首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Studies of rats with experimental streptozotocin (STZ)-induced diabetes at 4 months have identified sciatic nerve trunk oligemia and hypoxia, but it is uncertain how early these abnormalities develop or which develops first. We studied young (4-week-old) rats after 6 or 16 weeks of STZ-induced diabetes (or after citrate buffer injection in controls) by recording multi-fiber conduction in three different nerve territories and by measuring sciatic endoneurial blood flow (NBF) and oxygen tension (PnO2) at end point. To evaluate the impact of sympathectomy on this diabetic model, separate animal groups were treated for 5 weeks with guanethidine monosulfate given at the onset of diabetes (group 1, end point 6 weeks) or after 6 weeks of diabetes (group 2, end point 16 weeks). Diabetes was associated with deficits in sensory and motor caudal conduction and increased resistance to ischemic conduction failure (RICF). NBF was comparable to control animals at both time points and was within the published normal range of NBF. In contrast, oxygen tensions were shifted to lower values in diabetic animals. Sympathectomy was associated with blunting of the RICF increase in group 2 but worsened caudal sensory conduction despite evidence of modest improvement in sciatic nerve oxygenation. Our findings support the concept that neuropathy occurs early in diabetes and that hypoxia develops before oligemia. Sympathectomy did not benefit this diabetic model.  相似文献   

2.
Cotter MA  Cameron NE 《Life sciences》2003,73(14):1813-1824
Upregulation of vascular NAD(P)H oxidase has been considered an important source for elevated levels of reactive oxygen species that contribute to several cardiovascular disease states, including the vascular complications of diabetes mellitus. Previous studies have shown that treatment with antioxidants corrects impaired nerve function and blood flow in diabetic rats. The aim was to assess the degree of involvement of NAD(P)H oxidase in experimental diabetic neuropathy. To this end, after 6 weeks of untreated streptozotocin-diabetes, rats were treated for 2 weeks with the NAD(P)H oxidase, apocynin. Two high doses (15 and 100 mg/kg) were used to ensure that maximal effects were registered. Diabetes caused a 20% reduction in sciatic nerve motor conduction velocity, and a 14% deficit for sensory saphenous nerve. Apocynin treatment corrected these defects by 32% and 48%, respectively: there were no significant differences between the effects of the 2 doses. Sciatic nerve nutritive endoneurial perfusion was measured by hydrogen clearance microelectrode polarography. Blood flow and vascular conductance were 47% and 40% reduced by diabetes, respectively. Both doses of apocynin had similar effects, correcting the blood flow deficit by 31% and conductance by 47%. Thus, the data show that NAD(P)H oxidase contributes to the neurovascular deficits in diabetic rats. While only accounting for part of the elevated reactive oxygen species production in diabetes, this mechanism could provide a novel therapeutic candidate for further investigation in diabetic neuropathy and vasculopathy.  相似文献   

3.
Pioglitazone, one of thiazolidinediones, a peroxisome proliferator-activated receptor (PPAR)-γ ligand, is known to have beneficial effects on macrovascular complications in diabetes, but the effect on diabetic neuropathy is not well addressed. We demonstrated the expression of PPAR-γ in Schwann cells and vascular walls in peripheral nerve and then evaluated the effect of pioglitazone treatment for 12 weeks (10 mg/kg/day, orally) on neuropathy in streptozotocin-diabetic rats. At end, pioglitazone treatment improved nerve conduction delay in diabetic rats without affecting the expression of PPAR-γ. Diabetic rats showed suppressed protein kinase C (PKC) activity of endoneurial membrane fraction with decreased expression of PKC-α. These alterations were normalized in the treated group. Enhanced expression of phosphorylated extracellular signal-regulated kinase detected in diabetic rats was inhibited by the treatment. Increased numbers of macrophages positive for ED-1 and 8-hydroxydeoxyguanosine-positive Schwann cells in diabetic rats were also corrected by the treatment. Pioglitazone lowered blood lipid levels of diabetic rats, but blood glucose and nerve sorbitol levels were not affected by the treatment. In conclusion, our study showed that pioglitazone was beneficial for experimental diabetic neuropathy via correction of impaired PKC pathway and proinflammatory process, independent of polyol pathway.  相似文献   

4.
Pentoxifylline has several actions that improve blood rheology and tissue perfusion and may therefore potentially be applicable to diabetic neuropathy. The aims of this study were to ascertain whether 2 weeks of treatment with pentoxifylline could correct nerve conduction velocity and blood flow deficits in 6-week streptozotocin-diabetic rats and to examine whether the effects were blocked by co-treatment with the cyclooxygenase inhibitor, flurbiprofen, or the nitric oxide synthase inhibitor, NG-nitro-ʟ-arginine. Diabetic deficits in sciatic motor and saphenous sensory nerve conduction velocity were 56.5% and 69.8% corrected, respectively, with pentoxifylline treatment. Sciatic endoneurial blood flow was approximately halved by diabetes and this deficit was 50.4% corrected by pentoxifylline. Flurbiprofen co-treatment markedly attenuated these actions of pentoxifylline on nerve conduction and blood flow whereas NG-nitro-ʟ-arginine was without effect. Thus, pentoxifylline treatment confers neurovascular benefits in experimental diabetic neuropathy, which are linked at least in part to cyclooxygenasemediated metabolism.  相似文献   

5.
It is known that diabetic neuropathy is the result of endoneurial edema caused by various biochemical reactions triggered by hyperglycemia. This sequence of events can cause cessation of circulation at the perineurial level, or the tough layer, which is not resilient enough to spread intraneural pressure. Internal and external limiting structures create a double crush phenomenon to the nerve structure. Decompression of the nerve trunk at separate levels is one of the adjuncts to the overall treatment plan for diabetic neuropathy. In this study, the right sciatic nerves of 30 rats with streptozotocin-induced diabetes were used; three groups were created. In the control group, the sciatic nerves were explored and dissected only. In group II, tarsal tunnel release was performed and accompanied by epineurotomy of the sciatic nerve and its peroneal and tibial extensions. In group III, in addition to the procedures performed in group II, perineural sheaths, exposed through the epineurotomy sites at both the peroneal and tibial nerves, were incised for decompression of the fascicles. Improvement in diabetic neuropathy was evaluated by using footprint parameters. The last print length values, estimated according to the 38-month measurements, were 26.1 +/- 0.12 mm in the control group, 23.2 +/- 0.07 mm in group II, and 22.2 +/- 0.1 mm in group III. The toe spread and intermediate toe spread values of the groups were parallel to improvements in print lengths throughout the study. The best improvement was observed in the perineurotomy group. Finally, an electron microscopic study revealed variable degenerative changes in all groups, but they were milder in groups II and III. This experimental study reveals that adding internal decompression to external release doubled the effect in reducing derangement in the sciatic nerves of the rats and, in the authors' opinion, offers cause for further optimism in the treatment of diabetic neuropathy.  相似文献   

6.
Peripheral neuropathy affects approximately 50% of the 15 million Americans with diabetes. It has been suggested that mechanical effects related to collagen glycation are related to the permanence of neuropathy. In the present paper, we develop a model for load transfer in a whole nerve, using a simple pressure vessel approximation, in order to assess the significant of stiffening of the collagenous nerve sheath on endoneurial fluid pressure. We also develop a fibril-scale mechanics model for the nerve, to model the straightening of wavy fibrils, producing the toe region observed in nerve tissue, and also to interrogate the effects of interfibrillar crosslinks on the overall properties of the tissue. Such collagen crosslinking has been implicated in complications in diabetic tissues. Our fibril-scale model uses a two-parameter Weibull model for fibril strength, in combination with statistical parameters describing fibril modulus, angle, wave-amplitude, and volume fraction to capture both toe region and failure region behavior of whole rat sciatic nerve. The extrema of equal and local load-sharing assumptions are used to map potential differences in diabetic and nondiabetic tissues. This work may ultimately be useful in differentiating between the responses of normal and heavily crosslinked tissue.  相似文献   

7.
Hyperglycaemia-induced oxidative stress makes an important contribution to the aetiology of diabetic neuropathy. Elevated reactive oxygen species (ROS) cause cumulative damage to neurons and Schwan cells, however, they also have a deleterious effect on nerve blood flow causing endoneurial hypoxia, which is responsible for early nerve conduction velocity (NCV) deficits and contributes to an increase in resistance to ischaemic conduction failure (RICF). We tested whether antioxidants - stobadine, vitamin E or the combination of these drugs, could prevent the early signs of neural dysfunction in animal model of diabetes in 8-9 weeks old male Wistar rats, made diabetic by streptozotocin (55 mg/kg i.v.) 4 months prior to testing. Neuropathy was evaluated electrophysiologically by measuring motor NCV and RICF of sciatic nerve in vitro. We observed that treatment with the combination of stobadine and vitamin E significantly (p < 0.001) reduced the NCV slowing in diabetic rats, although it did not fully prevent the NCV impairment. Significant effect (p < 0.05) was observed also in stobadine monotherapy. The RICF elevated in diabetic animals was not affected by any drug applied. This study confirmed that treatment with appropriate antioxidants, especially their combination could partially prevented the decrease in NCV in diabetic rats.  相似文献   

8.
BACKGROUND: Diabetic neuropathy is the most common cause of peripheral neuropathy and a serious complication of diabetes. Vascular endothelial growth factor (VEGF) stimulates angiogenesis and has neurotrophic and neuroprotective activities. To examine the efficiency of VEGF 164 electro-gene therapy for neuropathy, intramuscular VEGF 164 gene transfer by electroporation was performed to treat sensory neuropathy in diabetic mice. METHODS: VEGF 164 was overexpressed in the tibial anterior (TA) muscles of streptozotocin-induced diabetic mice with hypoalgesia, using a VEGF 164 plasmid injection with electroporation. From 2 weeks after electro-gene transfer, the nociceptive threshold was measured weekly using the paw-pressure test. The TA muscles, sciatic nerve, liver and spleen were histochemically examined at 4 weeks after electro-gene transfer. RESULTS: Two weeks after electro-gene transfer into the bilateral TA muscles, the elevated nociceptive threshold was decreased to a normal level in all treated mice. Improvement of the hypoalgesia continued for 14 weeks. When the VEGF 164 plasmid was injected with electroporation into a unilateral TA muscle, recovery from hypoalgesia was observed in not only the ipsilateral hindpaw, but also the contralateral one, suggesting that VEGF circulates in the blood. No increase in the number of endoneurial vessels in the sciatic nerve was found in the VEGF 164 plasmid-electroporated mice. CONCLUSIONS: These findings suggest that VEGF 164 electro-gene therapy completely recovered the sensory deficits, i.e. hypoalgesia, in the diabetic mice through mechanisms other than angiogenesis in the endoneurium of the peripheral nerve, and may be useful for treatment for diabetic sensory neuropathy in human subjects.  相似文献   

9.
Oxidative stress and neurovascular dysfunction have emerged as contributing factors to the development of experimental diabetic neuropathy (EDN) in streptozotocin-diabetic rodents. Additionally, depletion of C-peptide has been implicated in the pathogenesis of EDN, but the mechanisms of these effects have not been fully characterized. The aims of this study were therefore to explore the effects of diabetes on neurovascular dysfunction and indexes of nerve oxidative stress in type 1 bio-breeding Worcester (BB/Wor) rats and type 2 BB Zucker-derived (ZDR)/Wor rats and to determine the effects of C-peptide replacement in the former. Motor and sensory nerve conduction velocities (NCVs), hindlimb thermal thresholds, endoneurial blood flow, and indicators of oxidative stress were evaluated in nondiabetic control rats, BB/Wor rats, BB/Wor rats with rat II C-peptide replacement (75 nmol C-peptide.kg body wt(-1).day(-1)) for 2 mo, and diabetes duration-matched BBZDR/Wor rats. Endoneurial perfusion was decreased and oxidative stress increased in type 1 BB/Wor rats. C-peptide prevented NCV and neurovascular deficits and attenuated thermal hyperalgesia. Inhibition of nitric oxide (NO) synthase, but not cyclooxygenase, reversed the C-peptide-mediated effects on NCV and nerve blood flow. Indexes of oxidative stress were unaffected by C-peptide. In type 2 BBZDR/Wor rats, neurovascular deficits and increased oxidative stress were unaccompanied by sensory NCV slowing or hyperalgesia. Therefore, nerve oxidative stress is increased and endoneurial perfusion decreased in type 1 BB/Wor and type 2 BBZDR/Wor rats. NO and neurovascular mechanisms, but not oxidative stress, appear to contribute to the effects of C-peptide in type 1 EDN. Sensory nerve deficits are not an inevitable consequence of increased oxidative stress and decreased nerve perfusion in a type 2 diabetic rodent model.  相似文献   

10.
Previously we have demonstrated that diabetes causes impairment in vascular function of epineurial vessels, which precedes the slowing of motor nerve conduction velocity. Treatment of diabetic rats with aldose reductase inhibitors, aminoguanidine or myo-inositol supplementation have been shown to improve motor nerve conduction velocity and/or decreased endoneurial blood flow. However, the effect these treatments have on vascular reactivity of epineurial vessels of the sciatic nerve is unknown. In these studies we examined the effect of treating streptozotocininduced rats with sorbinil, aminoguanidine or myo-inositol on motor nerve conduction velocity, endoneurial blood flow and endothelium dependent vascular relaxation of arterioles that provide circulation to the region of the sciatic nerve. Treating diabetic rats with sorbinil, aminoguanidine or myo-inositol improved the reduction of endoneurial blood flow and motor nerve conduction velocity. However, only sorbinil treatment significantly improved the diabetes-induced impairment of acetylcholinemediated vasodilation of epineurial vessels of the sciatic nerve. All three treatments were efficacious in preventing the appropriate metabolic derangements associated with either activation of the polyol pathway or increased nonenzymatic glycation. In addition, sorbinil was shown to prevent the diabetes-induced decrease in lens glutathione level. However, other markers of oxidative stress were not vividly improved by these treatments. These studies suggest that sorbinil treatment may be more effective in preventing neural dysfunction in diabetes than either aminoguanidine or myoinositol.  相似文献   

11.
Summary The endoneurial collagen sheath around teased nerve fibres following crush injury was studied by scanning electron microscopy and compared with uninjured sciatic nerve fibres and with fibres from the dystonic mutant mouse. Following crush injury the endoneurial collagen became more abundant than seen in untreated nerve fibres and formed large, separate and longitudinally oriented bundles. However, by four weeks post injury the sheath regained a normal external appearance. Mutant nerve fibres were also associated with more than the usual amount of collagen, but the sheaths were more disorganised, with a marked disorientation and irregular aggregation of collagen, and these abnormalities were not confined to obviously degenerating or demyelinated regions of the fibres. The dystonic abnormalities of the endoneurial sheath may be important in the mechanism of the neuropathy.Medical Research Council, Radiobiology Unit, Harwell, Didcot, Oxon, OX11 ORD  相似文献   

12.
Evidence for important roles of the highly reactive oxidant peroxynitrite in diabetic complications is emerging. We evaluated the role of peroxynitrite in early peripheral neuropathy and vascular dysfunction in STZ-diabetic rats. In the first dose-finding study, control and STZ-diabetic rats were maintained with or without the potent peroxynitrite decomposition catalyst Fe(III)tetrakis-2-(N-triethylene glycol monomethyl ether) pyridyl porphyrin (FP15) at 3, 5, or 10 mg.kg(-1).day(-1) in the drinking water for 4 wk after an initial 2 wk without treatment for assessment of early neuropathy. In the second study with similar experimental design, control and STZ-diabetic rats were maintained with or without FP15, 5 mg.kg(-1).day(-1), for vascular studies. Rats with 6-wk duration of diabetes developed motor and sensory nerve conduction velocity deficits, mechanical hyperalgesia, and tactile allodynia in the absence of small sensory nerve fiber degeneration. They also had increased nitrotyrosine and poly(ADP-ribose) immunofluorescence in the sciatic nerve and dorsal root ganglia. All these variables were dose-dependently corrected by FP15, with minimal differences between the 5 and 10 mg.kg(-1).day(-1) doses. FP15, 5 mg.kg(-1).day(-1), also corrected endoneurial nutritive blood flow and nitrotyrosine, but not superoxide, fluorescence in aorta and epineurial arterioles. Diabetes-induced decreases in acetylcholine-mediated relaxation by epineurial arterioles and coronary and mesenteric arteries, as well as bradykinin-induced relaxation by coronary and mesenteric arteries, were alleviated by FP15 treatment. The findings reveal the important role of nitrosative stress in early neuropathy and vasculopathy and provide the rationale for further studies of peroxynitrite decomposition catalysts in long-term diabetic models.  相似文献   

13.
Diabetic neuropathy traditionally is considered progressive and irreversible and will result in lower extremity ulceration and amputation in a segment of the diabetic population, despite the best efforts to control serum glucose levels. Restoration of sensation to the diabetic may prevent these complications of neuropathy. The present study was designed to evaluate whether decompression of a peripheral nerve at a known site of anatomic narrowing can restore sensibility to that nerve in the diabetic. Twenty diabetic patients ( 14 type I, 6 type II, with a mean duration of diabetes of 14.8 years) had surgical decompression of a median nerve at the wrist and an ulnar nerve at the elbow, or a decompression of the posterior tibial nerve at the ankle (total of 31 nerves). A therapist, in a manner blind to the operative site, evaluated two-point discrimination in the pulp of the appropriate digit. The postoperative sensibility was compared with that of the nontreated, contralateral extremity. At a mean of 23.3 months, 69 percent of the lower-extremity nerves and 88 percent of the upper-extremity nerves (79 percent overall) had improvement in sensibility. In comparison, 32 percent of the control (not decompressed) contralateral nerves had measurable progression of neuropathy. The hypothesis that decompression of a peripheral nerve in the diabetic will improve sensibility was confirmed at the p < 0.001 level.  相似文献   

14.
A number of theories of pathogenesis of entrapment neuropathy, due to repeated loading, have been proposed and these theories are being actively explored with animal models. Tubes placed loosely around peripheral nerves cause delayed onset, chronic pain and changes in nerve morphology including nerve sprouting. Balloons placed around or adjacent to the nerve and inflated to low pressures, rapidly produce endoneurial edema and a persistent increase in intraneural pressure. The same models demonstrate long-term changes such as demyelination and fibrosis. The applied pressure causes a decrement in nerve function and abnormal morphology in a dose-dependent manner that appears to be linked to the amount of endoneurial edema. A new model involving involuntary, repetitive fingertip loading for 6 h per week for 4 weeks has caused slowing of nerve function at the wrist similar to that seen in patients with carpal tunnel syndrome. These models have the potential to reveal the mechanisms of injury at the cellular and biochemical level and address questions about the relative importance of various biomechanical factors (e.g. peak force, mean force, force rate, duty cycle, etc.). In addition, these models will allow us to evaluate various prevention, treatment and rehabilitation protocols.  相似文献   

15.
The role for nerve blood flow (NBF) vs. other factors in motor nerve conduction (MNC) slowing in short-term diabetes was assessed by evaluating alpha(1)-adrenoceptor antagonist prazosin on NBF, MNC, as well as metabolic imbalances and oxidative stress in the neural tissue. Control and diabetic rats were treated with or without prazosin (5 mg.kg(-1).d(-1) for 3 wk). NBF was measured by hydrogen clearance. Both endoneurial vascular conductance and MNC velocity were decreased in diabetic rats vs. controls, and this decrease was prevented by prazosin. Free NAD(+):NADH ratios in mitochondrial cristae, matrix, and cytosol assessed by metabolite indicator method, as well as phosphocreatine levels and phosphocreatine/creatine ratios, were decreased in diabetic rats, and this reduction was ameliorated by prazosin. Neither diabetes-induced accumulation of two major glycation agents, glucose and fructose, as well as sorbitol and total malondialdehyde plus 4-hydroxyalkenals nor depletion of myo-inositol, GSH, and taurine or decrease in (Na/K)-ATP-ase activity were affected by prazosin. In conclusion, decreased NBF, but not metabolic imbalances or oxidative stress in the neural tissue, is a key mechanism of MNC slowing in short-term diabetes. Further experiments are needed to estimate whether preservation of NBF is sufficient for prevention of nerve dysfunction and morphological abnormalities in long-standing diabetes or whether the aforementioned metabolic imbalances closely associated with impaired neurotropism are of greater importance in advanced than in early diabetic neuropathy.  相似文献   

16.
Sharma SS  Kumar A  Kaundal RK 《Life sciences》2008,82(11-12):570-576
Peripheral diabetic neuropathy is a heterogeneous group of disorders, and is known to affect 50-60% of diabetic patients. Poly (ADP-ribose) polymerase (PARP) activation has been identified as one of the key components in the pathogenesis of diabetic neuropathy. In the present study we have targeted PARP overactivation in diabetic neuropathy using a known PARP inhibitor, 4 amino 1, 8-napthalimide (4-ANI). Streptozotocin induced diabetic rats developed neuropathy within 6 weeks, which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) along with neuropathic pain and abnormal sensory perception. Six weeks after diabetes induction Sprague Dawley rats were treated with 4-ANI (3 and 10 mg/kg, p.o.) for a period of two weeks (seventh and eighth weeks). Two week treatment with 4-ANI showed improvement in nerve conduction, nerve blood flow and reduction in tail flick responses and mechanical allodynia in diabetic animals. 4-ANI also attenuated PAR immunoreactivity and NAD depletion in nerves of diabetic animals. Results of present study suggest the potential of PARP inhibitors like 4-ANI in the treatment of diabetic neuropathy.  相似文献   

17.
The dorsal root ganglion (DRG) is a highly vulnerable site in diabetic neuropathy. Under diabetic conditions, the DRG is subjected to tissue ischemia or lower ambient oxygen tension that leads to aberrant metabolic functions. Metabolic dysfunctions have been documented to play a crucial role in the pathogenesis of diverse pain hypersensitivities. However, the contribution of diabetes-induced metabolic dysfunctions in the DRG to the pathogenesis of painful diabetic neuropathy remains ill-explored. In this study, we report that pyruvate dehydrogenase kinases (PDK2 and PDK4), key regulatory enzymes in glucose metabolism, mediate glycolytic metabolic shift in the DRG leading to painful diabetic neuropathy. Streptozotocin-induced diabetes substantially enhanced the expression and activity of the PDKs in the DRG, and the genetic ablation of Pdk2 and Pdk4 attenuated the hyperglycemia-induced pain hypersensitivity. Mechanistically, Pdk2/4 deficiency inhibited the diabetes-induced lactate surge, expression of pain-related ion channels, activation of satellite glial cells, and infiltration of macrophages in the DRG, in addition to reducing central sensitization and neuroinflammation hallmarks in the spinal cord, which probably accounts for the attenuated pain hypersensitivity. Pdk2/4-deficient mice were partly resistant to the diabetes-induced loss of peripheral nerve structure and function. Furthermore, in the experiments using DRG neuron cultures, lactic acid treatment enhanced the expression of the ion channels and compromised cell viability. Finally, the pharmacological inhibition of DRG PDKs or lactic acid production substantially attenuated diabetes-induced pain hypersensitivity. Taken together, PDK2/4 induction and the subsequent lactate surge induce the metabolic shift in the diabetic DRG, thereby contributing to the pathogenesis of painful diabetic neuropathy.  相似文献   

18.
Myocardial mean myoglobin oxygen saturation was determined spectroscopically from isolated guinea pig hearts perfused with red blood cells during increasing hypoxia. These experiments were undertaken to compare intracellular myoglobin oxygen saturation in isolated hearts perfused with a modest concentration of red blood cells (5% hematocrit) with intracellular myoglobin saturation previously reported from traditional buffer-perfused hearts. Studies were performed at 37 degrees C with hearts paced at 240 beats/min and a constant perfusion pressure of 80 cmH2O. It was found that during perfusion with a hematocrit of 5%, baseline mean myoglobin saturation was 93% compared with 72% during buffer perfusion. Mean myoglobin saturation, ventricular function, and oxygen consumption remained fairly constant for arterial perfusate oxygen tensions above 100 mmHg and then decreased precipitously below 100 mmHg. In contrast, mean myoglobin saturation, ventricular function, and oxygen consumption began to decrease even at high oxygen tension with buffer perfusion. The present results demonstrate that perfusion with 5% red blood cells in the perfusate increases the baseline mean myoglobin saturation and better preserves cardiac function at low oxygen tension relative to buffer perfusion. These results suggest that caution should be used in extrapolating intracellular oxygen dynamics from buffer-perfused to blood-perfused hearts.  相似文献   

19.
Kumar A  Kaundal RK  Iyer S  Sharma SS 《Life sciences》2007,80(13):1236-1244
Oxidative stress has been implicated in pathophysiology of diabetic neuropathy. All the pathways responsible for development of diabetic neuropathy are linked to oxidative stress in one way or the other. In the present study, we have targeted oxidative stress in diabetic neuropathy using resveratrol, a potent antioxidant. Eight weeks streptozotocin-diabetic rats developed neuropathy which was evident from significant reduction in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and increased thermal hyperalgesia. The 2-week treatment with resveratrol (10 and 20 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, and hyperalgesia. Resveratrol also attenuated enhanced levels of malondialdehyde (MDA), peroxynitrite and produced increase in catalase levels in diabetic rats. There was marked reduction in DNA fragmentation observed after resveratrol treatment in diabetic rats as evident from decrease in Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells in sciatic nerve sections. Results of the present study suggest the potential of resveratrol in treatment of diabetic neuropathy and its protective effect may be mediated through reduction in oxidative stress and DNA fragmentation.  相似文献   

20.
Oxidative stress has been implicated to play an important role in the pathogenesis of diabetic neuropathy, which is the most common complication of diabetes mellitus affecting more than 50% of diabetic patients. In the present study, we have investigated the effect of U83836E [(-)-2-((4-(2,6-Di-1-pyrrolidinyl-4-pyrimidinyl)-1-piperazinyl)methyl)-3,4-dihydro-2,3,7,8-tetramethyl-2H-1-benzopyran-6-ol, 2HCl], a potent free radical scavenger in streptozotocin (STZ)-induced diabetic neuropathy in rats. STZ-induced diabetic rats showed significant deficit in motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and thermal hyperalgesia after 8 weeks of diabetes induction, indicating development of diabetic neuropathy. Antioxidant enzyme (superoxide dismutase and catalase) levels were reduced and malondialdehyde (MDA) levels were significantly increased in diabetic rats as compared to the age-matched control rats, this indicates the involvement of oxidative stress in diabetic neuropathy. The 2-week treatment with U83836E (3 and 9 mg/kg, i.p.) started 6 weeks after diabetes induction significantly ameliorated the alterations in MNCV, NBF, hyperalgesia, MDA levels and antioxidant enzymes in diabetic rats. Results of the present study suggest the potential of U83836E in treatment of diabetic neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号