首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
State-dependent inactivation of the Kv3 potassium channel.   总被引:7,自引:1,他引:6  
Inactivation of Kv3 (Kv1.3) delayed rectifier potassium channels was studied in the Xenopus oocyte expression system. These channels inactivate slowly during a long depolarizing pulse. In addition, inactivation accumulates in response to a series of short depolarizing pulses (cumulative inactivation), although no significant inactivation occurs within each short pulse. The extent of cumulative inactivation does not depend on the voltage during the depolarizing pulse, but it does vary in a biphasic manner as a function of the interpulse duration. Furthermore, the rate of cumulative inactivation is influenced by changing the rate of deactivation. These data are consistent with a model in which Kv3 channel inactivation is a state-dependent and voltage-independent process. Macroscopic and single channel experiments indicate that inactivation can occur from a closed (silent) state before channel opening. That is, channels need not open to inactivate. The transition that leads to the inactivated state from the silent state is, in fact, severalfold faster then the observed inactivation of current during long depolarizing pulses. Long pulse-induced inactivation appears to be slow, because its rate is limited by the probability that channels are in the open state, rather than in the silent state from which they can inactivate. External potassium and external calcium ions alter the rates of cumulative and long pulse-induced inactivation, suggesting that antagonistic potassium and calcium binding steps are involved in the normal gating of the channel.  相似文献   

2.
Kv4 potassium channels undergo rapid inactivation but do not seem to exhibit the classical N-type and C-type mechanisms present in other Kv channels. We have previously hypothesized that Kv4 channels preferentially inactivate from the preopen closed state, which involves regions of the channel that contribute to the internal vestibule of the pore. To further test this hypothesis, we have examined the effects of permeant ions on gating of three Kv4 channels (Kv4.1, Kv4.2, and Kv4.3) expressed in Xenopus oocytes. Rb+ is an excellent tool for this purpose because its prolonged residency time in the pore delays K+ channel closing. The data showed that, only when Rb+ carried the current, both channel closing and the development of macroscopic inactivation are slowed (1.5- to 4-fold, relative to the K+ current). Furthermore, macroscopic Rb+ currents were larger than K+ currents (1.2- to 3-fold) as the result of a more stable open state, which increases the maximum open probability. These results demonstrate that pore occupancy can influence inactivation gating in a manner that depends on how channel closing impacts inactivation from the preopen closed state. By examining possible changes in ionic selectivity and the influence of elevating the external K+ concentration, additional experiments did not support the presence of C-type inactivation in Kv4 channels.  相似文献   

3.
The mammalian Kv4.3 potassium channel is a fast activating and inactivating K+ channel widely distributed in mammalian tissues. Kv4.3 is the major component of various physiologically important currents ranging from A-type currents in the CNS to the transient outward potassium conductance in the heart (I(to)). Here we show that the KCNE3 beta-subunit has a strong inhibitory effect on current conducted by heterologously expressed Kv4.3 channels. KCNE3 reduces the Kv4.3 current amplitude, and it slows down the channel activation and inactivation as well as the recovery from inactivation. KCNE3 also inhibits currents generated by Kv4.3 in complex with the accessory subunit KChIP2. We find the inhibitory effect of KCNE3 to be specific for Kv4.3 within the Kv4 channel family. Kv4.3 has previously been shown to interact with a number of beta-subunits, but none of the described subunit-interactions exert an inhibitory effect on the Kv4.3 current.  相似文献   

4.
We examined the relationship between deactivation and inactivation in Kv4.2 channels. In particular, we were interested in the role of a Kv4.2 N-terminal domain and accessory subunits in controlling macroscopic gating kinetics and asked if the effects of N-terminal deletion and accessory subunit coexpression conform to a kinetic coupling of deactivation and inactivation. We expressed Kv4.2 wild-type channels and N-terminal deletion mutants in the absence and presence of Kv channel interacting proteins (KChIPs) and dipeptidyl aminopeptidase-like proteins (DPPs) in human embryonic kidney 293 cells. Kv4.2-mediated A-type currents at positive and deactivation tail currents at negative membrane potentials were recorded under whole-cell voltage-clamp and analyzed by multi-exponential fitting. The observed changes in Kv4.2 macroscopic inactivation kinetics caused by N-terminal deletion, accessory subunit coexpression, or a combination of the two maneuvers were compared with respective changes in deactivation kinetics. Extensive correlation analyses indicated that modulatory effects on deactivation closely parallel respective effects on inactivation, including both onset and recovery kinetics. Searching for the structural determinants, which control deactivation and inactivation, we found that in a Kv4.2Δ2-10 N-terminal deletion mutant both the initial rapid phase of macroscopic inactivation and tail current deactivation were slowed. On the other hand, the intermediate and slow phase of A-type current decay, recovery from inactivation, and tail current decay kinetics were accelerated in Kv4.2Δ2-10 by KChIP2 and DPPX. Thus, a Kv4.2 N-terminal domain, which may control both inactivation and deactivation, is not necessary for active modulation of current kinetics by accessory subunits. Our results further suggest distinct mechanisms for Kv4.2 gating modulation by KChIPs and DPPs.  相似文献   

5.
In many voltage-gated K(+) channels, N-type inactivation significantly accelerates the onset of C-type inactivation, but effects on recovery from inactivation are small or absent. We have exploited the Na(+) permeability of C-type-inactivated K(+) channels to characterize a strong interaction between the inactivation peptide of Kv1.4 and the C-type-inactivated state of Kv1.4 and Kv1.5. The presence of the Kv1.4 inactivation peptide results in a slower decay of the Na(+) tail currents normally observed through C-type-inactivated channels, an effective blockade of the peak Na(+) tail current, and also a delay of the peak tail current. These effects are mimicked by addition of quaternary ammonium ions to the pipette-filling solution. These observations support a common mechanism of action of the inactivation peptide and intracellular quaternary ammonium ions, and also demonstrate that the Kv channel inner vestibule is cytosolically exposed before and after the onset of C-type inactivation. We have also examined the process of N-type inactivation under conditions where C-type inactivation is removed, to compare the interaction of the inactivation peptide with open and C-type-inactivated channels. In C-type-deficient forms of Kv1.4 or Kv1.5 channels, the Kv1.4 inactivation ball behaves like an open channel blocker, and the resultant slowing of deactivation tail currents is considerably weaker than observed in C-type-inactivated channels. We present a kinetic model that duplicates the effects of the inactivation peptide on the slow Na(+) tail of C-type-inactivated channels. Stable binding between the inactivation peptide and the C-type-inactivated state results in slower current decay, and a reduction of the Na(+) tail current magnitude, due to slower transition of channels through the Na(+)-permeable states traversed during recovery from inactivation.  相似文献   

6.
The effect of Kvbeta3 subunit co-expression on currents mediated by the Shaker-related channels Kv1.1 to Kv1.6 in Chinese hamster ovary (CHO) cells was studied with patch-clamp techniques. In the presence of Kvbeta3, differences in the voltage dependence of activation for Kv1.1, Kv1.3 and Kv1.6 were detected, but not for Kv1.2- and Kv1.4-mediated currents. Co-expression of Kvbeta3 did not cause a significant increase in current density for any of the tested channels. In contrast to previous studies in Xenopus oocyte expression system, Kvbeta3 confered a rapid inactivation to all except Kv1.3 channels. Also, Kv1.6 channels that possess an N-type inactivation prevention (NIP) domain for Kvbeta1.1, inactivated rapidly when co-expressed with Kvbeta3. Onset and recovery kinetics of channel inactivation distinctly differed for the various Kv1alpha/Kvbeta3 subunit combinations investigated in this study. The results indicate that the choice of expression system may critically determine Kvbeta3 inactivating activity. This suggests that the presence of an inactivating domain and a receptor in a channel pore, although necessary, may not be sufficient for an effective rapid N-type inactivation of Kv1 channels in heterologous expression systems.  相似文献   

7.
A wide range of ion channels have been considered as potential targets for pharmacological treatment of atrial fibrillation. The Kv1.5 channel, carrying the IKur current, has received special attention because it contributes to repolarization in the atria but is absent or weakly expressed in ventricular tissue. The dog serves as an important animal model for electrophysiological studies of the heart and mathematical models of the canine atrial action potential (CAAP) have been developed to study the interplay between ionic currents. To enable more-realistic studies on the effects of Kv1.5 blockers on the CAAP in silico, two continuous-time Markov models of the guarded receptor type were formulated for Kv1.5 and subsequently inserted into the Ramirez-Nattel-Courtemanche model of the CAAP. The main findings were: 1), time- and state-dependent Markov models of open-channel Kv1.5 block gave significantly different results compared to a time- and state-independent model with a downscaled conductance; 2), the outcome of Kv1.5 block on the macroscopic system variable APD90 was dependent on the precise mechanism of block; and 3), open-channel block produced a reverse use-dependent prolongation of APD90. This study suggests that more-complex ion-channel models are a prerequisite for quantitative modeling of drug effects.  相似文献   

8.
The voltage−gated K+ (Kv) channel subunits Kv2.1 and Kv2.2 are expressed in almost every tissue. The diversity of Kv2 current is increased by interacting with the electrically silent Kv (KvS) subunits Kv5−Kv6 and Kv8−Kv9, into functional heterotetrameric Kv2/KvS channels. These Kv2/KvS channels possess unique biophysical properties and display a more tissue-specific expression pattern, making them more desirable pharmacological and therapeutic targets. However, little is known about the pharmacological properties of these heterotetrameric complexes. We demonstrate that Kv5.1, Kv8.1 and Kv9.3 currents were inhibited differently by the channel blocker 4−aminopyridine (4−AP) compared to Kv2.1 homotetramers. In contrast, Kv6.4 currents were potentiated by 4−AP while displaying moderately increased affinities for the channel pore blockers quinidine and flecainide. We found that the 4−AP induced potentiation of Kv6.4 currents was caused by modulation of the Kv6.4−mediated closed−state inactivation: suppression by 4−AP of the Kv2.1/Kv6.4 closed−state inactivation recovered a population of Kv2.1/Kv6.4 channels that was inactivated at resting conditions, i.e. at a holding potential of −80 mV. This modulation also resulted in a slower initiation and faster recovery from closed−state inactivation. Using chimeric substitutions between Kv6.4 and Kv9.3 subunits, we demonstrated that the lower half of the S6 domain (S6c) plays a crucial role in the 4−AP induced potentiation. These results demonstrate that KvS subunits modify the pharmacological response of Kv2 subunits when assembled in heterotetramers and illustrate the potential of KvS subunits to provide unique pharmacological properties to the heterotetramers, as is the case for 4−AP on Kv2.1/Kv6.4 channels.  相似文献   

9.
Inactivation is an intrinsic property of numerous voltage-gated K+ (Kv) channels and can occur by N-type or/and C-type mechanisms. N-type inactivation is a fast, voltage independent process, coupled to activation, with each inactivation particle of a tetrameric channel acting independently. In N-type inactivation, a single inactivation particle is necessary and sufficient to occlude the pore. C-type inactivation is a slower process, involving the outermost region of the pore and is mediated by a concerted, highly cooperative interaction between all four subunits. Inactivation of Kv7.1 channels does not exhibit the hallmarks of N- and C-type inactivation. Inactivation of WT Kv7.1 channels can be revealed by hooked tail currents that reflects the recovery from a fast and voltage-independent inactivation process. However, several Kv7.1 mutants such as the pore mutant L273F generate an additional voltage-dependent slow inactivation. The subunit interactions during this slow inactivation gating remain unexplored. The goal of the present study was to study the nature of subunit interactions along Kv7.1 inactivation gating, using concatenated tetrameric Kv7.1 channel and introducing sequentially into each of the four subunits the slow inactivating pore mutation L273F. Incorporating an incremental number of inactivating mutant subunits did not affect the inactivation kinetics but slowed down the recovery kinetics from inactivation. Results indicate that Kv7.1 inactivation gating is not compatible with a concerted cooperative process. Instead, adding an inactivating subunit L273F into the Kv7.1 tetramer incrementally stabilizes the inactivated state, which suggests that like for activation gating, Kv7.1 slow inactivation gating is not a concerted process.  相似文献   

10.
N-type Inactivation Features of Kv4.2 Channel Gating   总被引:12,自引:0,他引:12  
We examined whether the N-terminus of Kv4.2 A-type channels (4.2NT) possesses an autoinhibitory N-terminal peptide domain, which, similar to the one of Shaker, mediates inactivation of the open state. We found that chimeric Kv2.1(4.2NT) channels, where the cytoplasmic Kv2.1 N-terminus had been replaced by corresponding Kv4.2 domains, inactivated relatively fast, with a mean time constant of 120 ms as compared to 3.4 s in Kv2.1 wild-type. Notably, Kv2.1(4.2NT) showed features typically observed for Shaker N-type inactivation: fast inactivation of Kv2.1(4.2NT) channels was slowed by intracellular tetraethylammonium and removed by N-terminal truncation (Δ40). Kv2.1(4.2NT) channels reopened during recovery from inactivation, and recovery was accelerated in high external K+. Moreover, the application of synthetic N-terminal Kv4.2 and ShB peptides to inside-out patches containing slowly inactivating Kv2.1 channels mimicked N-type inactivation. Kv4.2 channels, after fractional inactivation, mediated tail currents with biphasic decay, indicative of passage through the open state during recovery from inactivation. Biphasic tail current kinetics were less prominent in Kv4.2/KChIP2.1 channel complexes and virtually absent in Kv4.2Δ40 channels. N-type inactivation features of Kv4.2 open-state inactivation, which may be suppressed by KChIP association, were also revealed by the finding that application of Kv4.2 N-terminal peptide accelerated the decay kinetics of both Kv4.2Δ40 and Kv4.2/KChIP2.1 patch currents. However, double mutant cycle analysis of N-terminal inactivating and pore domains indicated differences in the energetics and structural determinants between Kv4.2 and Shaker N-type inactivation.  相似文献   

11.
Rapamycin, an inhibitor of the serine/threonine kinase mammalian target of rapamycin (mTOR), is a widely used immunosuppressive drug. Rapamycin affects the function of dendritic cells (DCs), antigen-presenting cells participating in the initiation of primary immune responses and the establishment of immunological memory. Voltage-gated K(+) (Kv) channels are expressed in and impact on the function of DCs. The present study explored whether rapamycin influences Kv channels in DCs. To this end, DCs were isolated from murine bone marrow and ion channel activity was determined by whole cell patch clamp. To more directly analyze an effect of mTOR on Kv channel activity, Kv1.3 and Kv1.5 were expressed in Xenopus oocytes with or without the additional expression of mTOR and voltage-gated currents were determined by dual-electrode voltage clamp. As a result, preincubation with rapamycin (0-50 nM) led to a gradual decline of Kv currents in DCs, reaching statistical significance within 6 h and 50 nM of rapamycin. Rapamycin accelerated Kv channel inactivation. Coexpression of mTOR upregulated Kv1.3 and Kv1.5 currents in Xenopus oocytes. Furthermore, mTOR accelerated Kv1.3 channel activation and slowed down Kv1.3 channel inactivation. In conclusion, mTOR stimulates Kv channels, an effect contributing to the immunomodulating properties of rapamycin in DCs.  相似文献   

12.
N-type inactivation of rat Kv1.4 channels with one, two, or four inactivation balls was investigated using homogeneous populations of channels expressed in Xenopus oocytes. Tandem dimeric and tetrameric constructs of Kv1.4 were made. Channels encoded by tandem cDNAs Kv1. 4-Kv1.4Delta1-145 and Kv1.4-[Kv1.4Delta1-145](3) have two or only one tethered inactivation ball, respectively, whereas Kv1.4 itself encodes channels having four inactivation balls. The time constants for inactivation of macroscopic currents were increased significantly as the number of inactivation balls was decreased, whereas the time constants for recovery from inactivation were not modified. The ratios of the rate constants of inactivation (k(inact)) of Kv1.4-Kv1.4Delta1-145 and Kv1.4-[Kv1.4Delta1-145](3) channels to that of the Kv1.4 channel were 0.65 and 0.4, respectively, whereas the ratios of the rate constant of recovery (k(rec)) of these channels to that of Kv1.4 were almost unity. The rate constants k(inact) for channels having two and four inactivation balls are smaller than those that would be expected if inactivation balls on each channel are independent, suggesting some interaction occurs between inactivation balls. Furthermore, noninactivating current became apparent as the number of inactivation balls on a channel was decreased.  相似文献   

13.
Inactivation of Kv2.1 potassium channels.   总被引:8,自引:0,他引:8       下载免费PDF全文
We report here several unusual features of inactivation of the rat Kv2.1 delayed rectifier potassium channel, expressed in Xenopus oocytes. The voltage dependence of inactivation was U-shaped, with maximum inactivation near 0 mV. During a maintained depolarization, development of inactivation was slow and only weakly voltage dependent (tau = 4 s at 0 mV; tau = 7 s at +80 mV). However, recovery from inactivation was strongly voltage dependent (e-fold for 20 mV) and could be rapid (tau = 0.27 s at -140 mV). Kv2.1 showed cumulative inactivation, where inactivation built up during a train of brief depolarizations. A single maintained depolarization produced more steady-state inactivation than a train of pulses, but there could actually be more inactivation with the repeated pulses during the first few seconds. We term this phenomenon "excessive cumulative inactivation." These results can be explained by an allosteric model, in which inactivation is favored by activation of voltage sensors, but the open state of the channel is resistant to inactivation.  相似文献   

14.
The voltage-dependent K+ channel 4.3 (Kv4.3) is one of the major molecular correlates encoding a class of rapidly inactivating K+ currents, including the transient outward current in the heart (Ito) and A currents (IA) in neuronal and smooth muscle preparations. Recent studies have shown that Ito in human atrial myocytes and IA in murine colonic myocytes are modulated by Ca2+/calmodulin-dependent protein kinase II (CaMKII); however, the molecular target of CaMKII in these studies has not been elucidated. We performed experiments to investigate whether CaMKII could regulate Kv4.3 currents directly. Inclusion of the autothiophosphorylated form of CaMKII in the patch pipette (10 nM) prolonged Kv4.3 currents such that the time required to reach 50% inactivation from peak more than doubled, with positive shifts in voltage dependence of both activation and inactivation. In contrast, the rate of recovery from inactivation was accelerated under these conditions. CaMKII-inhibitory peptide or KN-93 produced effects opposite to that above; thus the rate of inactivation was increased, and recovery from inactivation decreased. A number of mutagenesis experiments were conducted on the three candidate CaMKII consensus sequence sites on the channel. Mutations at S550A, located at the COOH-terminal region of the channel, resulted in currents that inactivated more rapidly but recovered from inactivation at a slower rate than that of wild-type controls. In addition, these currents were unaffected by dialysis with either autothiophosphorylated CaMKII or the specific inhibitory peptide of CaMKII, suggesting that CaMKII slows the inactivation and accelerates the rate of recovery from inactivation of Kv4.3 currents by a direct effect at S550A, located at the COOH-terminal region of the channel.  相似文献   

15.
A-type voltage-gated K+ (Kv) channels self-regulate their activity by inactivating directly from the open state (open-state inactivation [OSI]) or by inactivating before they open (closed-state inactivation [CSI]). To determine the inactivation pathways, it is often necessary to apply several pulse protocols, pore blockers, single-channel recording, and kinetic modeling. However, intrinsic hurdles may preclude the standardized application of these methods. Here, we implemented a simple method inspired by earlier studies of Na+ channels to analyze macroscopic inactivation and conclusively deduce the pathways of inactivation of recombinant and native A-type Kv channels. We investigated two distinct A-type Kv channels expressed heterologously (Kv3.4 and Kv4.2 with accessory subunits) and their native counterparts in dorsal root ganglion and cerebellar granule neurons. This approach applies two conventional pulse protocols to examine inactivation induced by (a) a simple step (single-pulse inactivation) and (b) a conditioning step (double-pulse inactivation). Consistent with OSI, the rate of Kv3.4 inactivation (i.e., the negative first derivative of double-pulse inactivation) precisely superimposes on the profile of the Kv3.4 current evoked by a single pulse because the channels must open to inactivate. In contrast, the rate of Kv4.2 inactivation is asynchronous, already changing at earlier times relative to the profile of the Kv4.2 current evoked by a single pulse. Thus, Kv4.2 inactivation occurs uncoupled from channel opening, indicating CSI. Furthermore, the inactivation time constant versus voltage relation of Kv3.4 decreases monotonically with depolarization and levels off, whereas that of Kv4.2 exhibits a J-shape profile. We also manipulated the inactivation phenotype by changing the subunit composition and show how CSI and CSI combined with OSI might affect spiking properties in a full computational model of the hippocampal CA1 neuron. This work unambiguously elucidates contrasting inactivation pathways in neuronal A-type Kv channels and demonstrates how distinct pathways might impact neurophysiological activity.  相似文献   

16.
In the voltage-gated potassium channel Kv1.5, extracellular acidification decreases the peak macroscopic conductance and accelerates slow inactivation. To better understand the mechanistic basis for these two effects, we recorded unitary currents of Kv1.5 expressed in a mouse cell line (ltk-) using the voltage clamp technique both in cell-attached and excised outside-out patches. Single channel current amplitude at 100 mV (1.7 +/- 0.2 pA at pH 7.4, 1.7 +/- 0.2 pA at pH 6.4) and the single channel conductance between 0 and 100 mV (11.8 +/- 0.6 pS at pH 7.4 and 11.3 +/- 0.8 pS at pH 6.4) did not change significantly with pH. External acidification significantly decreased the number of active sweeps, and this reduction in channel availability accounted for most of the reduction of the peak macroscopic current. The results of runs analyses suggested the null sweeps occur in clusters, and the rate constants for the transition between clusters of null and active sweeps at pH 6.4 were slow (0.12 and 0.18 s(-1), to and from the active clusters, respectively). We propose that low pH facilitates a shift from an available mode (mode A) into an unavailable mode of gating (mode U). In addition to promoting mode U gating, external acidification accelerates depolarization-induced inactivation, which is manifest at the single channel level as a reduction of the mean burst length and an apparent increase of the interburst interval. These effects of external acidification, which are thought to reflect the protonation of a histidine residue in the turret (H-463), point to an important role for the turret in the regulation of channel availability and inactivation.  相似文献   

17.
Inactivation viewed through single sodium channels   总被引:17,自引:12,他引:5       下载免费PDF全文
Recordings of the sodium current in tissue-cultured GH3 cells show that the rate of inactivation in whole cell and averaged single channel records is voltage dependent: tau h varied e-fold/approximately 26 mV. The source of this voltage dependence was investigated by examining the voltage dependence of individual rate constants, estimated by maximum likelihood analysis of single channel records, in a five-state kinetic model. The rate constant for inactivating from the open state, rather than closing, increased with depolarization, as did the probability that an open channel inactivates. The rate constant for closing from the open state had the opposite voltage dependence. Both rate constants contributed to the mean open time, which was not very voltage dependent. Both open time and burst duration were less than tau h for voltages up to -20 mV. The slowest time constant of activation, tau m, was measured from whole cell records, by fitting a single exponential either to tail currents or to activating currents in trypsin-treated cells, in which the inactivation was abolished. tau m was a bell-shaped function of voltage and had a voltage dependence similar to tau h at voltages more positive than -35 mV, but was smaller than tau h. At potentials more negative than about -10 mV, individual channels may open and close several times before inactivating. Therefore, averaged single channel records, which correspond with macroscopic current elicited by a depolarization, are best described by a convolution of the first latency density with the autocorrelation function rather than with 1 - (channel open time distribution). The voltage dependence of inactivation from the open state, in addition to that of the activation process, is a significant factor in determining the voltage dependence of macroscopic inactivation. Although the rates of activation and inactivation overlapped greatly, independent and coupled inactivation could not be statistically distinguished for two models examined. Although rates of activation affect the observed rate of inactivation at intermediate voltages, extrapolation of our estimates of rate constants suggests that at very depolarized voltages the activation process is so fast that it is an insignificant factor in the time course of inactivation. Prediction of gating currents shows that an inherently voltage-dependent inactivation process need not produce a conspicuous component in the gating current.  相似文献   

18.
Voltage-gated K(+) channels are multimeric proteins, consisting of four pore-forming alpha-subunits alone or in association with accessory subunits. Recently, for example, it was shown that the accessory Kv channel interacting proteins form complexes with Kv4 alpha-subunits and modulate Kv4 channel activity. The experiments reported here demonstrate that the neuronal calcium sensor protein-1 (NCS-1), another member of the recoverin-neuronal calcium sensor superfamily, is expressed in adult mouse ventricles and that NCS-1 co-immunoprecipitates with Kv4.3 from (adult mouse) ventricular extracts. In addition, co-expression studies in HEK-293 cells reveal that NCS-1 increases membrane expression of Kv4 alpha-subunits and functional Kv4-encoded K(+) current densities. Co-expression of NCS-1 also decreases the rate of inactivation of Kv4 alpha-subunit-encoded K(+) currents. In contrast to the pronounced effects of Kv channel interacting proteins on Kv4 channel gating, however, NCS-1 co-expression does not measurably affect the voltage dependence of steady-state inactivation or the rate of recovery from inactivation of Kv4-encoded K(+) currents. Taken together, these results suggest that NCS-1 is an accessory subunit of Kv4-encoded I(to,f) channels that functions to regulate I(to,f) density in the mammalian myocardium.  相似文献   

19.
High frequency firing in mammalian neurons requires ultra-rapid delayed rectifier potassium currents generated by homomeric or heteromeric assemblies of Kv3.1 and Kv3.2 potassium channel alpha subunits. Kv3.1 alpha subunits can also form slower activating channels by coassembling with MinK-related peptide 2 (MiRP2), a single transmembrane domain potassium channel ancillary subunit. Here, using channel subunits cloned from rat and expressed in Chinese hamster ovary cells, we show that modulation by MinK, MiRP1, and MiRP2 is a general mechanism for slowing of Kv3.1 and Kv3.2 channel activation and deactivation and acceleration of inactivation, creating a functionally diverse range of channel complexes. MiRP1 also negatively shifts the voltage dependence of Kv3.1 and Kv3.2 channel activation. Furthermore, MinK, MiRP1, and MiRP2 each form channels with Kv3.1-Kv3.2 heteromers that are kinetically distinct from one another and from MiRP/homomeric Kv3 channels. The findings illustrate a mechanism for dynamic expansion of the functional repertoire of Kv3.1 and Kv3.2 potassium currents and suggest roles for these alpha subunits outside the scope of sustained rapid neuronal firing.  相似文献   

20.
The tight electro-mechanical coupling between the voltage-sensing and pore domains of Kv channels lies at the heart of their fundamental roles in electrical signaling. Structural data have identified two voltage sensor pore inter-domain interaction surfaces, thus providing a framework to explain the molecular basis for the tight coupling of these domains. While the contribution of the intra-subunit lower domain interface to the electro-mechanical coupling that underlies channel opening is relatively well understood, the contribution of the inter-subunit upper interface to channel gating is not yet clear. Relying on energy perturbation and thermodynamic coupling analyses of tandem-dimeric Shaker Kv channels, we show that mutation of upper interface residues from both sides of the voltage sensor-pore domain interface stabilizes the closed channel state. These mutations, however, do not affect slow inactivation gating. We, moreover, find that upper interface residues form a network of state-dependent interactions that stabilize the open channel state. Finally, we note that the observed residue interaction network does not change during slow inactivation gating. The upper voltage sensing-pore interaction surface thus only undergoes conformational rearrangements during channel activation gating. We suggest that inter-subunit interactions across the upper domain interface mediate allosteric communication between channel subunits that contributes to the concerted nature of the late pore opening transition of Kv channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号