide dismutase (SOD1)‐linked familial amyotrophic lateral sclerosis is SOD1‐immunopositive inclusions found within motor neurons. The mechanism by which SOD1 becomes aggregated, however, remains unclear. In this study, we aimed to investigate the role of nitrosative stress and S‐nitrosylation of protein disulfide isomerase (PDI) in the formation of SOD1 aggregates. Our data show that with disease progression inducible nitric oxide synthase (iNOS) was up‐regulated, which generated high levels of nitric oxide (NO) and subsequently induced S‐nitrosylation of PDI in the spinal cord of mutant SOD1 transgenic mice. This was further confirmed by in vitro observation that treating SH‐SY5Y cells with NO donor S‐nitrosocysteine triggered a dose‐dependent formation of S‐nitrosylated PDI. When mutant SOD1 was over‐expressed in SH‐SY5Y cells, the iNOS expression was up‐regulated, and NO generation was consequently increased. Furthermore, both S‐nitrosylation of PDI and the formation of mutant SOD1 aggregates were detected in the cells expressing mutant SOD1G93A. Blocking NO generation with the NOS inhibitor N‐nitro‐l ‐arginine attenuated the S‐nitrosylation of PDI and inhibited the formation of mutant SOD1 aggregates. We conclude that NO‐mediated S‐nitrosylation of PDI is a contributing factor to the accumulation of mutant SOD1 aggregates in amyotrophic lateral sclerosis.  相似文献   

19.
Mutations in copper/zinc superoxide dismutase (SOD1) are responsible for 20% of familial amyotrophic lateral sclerosis through a gain-of-toxic function. We have recently shown that ammonium tetrathiomolybdate, an intracellular copper-chelating reagent, has an excellent therapeutic benefit in a mouse model for amyotrophic lateral sclerosis. This finding suggests that mutant SOD1 might disrupt intracellular copper homeostasis. In this study, we investigated the effects of mutant SOD1 on the components of the copper trafficking pathway, which regulate intracellular copper homeostasis. We found that mutant, but not wild-type, SOD1 shifts intracellular copper homeostasis toward copper accumulation in the spinal cord during disease progression: copper influx increases, copper chaperones are up-regulated, and copper efflux decreases. This dysregulation was observed within spinal motor neurons and was proportionally associated with an age-dependent increase in spinal copper ion levels. We also found that a subset of the copper trafficking pathway constituents co-aggregated with mutant SOD1. These results indicate that the nature of mutant SOD1 toxicity might involve the dysregulation of the copper trafficking pathway, resulting in the disruption of intracellular copper homeostasis.  相似文献   

20.
The His46Arg (H46R) mutant of human copper-zinc superoxide dismutase (SOD1) is associated with an unusual, slowly progressing form of familial amyotrophic lateral sclerosis (FALS). Here we describe in detail the crystal structures of pathogenic H46R SOD1 in the Zn-loaded (Zn-H46R) and metal-free (apo-H46R) forms. The Zn-H46R structure demonstrates a novel zinc coordination that involves only three of the usual four liganding residues, His 63, His 80, and Asp 83 together with a water molecule. In addition, the Asp 124 "secondary bridge" between the copper- and zinc-binding sites is disrupted, and the "electrostatic loop" and "zinc loop" elements are largely disordered. The apo-H46R structure exhibits partial disorder in the electrostatic and zinc loop elements in three of the four dimers in the asymmetric unit, while the fourth has ordered loops due to crystal packing interactions. In both structures, nonnative SOD1-SOD1 interactions lead to the formation of higher-order filamentous arrays. The disordered loop elements may increase the likelihood of protein aggregation in vivo, either with other H46R molecules or with other critical cellular components. Importantly, the binding of zinc is not sufficient to prevent the formation of nonnative interactions between pathogenic H46R molecules. The increased tendency to aggregate, even in the presence of Zn, arising from the loss of the secondary bridge is consistent with the observation of an increased abundance of hyaline inclusions in spinal motor neurons and supporting cells in H46R SOD1 transgenic rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号