首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of the dc electric field on the near-surface plasma of an electrode microwave discharge at pressures of 1?C5 Torr was studied by the emission spectroscopy method. It is shown that the dc field weakly affects the vibrational distribution of nitrogen molecules in the C3??u state, but changes the structure of the near-surface plasma (shifting the intensity maxima of the emission bands) and the strength of the microwave field near the electrode surface. It is also found that the ratio between the intensities of bands of different sequences of the second positive system of nitrogen radiated from the same state depends on the position along the discharge axis.  相似文献   

2.
The radiation of the second positive nitrogen system has been used to study the spatial dependence of the vibrational distribution of nitrogen molecules in the C3Πu state in the near-surface plasma layer of an electrode microwave discharge in nitrogen at pressures of 1–5 Torr. It has been shown that the vibrational distribution changes at a scale of 100 μm. It has been concluded that this state is populated owing to the electron impact from the ground state. The possibility of using the local approximation for the electron energy distribution function to explain the experimental results has been analyzed.  相似文献   

3.
A method is proposed for determining the electron density N e and the electric field E in the non-equilibrium nitrogen plasma of a low-pressure discharge from the spectra of the second positive system of N2. The method is based on measuring the specific energy deposition in the plasma and the distribution of nitrogen molecules over the vibrational levels of the C 3Π u state, as well as on modeling this distribution for a given energy deposition. The fitting parameters of the model are the values of N e and E. A kinetic model of the processes governing the steady-state density of the C 3Π u nitrogen molecules is developed. The testing of this method showed it to be quite reliable. The method is of particular interest for diagnosing electrodeless discharges and provides detailed information on the processes occurring in the discharge plasma. Preliminary data are obtained on the plasma parameters in a cavity microwave discharge and an electrode microwave discharge. In particular, it is found that the electric field in an electrode microwave discharge in nitrogen is lower than that in a hydrogen discharge. This effect is shown to be produced by stepwise and associative processes with the participation of excited particles in nitrogen.  相似文献   

4.
Plasma Physics Reports - The effect of a small nitrogen additive on a microwave discharge in hydrogen ignited near the antenna at a pressure of 1 Torr was studied by emission spectroscopy and...  相似文献   

5.
The initiation of exothermic chemical reactions in powder (metal-dielectric) mixtures by irradiating them with a high-power microwave beam is investigated. The initial stage of microwave breakdown is accompanied by the emission in the atomic lines of the metal component of the mixture (Ti, Mo, Sn, Al, etc.). The subsequent microwave discharge generates a continuous optical spectrum, the temperature of the effective Planckian radiator being 2000–3000 K. A prolonged radiation of the mixture after the end of the microwave pulse is caused by the energy release in chemical reactions.  相似文献   

6.
Excitation of a microwave discharge at the end of a cylindrical electrode in nitrogen at a pressure of 1 Torr and incident powers of 60–140 W was investigated experimentally by using K-008 and K-011 video cameras and analyzing oscillograms of discharge emission. The times during which the discharge is established in the radial and axial directions are found to be on the order of 10−4 and 10−2 s, respectively. The results obtained are analyzed using one-dimensional simulations of a discharge in nitrogen in a quasistatic approximation. The kinetic scheme includes 50 processes involving electrons, ions, and excited molecules and atoms. The time evolution of the concentrations of molecular nitrogen in the N2(C 3II u ) and N2(B 3II g ) states, responsible for the recorded discharge emission, is compared with the experimental data.  相似文献   

7.
Results are presented from experimental studies of electromagnetic emission and plasma oscillations in the plasma-frequency range in the Octupole Galathea confinement system. Experiments are performed in the electric-discharge mode at low magnetic fields (the barrier field is 0.002–0.01 T); the working gas is argon or hydrogen. It is found that the most intense microwave oscillations at frequencies of 1–5 GHz are excited near the plasma axis and in the magnetic-barrier region. The oscillations are excited by the discharge current and decay after the voltage is switched off. The experiments show that microwave oscillations excited in the magnetic-barrier region are responsible for the small value of the energy confinement time in the system.  相似文献   

8.
The structure of electrode microwave (2.45 GHz) discharges in hydrogen with electrodes of various shapes and sizes at pressures of 1–8 torr and incident powers of 2–150 W is studied. It is found that the discharges exhibit a common feature that is independent of the antenna-electrode design: near the electrode surface, there is a thin bright sheath surrounded by a less bright, sharply bounded region, which is usually shaped like a sphere. It is suggested that the structure observed arises because the microwave field maintaining the discharge is strongly nonuniform. Near the electrode, there exists a thin dense plasma sheath with a high electron density gradient. A strong dependence of the electron-impact excitation coefficient on the electric field makes the effect even more pronounced. As the electron density decreases due to dissociative recombination, the microwave field gradient decreases and the discharge emission intensity tends to a nearly constant value. Presumably, in the boundary region of the discharge, there exists a surface wave, which increases the emission intensity at the periphery of the discharge.  相似文献   

9.
A study is made of the relation between the kinetic processes involving carbon-containing species and the intensity ratios of different emission lines in synthesizing diamond films in a microwave discharge plasma. The intensity ratios of the emission lines are measured as functions of the pressure, composition, and flow rate of the gas mixture. The kinetic processes involving carbon-containing components are simulated under conditions close to the experimental ones. It is shown that the intensity ratios of different pairs of lines can be used to control diamond film deposition.  相似文献   

10.
A study is made of the optical emission spectra of a plasma produced under the action of a microwave beam with a field amplitude of about 3 kV/cm on a metal-dielectric mixture at atmospheric pressure. In the initial stage of the discharge, the plasma is localized in microscale sites at the target surface, the characteristic size of the glowing regions in the target plane being less than 1 mm. In this stage, the target material is evaporated and atomic spectral lines with excitation energies of up to 6–8 eV are emitted. The population temperature of the excited levels, which was determined from the intensity ratios of atomic spectral lines, can be interpreted as the temperature of the atmospheric-pressure plasma. The temperatures determined from different pairs of lines belonging to the same or different elements (Cu, Mo, Li, Fe) fall within the range 7000–9000 K. In the later stage of the discharge, when the characteristic plasma size reaches a few centimeters, no atomic lines are present in the spectrum, which corresponds to a Planckian continuum with a temperature of 2400–3200 K.  相似文献   

11.
The formation times of self-sustained subnanosecond discharges in nitrogen at pressures of 1?40 atm and in hydrogen at pressures of 1–60 atm are analyzed in terms of the avalanche model. In experiments, a subnanosecond voltage pulse with an amplitude of 102 ± 2 kV was applied to a 0.5-mm-long discharge gap with a uniformly distributed electric field (the curvature radii of both the cathode and anode ends were 1 cm). The rise time of the voltage pulse from 0.1 to 0.9 of its amplitude value was about 250 ps. Breakdown occurred at the leading edge of the pulse. The discharge formation time was measured at different gas pressures with a step of 5–10 atm. Analysis of the experimental results shows that, in nitrogen at pressures of 10–40 atm and in hydrogen at pressures of 20–50 atm, breakdown occurs earlier than the electron avalanche reaches its critical length and that the critical avalanche length lies in the range of (2–8) × 10–2 mm, which is one order of magnitude shorter than the discharge gap length. This means that the avalanche–streamer model is inapplicable in this case. The fast formation of a conducting channel under these conditions can be explained by ionization of gas by runaway electrons. In this case, the conducting column develops as a result of simultaneous development of a large number of electron avalanches in the gas volume. An increase in the hydrogen pressure from 50 to 60 atm leads to an abrupt increase in the discharge formation time by about 50%. As a result, the growth time of the electron avalanche to its critical length becomes shorter than the discharge formation time. In this case, the electrons cease to pass into the runaway regime and the discharge is initiated from the cathode due to field emission from microinhomogeneities on its surface. Under these conditions, the discharge formation time is well described by the avalanche–streamer model.  相似文献   

12.
The electrode region of an electrode microwave discharge in hydrogen at pressures of 0.5–4 torr and absorbed powers of up to 12 W is studied using emission spectroscopy and actinometry. It is shown that the gas temperature is at most 700 K and the degree of dissociation does not exceed several percent. Direct electron impact is shown to be the main factor governing all the processes in the electrode region of the discharge, including the excitation of the recorded emission. In particular, the Balmer-series Hα line emission is related to the dissociative electron-impact excitation of hydrogen molecules in the ground state.  相似文献   

13.
Results are presented from one-dimensional quasistatic simulations of steady microwave discharges in a spherically symmetric electrode system in nitrogen at pressures of 1–8 Torr. The computational model includes the equation for calculating the electric field strength in the quasistatic approximation, Poisson’s equation, the balance equations describing the kinetics of charged and neutral plasma particles, and the time-independent homogeneous Boltzmann equation for electrons. The processes involving vibrationally excited particles are taken into account by the familiar analytic expression for the vibrational distribution of molecules in the diffusion approximation. It is shown that, because of the electric field nonuniformity, the physical properties (in particular, the plasma ion composition) are different in different discharge regions.  相似文献   

14.
Ag2S@CdS core–shell particles were synthesized with different Cd source content as a measure of shell thickness using a pulsed microwave irradiation method. The particles were verified structurally using X‐ray diffraction, energy dispersive X‐ray analysis and transmission electron microscopy. Optical spectroscopy revealed that core–shells show an absorption peak at 750 nm and an emission peak located around 800 nm after 6 min of microwave irradiation. With continued microwave treatment, the NIR luminescence first vanished but it was revived after 12 min of irradiation, which was 100 nm red shifted. This new type of NIR emission in Ag2S with sizes greater than 5 nm is due to the proximity of a highly deficient CdS shell with strong red emission that was stable for more than 6 months in water. A mechanism has been suggested for this type of emission.  相似文献   

15.
The effect of a dc external electrical field on the properties of a highly nonuniform electrode microwave discharge in hydrogen at a pressure of 1 Torr was studied using optical emission spectroscopy and selfconsistent two-dimensional simulations. It is shown that the negative voltage applied to the antenna electrode with respect to the grounded chamber increases the discharge radiation intensity, while the positive voltage does not affect the discharge properties. The simulation results agree well with the experimental data.  相似文献   

16.
The characteristics of the initial stage of the formation of the positive column of a glow discharge in nitrogen at reduced pressures are studied experimentally and numerically. A dip in the plasma emission intensity in the initial stage of the discharge (the so-called “dark phase”) is observed experimentally at the positive polarity of the high-voltage electrode (the cathode is grounded). The dark phase is preceded by an ionization wave (IW). When the anode is grounded, neither an IW nor a dip in the discharge emission intensity are observed. A theoretical model capable of describing the discharge development under the actual experimental conditions is constructed. It is shown that the dark phase effect may be caused by the high electron density (above the steady-state one) produced in the gas during the passage of the IW across the discharge gap. This mechanism of the dark phase formation differs from the mechanism proposed earlier to explain a similar effect in noble gases. Additional experiments carried out with pure argon, helium, and helium with a nitrogen admixture have shown that, in the case of a grounded cathode, gas breakdown is also accompanied by the passage of an IW, whereas in the case of a grounded anode, no IW is observed; however, the dark phase is present in both cases. It is shown using computer simulations that, in nitrogen (in contrast to noble gases), the mechanism resulting in the dark phase effect does not operate in the absence of an IW.  相似文献   

17.
Multipactor discharge on a dielectric is studied numerically and analytically for different inclination angles α of the microwave electric field with respect to the dielectric surface. The power absorbed in the discharge is calculated, and analytic estimates for the average current density of secondary electrons and the average energy of electrons bombarding the dielectric surface are obtained as functions of the angle α and the electron oscillation energy in the microwave field. It is found that the dependence of the absorbed power on the inclination angle of the external microwave field has a minimum at α ~20°–30°.  相似文献   

18.
Results of two-dimensional hydrodynamic simulations of a surface glow discharge operating at pressures of 0.2–0.5 Torr in a nitrogen flow propagating with a velocity of 1000 m/s in the presence of external ionization are presented. The effect of the external ionization rate on discharge operation is analyzed. The current-voltage characteristics of the discharge are calculated for different intensities of external ionization in both the presence and absence of secondary electron emission from the cathode. The discharge structure and plasma parameters in the vicinity of the loaded electrode are considered. It is shown that, when the discharge operates at the expense of secondary emission from the cathode, the discharge current and cathode sheath configuration are insensitive to external ionization. It is also demonstrated that, even at a high rate of external ionization, the discharge operates due to secondary emission from the cathode.  相似文献   

19.
Results are presented from experimental studies of the structure of an ac surface discharge excited by a metal needle over a plane dielectric surface. A barrier corona discharge was ignited in atmospheric-pressure argon at frequencies of the applied sinusoidal voltage from 50 Hz to 30 kHz. In experiments, the area of a dielectric covered with the discharge plasma increased with applied voltage. The discharge structure in diffuse and streamer modes was recorded using a digital camera and a high-speed image tube operating in a frame mode. It is found that, in the positive and negative half-periods of the applied voltage, the structure of the surface discharge is substantially different. The statistical characteristics of the branching surface streamers in the positive and negative half-periods are determined as functions of the voltage frequency. The most intense lines in the emission spectrum of the barrier corona are determined for both half-periods. The correlation between the dynamics of the emission intensity and the dynamics of the discharge current and voltage is investigated.  相似文献   

20.
The parameters of the plasma of a microwave electrode discharge in hydrogen at pressures of 1–8 torr and incident powers of 20–80 W are measured by the so-called “relative intensity” method. The method allows one to determine the electron density and electric field in plasma by measuring the relative intensities of the Hα, Hβ, and 763.5-nm Ar line emission and calculating the electron-impact rate constants from the homogeneous Boltzmann equation. The measurements show that there are regions in the discharge where the electron density is higher (a bright electrode sheath) and lower (a spherical region) than the critical density for the frequency 2.45 GHz (ncr~7×1010 cm?3). Inside the spherical region, the electric field varies slightly over the radius and the electron density increases as the discharge boundary is approached. The observed discharge structure can be attributed to the presence of a self-sustained discharge zone (electrode sheath); a non-self-sustained discharge zone (spherical region); and a decaying plasma region, which is separated from the active discharge zone by an electric double layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号