首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The DNA in spores of Bacillus species exhibits a relatively novel photochemistry, as 5-thyminyl-5,6-dihydrothymine (spore photoproduct (SP)) is by far the major UV photoproduct whereas cyclobutane dimers (CPDs) and (6-4) photoproducts (6-4PPs) are the major photoproducts in growing cells. Dehydration and more importantly complexation of DNA by alpha/beta-type small, acid-soluble spore proteins (SASP) have been shown to partly explain the photochemistry of spore DNA. The large amount ( approximately 10% of dry weight) of the spore's dipicolinic acid (DPA) also has been shown to play a role in spore DNA photochemistry. In the present work we showed by exposing spores of various strains of B. subtilis to UVC radiation that DPA photosensitizes spore DNA to damage and favors the formation of SP. The same result was obtained in either the presence or absence of the alpha/beta-type SASP that saturate the spore chromosome. Addition of DPA to dry films of isolated DNA or to frozen solutions of thymidine also led to a higher yield of SP and increased ratio of CPDs to 6-4PPs; DPA also significantly increased the yield of CPDs in thymidine exposed to UVC in liquid solution. These observations strongly support a triplet energy transfer between excited DPA and thymine residues. We further conclude that the combined effects of alpha/beta-type SASP and DPA explain the novel photochemistry of DNA in spores of Bacillus species.  相似文献   

2.
Dipicolinic acid (DPA) comprises approximately 10% of the dry weight of spores of Bacillus species. Although DPA has long been implicated in spore resistance to wet heat and spore stability, definitive evidence on the role of this abundant molecule in spore properties has generally been lacking. Bacillus subtilis strain FB122 (sleB spoVF) produced very stable spores that lacked DPA, and sporulation of this strain with DPA yielded spores with nearly normal DPA levels. DPA-replete and DPA-less FB122 spores had similar levels of the DNA protective alpha/beta-type small acid-soluble spore proteins (SASP), but the DPA-less spores lacked SASP-gamma. The DPA-less FB122 spores exhibited similar UV resistance to the DPA-replete spores but had lower resistance to wet heat, dry heat, hydrogen peroxide, and desiccation. Neither wet heat nor hydrogen peroxide killed the DPA-less spores by DNA damage, but desiccation did. The inability to synthesize both DPA and most alpha/beta-type SASP in strain PS3664 (sspA sspB sleB spoVF) resulted in spores that lost viability during sporulation, at least in part due to DNA damage. DPA-less PS3664 spores were more sensitive to wet heat than either DPA-less FB122 spores or DPA-replete PS3664 spores, and the latter also retained viability during sporulation. These and previous results indicate that, in addition to alpha/beta-type SASP, DPA also is extremely important in spore resistance and stability and, further, that DPA has some specific role(s) in protecting spore DNA from damage. Specific roles for DPA in protecting spore DNA against damage may well have been a major driving force for the spore's accumulation of the high levels of this small molecule.  相似文献   

3.
D L Popham  S Sengupta    P Setlow 《Applied microbiology》1995,61(10):3633-3638
Spores of a Bacillus subtilis strain with an insertion mutation in the dacB gene, which codes for an enzyme involved in spore cortex biosynthesis, have a higher core water content than wild-type spores. Spores lacking the two major alpha/beta-type small, acid-soluble proteins (SASP) (termed alpha-beta- spores) have the same core water content as do wild-type spores, but alpha-beta- dacB spores had more core water than did dacB spores. The resistance of alpha-beta-, alpha-beta- dacB, dacB, and wild-type spores to dry and moist heat, hydrogen peroxide, and UV radiation has been determined, as has the role of DNA damage in spore killing by moist heat and hydrogen peroxide. These data (i) suggest that core water content has little if any role in spore UV resistance and are consistent with binding of alpha/beta-type SASP to DNA being the major mechanism providing protection to spores from UV radiation; (ii) suggest that binding of alpha/beta-type SASP to DNA is the major mechanism unique to spores providing protection from dry heat; (iii) suggest that spore resistance to moist heat and hydrogen peroxide is affected to a large degree by the core water content, as increased core water resulted in large decreases in spore resistance to these agents; and (iv) indicate that since this decreased resistance (i.e., in dacB spores) is not associated with increased spore killing by DNA damage, spore DNA must normally be extremely well protected against such damage, presumably by the saturation of spore DNA by alpha/beta-type SASP.  相似文献   

4.
The DNA in dormant spores of Bacillus species is saturated with a group of nonspecific DNA-binding proteins, termed alpha/beta-type small, acid-soluble spore proteins (SASP). These proteins alter DNA structure in vivo and in vitro, providing spore resistance to UV light. In addition, heat treatments (e.g., 85 degrees C for 30 min) which give little killing of wild-type spores of B. subtilis kill > 99% of spores which lack most alpha/beta-type SASP (termed alpha - beta - spores). Similar large differences in survival of wild-type and alpha - beta - spores were found at 90, 80, 65, 22, and 10 degrees C. After heat treatment (85 degrees C for 30 min) or prolonged storage (22 degrees C for 6 months) that gave > 99% killing of alpha - beta - spores, 10 to 20% of the survivors contained auxotrophic or asporogenous mutations. However, alpha - beta - spores heated for 30 min at 85 degrees C released no more dipicolinic acid than similarly heated wild-type spores (< 20% of the total dipicolinic acid) and triggered germination normally. In contrast, after a heat treatment (93 degrees C for 30 min) that gave > or = 99% killing of wild-type spores, < 1% of the survivors had acquired new obvious mutations, > 85% of the spore's dipicolinic acid had been released, and < 1% of the surviving spores could initiate spore germination. Analysis of DNA extracted from heated (85 degrees C, 30 min) and unheated wild-type spores and unheated alpha - beta - spores revealed very few single-strand breaks (< 1 per 20 kb) in the DNA. In contrast, the DNA from heated alpha- beta- spores had more than 10 single-strand breaks per 20 kb. These data suggest that binding of alpha/beta-type SASP to spore DNA in vivo greatly reduces DNA damage caused by heating, increasing spore heat resistance and long-term survival. While the precise nature of the initial DNA damage after heating of alpha- beta- spores that results in the single-strand breaks is not clear, a likely possibility is DNA depurination. A role for alpha/beta-type SASP in protecting DNA against depurination (and thus promoting spore survival) was further suggested by the demonstration that these proteins reduce the rate of DNA depurination in vitro at least 20-fold.  相似文献   

5.
Inactivation of the Bacillus subtilis sspF gene had no effect on sporulation, spore resistance, or germination in a wild-type strain or one lacking DNA protective alpha/beta-type small, acid-soluble proteins (SASP). Overexpression of SspF in wild-type spores or in spores lacking major alpha/beta-type SASP (alpha- beta- spores) had no effect on sporulation but slowed spore outgrowth and restored a small amount of UV and heat resistance to alpha- beta- spores. In vitro analyses showed that SspF is a DNA binding protein and is cleaved by the SASP-specific protease (GPR) at a site similar to that cleaved in alpha/beta-type SASP. SspF was also degraded during spore germination and outgrowth, and this degradation was initiated by GPR.  相似文献   

6.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to an acidic solution containing Fe(3+), EDTA, KI and ethanol termed the KMT reagent. METHODS AND RESULTS: Wild-type B. subtilis spores were not mutagenized by the KMT reagent but the wild-type and recA spores were killed at the same rate. Spores (alpha(-)beta(-)) lacking most DNA-protective alpha/beta-type small, acid-soluble spore proteins were less resistant to the KMT reagent than wild-type spores but were also not mutagenized, and alpha(-)beta(-) and alpha(-)beta(-)recA spores exhibited nearly identical resistance. Spore resistance to the KMT reagent was greatly decreased if spores had defective coats. However, the level of unsaturated fatty acids in the inner membrane did not determine spore sensitivity to the KMT reagent. Survivors in spore populations killed by the KMT reagent were sensitized to killing by wet heat or nitrous acid and to high salt in plating medium. KMT reagent-killed spores had not released their dipicolinic acid (DPA), although these killed spores released their DPA more readily when germinated with dodecylamine than did untreated spores. However, KMT reagent-killed spores did not germinate with nutrients or Ca(2+)-DPA and were recovered only poorly by lysozyme treatment in a hypertonic medium. CONCLUSIONS: The KMT reagent does not kill spores by DNA damage and a major factor in spore resistance to this reagent is the spore coat. KMT reagent treatment damages the spore's ability to germinate, perhaps by damaging the spore's inner membrane. However, this damage is not oxidation of unsaturated fatty acids. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanism of spore resistance to and killing by the KMT reagent developed for killing Bacillus spores.  相似文献   

7.
Deamidation of one specific asparagine residue in an alpha/beta-type small, acid-soluble spore protein (SASP) of Bacillus subtilis took place readily in vitro (time for 50% deamidation [t(1/2)], approximately 1 h at 70 degrees C), and the deamidated SASP no longer bound to DNA effectively. However, DNA binding protected against this deamidation in vitro. A mutant alpha/beta-type SASP in which the reactive asparagine was changed to aspartate also failed to bind to DNA in vitro, and this protein did not restore UV radiation and heat resistance to spores lacking the majority of their alpha/beta-type SASP. When expressed in Escherichia coli, where it is bound to DNA, the alpha/beta-type SASP deamidated with a t(1/2) of 2 to 3 h at 95 degrees C. However, the alpha/beta-type SASP was extremely resistant to deamidation within spores (t(1/2), >50 h at 95 degrees C). A gamma-type SASP of B. subtilis also deamidated readily in vitro (t(1/2) for one net deamidation, approximately 1 h at 70 degrees C), but this protein (which is not associated with DNA) deamidated fairly readily in spores (t(1/2), approximately 1 h at 95 degrees C). Total spore core protein also deamidated in vivo, although the rate was two- to threefold slower than that of deamidation of total protein in heated vegetative cells. These data indicate that protein deamidation is slowed significantly in spores, presumably due to the spore's environment. However, alpha/beta-type SASP are even more strongly protected against deamidation in vivo, presumably by their binding to spore DNA. Thus, not only do alpha/beta-type SASP protect spore DNA from damage; DNA also protects alpha/beta-type SASP.  相似文献   

8.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to aqueous ozone. METHODS AND RESULTS: Killing of B. subtilis spores by aqueous ozone was not due to damage to the spore's DNA, as wild-type spores were not mutagenized by ozone and wild-type and recA spores exhibited very similar ozone sensitivity. Spores (termed alpha-beta-) lacking the two major DNA protective alpha/beta-type small, acid-soluble spore proteins exhibited decreased ozone resistance but were also not mutagenized by ozone, and alpha-beta- and alpha-beta-recA spores exhibited identical ozone sensitivity. Killing of spores by ozone was greatly increased if spores were chemically decoated or carried a mutation in a gene encoding a protein essential for assembly of the spore coat. Ozone killing did not cause release of the spore core's large depot of dipicolinic acid (DPA), but these killed spores released all of their DPA after a subsequent normally sublethal heat treatment and also released DPA much more readily when germinated in dodecylamine than did untreated spores. However, ozone-killed spores did not germinate with either nutrients or Ca(2+)-DPA and could not be recovered by lysozyme treatment. CONCLUSIONS: Ozone does not kill spores by DNA damage, and the major factor in spore resistance to this agent appears to be the spore coat. Spore killing by ozone seems to render the spores defective in germination, perhaps because of damage to the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of spore killing by and resistance to ozone.  相似文献   

9.
AIMS: To determine if treatment of Bacillus subtilis spores with a variety of oxidizing agents causes damage to the spore's inner membrane. METHODS AND RESULTS: Spores of B. subtilis were killed 80-99% with wet heat or a variety of oxidizing agents, including betadine, chlorine dioxide, cumene hydroperoxide, hydrogen peroxide, Oxone, ozone, sodium hypochlorite and t-butylhydroperoxide, and the agents neutralized and/or removed. Survivors of spores pretreated with oxidizing agents exhibited increased sensitivity to killing by a normally minimal lethal heat treatment, while spores pretreated with wet heat did not. In addition, spores treated with wet heat or the oxidizing agents, except sodium hypochlorite, were more sensitive to high NaCl in plating media than were untreated spores. The core region of spores treated with at least two oxidizing agents was also penetrated much more readily by methylamine than was the core of untreated spores, and spores treated with oxidizing agents but not wet heat germinated faster with dodecylamine than did untreated spores. Spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents. CONCLUSIONS: Treatment of spores with oxidizing agents has been suggested to cause damage to the spore's inner membrane, a membrane whose integrity is essential for spore viability. The sensitization of spores to killing by heat and to high salt after pretreatment with oxidizing agents is consistent with and supports this suggestion. Presumably mild pretreatment with oxidizing agents causes some damage to the spore's inner membrane. While this damage may not be lethal under normal conditions, the damaged inner membrane may be less able to maintain its integrity, when dormant spores are exposed to high temperature or when germinated spores are faced with osmotic stress. Triggering of spore germination by dodecylamine likely involves action by this agent on the spore's inner membrane allowing release of the spore core's depot of dipicolinic acid. Presumably dodecylamine more readily alters the permeability of a damaged inner membrane and thus more readily triggers germination of spores pretreated with oxidizing agents. Damage to the inner spore membrane by oxidizing agents is also consistent with the more rapid penetration of methylamine into the core of treated spores, as the inner membrane is likely the crucial permeability barrier to methylamine entry into the spore core. As spores of strains with very different levels of unsaturated fatty acids in their inner membrane exhibited essentially identical resistance to oxidizing agents, it is not through oxidation of unsaturated fatty acids that oxidizing agents kill and/or damage spores. Perhaps these agents work by causing oxidative damage to key proteins in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: The more rapid heat killing and germination with dodecylamine, the greater permeability of the spore core and the osmotic stress sensitivity in outgrowth of spores pretreated with oxidizing agents is consistent with such agents causing damage to the spore's inner membrane, even if this damage is not lethal under normal conditions. It may be possible to take advantage of this phenomenon to devise improved, less costly regimens for spore inactivation.  相似文献   

10.
Alpha/beta-type small, acid-soluble spore proteins (SASP) are essential for the resistance of DNA in spores of Bacillus species to damage. An alpha/beta-type SASP, Ssp2, from Clostridium perfringens was expressed at significant levels in B. subtilis spores lacking one or both major alpha/beta-type SASP (alpha- and alpha- beta- strains, respectively). Ssp2 restored some of the resistance of alpha- beta- spores to UV and nitrous acid and of alpha- spores to dry heat. Ssp2 also restored much of the resistance of alpha- spores to nitrous acid and restored full resistance of alpha- spores to UV and moist heat. These results further indicate the interchangeability of alpha/beta-type SASP in DNA protection in spores.  相似文献   

11.
During germination of spores of Bacillus species the degradation of the spore's pool of small, acid-soluble proteins (SASP) is initiated by a protease termed GPR, the product of the gpr gene. Bacillus megaterium and B. subtilis mutants with an inactivated gpr gene grew, sporulated, and triggered spore germination as did gpr+ strains. However, SASP degradation was very slow during germination of gpr mutant spores, and in rich media the time taken for spores to return to vegetative growth (defined as outgrowth) was much longer in gpr than in gpr+ spores. Not surprisingly, gpr spores had much lower rates of RNA and protein synthesis during outgrowth than did gpr+ spores, although both types of spores had similar levels of ATP. The rapid decrease in the number of negative supertwists in plasmid DNA seen during germination of gpr+ spores was also much slower in gpr spores. Additionally, UV irradiation of gpr B. subtilis spores early in germination generated significant amounts of spore photoproduct and only small amounts of thymine dimers (TT); in contrast UV irradiation of germinated gpr+ spores generated almost no spore photoproduct and three to four times more TT. Consequently, germinated gpr spores were more UV resistant than germinated gpr+ spores. Strikingly, the slow outgrowth phenotype of B. subtilis gpr spores was suppressed by the absence of major alpha/beta-type SASP. These data suggest that (i) alpha/beta-type SASP remain bound to much, although not all, of the chromosome in germinated gpr spores; (ii) the alpha/beta-type SASP bound to the chromosome in gpr spores alter this DNA's topology and UV photochemistry; and (iii) the presence of alpha/beta-type SASP on the chromosome is detrimental to normal spore outgrowth.  相似文献   

12.
Binding of alpha/beta-type small acid-soluble spore proteins (SASP) is the major determinant of DNA resistance to damage caused by UV radiation, heat, and oxidizing agents in spores of Bacillus and Clostridium species. Analysis of several alpha/beta-type SASP showed that these proteins have essentially no secondary structure in the absence of DNA, but become significantly alpha-helical upon binding to double-stranded DNAs or oligonucleotides. Folding of alpha/beta-type SASP induced by a variety of DNAs and oligonucleotides was measured by CD spectroscopy, and this allowed determination of a DNA binding site size of 4 base pairs as well as equilibrium binding parameters of the alpha/beta-type SASP-DNA interaction. Analysis of the equilibrium binding data further allowed determination of both intrinsic binding constants (K) and cooperativity factors (omega), as the alpha/beta-type SASP-DNA interaction was significantly cooperative, with the degree of cooperativity depending on both the bound DNA and the salt concentration. Kinetic analysis of the interaction of one alpha/beta-type SASP, SspC(Tyr), with DNA indicated that each binding event involves the dimerization of SspC(Tyr) monomers at a DNA binding site. The implications of these findings for the structure of the alpha/beta-type SASP.DNA complex and the physiology of alpha/beta-type SASP degradation during spore germination are discussed.  相似文献   

13.
AIMS: To determine the mechanisms of Bacillus subtilis spore resistance to and killing by a novel sporicide, dimethyldioxirane (DMDO) that was generated in situ from acetone and potassium peroxymonosulfate at neutral pH. METHODS AND RESULTS: Spores of B. subtilis were effectively killed by DMDO. Rates of killing by DMDO of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha- beta- spores) or the major DNA repair protein, RecA, were very similar to that of wild-type spore killing. Survivors of wild-type and alpha- beta- spores treated with DMDO also exhibited no increase in mutations. Spores lacking much coat protein due either to mutation or chemical decoating were much more sensitive to DMDO than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with DMDO were sensitized to wet heat. The DMDO-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by very high pressures and by lysozyme treatment in hypertonic medium, but many of these spores lysed shortly after their germination, and none of these treatments were able to revive the DMDO-killed spores. CONCLUSIONS: DMDO is an effective reagent for killing B. subtilis spores. The spore coat is a major factor in spore resistance to DMDO, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that DMDO is an effective decontaminant for spores of Bacillus species that can work under mild conditions, and the killed spores cannot be revived. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent.  相似文献   

14.
15.
Sporulation of a Bacillus subtilis strain (termed alpha(-) beta(-)) lacking the majority of the alpha/beta-type small, acid-soluble spore proteins (SASP) that are synthesized in the developing forespore and saturate spore DNA exhibited a number of differences from that of the wild-type strain, including delayed forespore accumulation of dipicolinic acid, overexpression of forespore-specific genes, and delayed expression of at least one mother cell-specific gene turned on late in sporulation, although genes turned on earlier in the mother cell were expressed normally in alpha(-) beta(-) strains. The sporulation defects in alpha(-) beta(-) strains were corrected by synthesis of chromosome-saturating levels of either of two wild-type, alpha/beta-type SASP but not by a mutant SASP that binds DNA poorly. Spores from alpha(-) beta(-) strains also exhibited less glutaraldehyde resistance and slower outgrowth than did wild-type spores, but at least some of these defects in alpha(-) beta(-) spores were abolished by the synthesis of normal levels of alpha/beta-type SASP. These results indicate that alpha/beta-type SASP may well have global effects on gene expression during sporulation and spore outgrowth.  相似文献   

16.
Previous work has shown that spores of wild-type Bacillus subtilis are more resistant to killing by dry and wet heat, low vacuum lyophilization and hydrogen peroxide than are spores lacking the majority of their DNA protective alpha/beta-type small, acid-soluble spore proteins (SASP) (termed alpha(-)beta(-) spores). These four treatments kill alpha(-)beta(-) spores in large part by DNA damage with accompanying mutagenesis, but only dry heat kills wild-type spores by DNA damage and mutagenesis. DNA sequence analysis of nalidixic acid-resistant (nal(r)) mutants generated by these treatments has now shown that the nal(r) mutations are base changes in the gyrA gene that encodes one subunit of DNA gyrase. Analysis of the DNA sequence of the gyrA gene in a large number of nal(r) mutants also indicates that: (1) base changes induced by hydrogen peroxide and wet heat in alpha(-)beta(-) spores are similar to those in spontaneous nal(r) mutants with only a few notable differences; (2) base changes induced by dry heat in wild-type spores and low vacuum lyophilization of alpha(-)beta(-) spores are similar, and include a high level of a tandem base change seen previously only in spores treated with very high vacuum and (3) base changes induced by lyophilization and dry heat are very different from those in spontaneous mutants in wild-type and alpha(-)beta(-) spores, which exhibit only one significant difference. While the initial DNA damage generated in spores by dry heat, lyophilization or high vacuum is almost certainly different than that generated by hydrogen peroxide or wet heat, the precise nature of the DNA damage remains to be determined.  相似文献   

17.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by hypochlorite and chlorine dioxide, and its resistance against them. METHODS AND RESULTS: Spores of B. subtilis treated with hypochlorite or chlorine dioxide did not accumulate damage to their DNA, as spores with or without the two major DNA protective alpha/beta-type small, acid soluble spore proteins exhibited similar sensitivity to these chemicals; these agents also did not cause spore mutagenesis and their efficacy in spore killing was not increased by the absence of a major DNA repair pathway. Spore killing by these two chemicals was greatly increased if spores were first chemically decoated or if spores carried a mutation in a gene encoding a protein essential for assembly of many spore coat proteins. Spores prepared at a higher temperature were also much more resistant to these agents. Neither hypochlorite nor chlorine dioxide treatment caused release of the spore core's large depot of dipicolinic acid (DPA), but hypochlorite- and chlorine dioxide-treated spores much more readily released DPA upon a subsequent normally sub-lethal heat treatment than did untreated spores. Hypochlorite-killed spores could not initiate the germination process with either nutrients or a 1 : 1 chelate of Ca2+-DPA, and these spores could not be recovered by lysozyme treatment. Chlorine dioxide-treated spores also did not germinate with Ca2+-DPA and could not be recovered by lysozyme treatment, but did germinate with nutrients. However, while germinated chlorine dioxide-killed spores released DPA and degraded their peptidoglycan cortex, they did not initiate metabolism and many of these germinated spores were dead as determined by a viability stain that discriminates live cells from dead ones on the basis of their permeability properties. CONCLUSIONS: Hypochlorite and chlorine dioxide do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents appears to be the spore coat. Spore killing by hypochlorite appears to render spores defective in germination, possibly because of severe damage to the spore's inner membrane. While chlorine dioxide-killed spores can undergo the initial steps in spore germination, these germinated spores can go no further in this process probably because of some type of membrane damage. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide information on the mechanisms of the killing of bacterial spores by hypochlorite and chlorine dioxide.  相似文献   

18.
Treatment of wild-type spores of Bacillus subtilis with glutaraldehyde or an iodine-based disinfectant (Betadine) did not cause detectable mutagenesis, and spores (termed alpha-beta-) lacking the major DNA-protective alpha/beta-type, small, acid-soluble proteins (SASP) exhibited similar sensitivity to these agents. A recA mutation did not sensitize wild-type or alpha-beta- spores to Betadine or glutaraldehyde, nor did spore treatment with these agents result in significant expression of a recA-lacZ fusion when the treated spores germinated. Spore glutaraldehyde sensitivity was increased dramatically by removal of much spore coat protein, but this treatment had no effect on Betadine sensitivity. In contrast, nitrous acid treatment of wild-type and alpha-beta- spores caused significant mutagenesis, with alpha-beta- spores being much more sensitive to this agent. A recA mutation further sensitized both wild-type and alpha-beta- spores to nitrous acid, and there was significant expression of a recA-lacZ fusion when nitrous acid-treated spores germinated. These results indicate that: (a) nitrous acid kills B. subtilis spores at least in part by DNA damage, and alpha/beta-type SASP protect against this DNA damage; (b) killing of spores by glutaraldehyde or Betadine is not due to DNA damage; and (c) the spore coat protects spores against killing by glutaraldehyde but not Betadine. Further analysis also demonstrated that spores treated with nitrous acid still germinated normally, while those treated with glutaraldehyde or Betadine did not.  相似文献   

19.
AIMS: To determine the effectiveness of tert-butyl hydroperoxide (tBHP) plus the cationic surfactant cetyltrimethyl ammonium bromide (CTAB) and a tetra-amido macrocyclic ligand (TAML) activator in killing spores of Bacillus subtilis and the mechanisms of spore resistance to and killing by this reagent. METHODS AND RESULTS: Killing of spores of B. subtilis by tBHP was greatly stimulated by the optimum ratio of concentrations of a TAML activator (1.7 micromol l(-1)) to tBHP (4.4%, vol/vol) plus a low level (270 mg l(-1)) of CTAB. Rates of killing of spores lacking most DNA protective alpha/beta-type small, acid-soluble spore proteins (alpha(-)beta(-) spores) or the major DNA repair protein, RecA, by tBHP plus CTAB and a TAML activator were essentially identical to that of wild-type spore killing. Survivors of wild-type and alpha(-)beta(-) spores treated with tBHP plus CTAB and a TAML activator also exhibited no increase in mutations. Spores lacking much coat protein either because of mutation or chemical decoating were much more sensitive to this reagent than were wild-type spores, but were more resistant than growing cells. Wild-type spores killed with this reagent retained their large pool of dipicolinic acid (DPA), and the survivors of spores treated with this reagent were sensitized to wet heat. The tBHP plus CTAB and TAML activator-killed spores germinated with nutrients, albeit more slowly than untreated spores, but germinated faster than untreated spores with dodecylamine. The killed spores were also germinated by application of 150 and 500 megaPascals of pressure for 15 min and by lysozyme treatment in hypertonic medium, but these spores lysed shortly after their germination. CONCLUSIONS: The combination of tBHP plus CTAB and a TAML activator is effective in killing B. subtilis spores. The spore coat is a major factor in spore resistance to this reagent system, which does not kill spores by DNA damage or by inactivating some component needed for spore germination. Rather, this reagent system appears to kill spores by damaging the spore's inner membrane in some fashion. SIGNIFICANCE AND IMPACT OF THE STUDY: This work demonstrates that tBHP plus CTAB and a TAML activator is an effective and mild decontaminant for spores of Bacillus species. Evidence has also been obtained on the mechanisms of spore resistance to and killing by this reagent system.  相似文献   

20.
Previous work has suggested that a group of alpha/beta-type small, acid-soluble spore proteins (SASP) is involved in the resistance of Clostridium perfringens spores to moist heat. However, this suggestion is based on the analysis of C. perfringens spores lacking only one of the three genes encoding alpha/beta-type SASP in this organism. We have now used antisense RNA to decrease levels of alpha/beta-type SASP in C. perfringens spores by approximately 90%. These spores had significantly reduced resistance to both moist heat and UV radiation but not to dry heat. These results clearly demonstrate the important role of alpha/beta-type SASP in the resistance of C. perfringens spores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号