首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary We have studied genetic linkage between the gene for creatine kinase muscle type (CKMM) and the gene for myotonic dystrophy (DM). In a panel of 65 myotonic dystrophy families from Canada and the Netherlands, a maximum lod score (Zmax) of 22.8 at a recombination frequency (Θ) of 0.03 was obtained. Tight linkage was also demonstrated for CKMM and the gene for apolipoprotein C2 (ApoC2). This establishes CKMM as a useful marker for myotonic dystrophy.  相似文献   

2.
Employing 16 polymorphic DNA markers as well as the chromosome 19 centromere heteromorphism, we have performed a genetic linkage study in 26 families with myotonic dystrophy. Fourteen of these markers had been assigned previously to one of five different intervals of the 19cen-19q13.2 segment by using somatic cell hybrids. For the long arm of chromosome 19, a genetic map that encompasses 9 polymorphic markers and the DM gene has been constructed. Our studies indicate that the DM and CKMM genes map distal to the ApoC2-ApoE gene cluster and to the anonymous polymorphic markers D19S15 and D19S16, but proximal to the D19S22 marker. The orientation of DM and CKMM remains to be determined.  相似文献   

3.
Triplet repeat expansion in 3 untranslated region of myotonic dystrophy protein kinase (DMPK) gene has been implicated as causative in myotonic dystrophy (DM). In cases of DM, high levels of somatic instability have been reported, in which inter-tissue repeat length differences as large as 3000 repeats have been observed. This study highlights the inter-tissue (CTG)n expansion variability at the DMPK locus. Molecular analysis of DMPK gene, encompassing the triplet repeat expansion, was carried out in 31 individuals (11 clinically identified DM patients, 20 controls). All controls showed a 2.1kb band (upto 35 CTG repeats), while four cases exhibited an expansion (>50 repeats). A novel observation was made in one case, wherein the DNA from lymphocytes showed a normal 2.1kb band while the muscle tissue DNA from the same patient was heterozygous for normal and 4.3 kb band (>700 repeats). Our results suggested that because inter-tissue variability existed in the (CTG)n repeat number at DMPK locus, an attempt should be made to evaluate affected tissue along with blood wherever possible prior to making a final diagnosis. This is important not only for diagnosis and prenatal analysis, but also while providing genetic counseling to families.  相似文献   

4.
By comments of 9 tables the main clinical and genetic features of myotonic dystrophy are recalled. Due to a most variable penetrance and expressivity, the recognition of the adult form of this autosomal dominant disease can be difficult. Congenital myotonic dystrophy is a serious disease which represents a major genetic risk for the heterozygous women, which are often very slightly affected or even not aware of their disorder. For them, prenatal diagnosis is fully justified and now possible with a small risk of error by determination of DNA polymorphism. Preclinical detection in young adults can also be improved by this new method.  相似文献   

5.
Summary The human apolipoprotein CII gene probe detects a restriction fragment length polymorphism located on chromosome 19. We have investigated the linkage of this polymorphism to the myotonic dystrophy locus in families. The two lici are closely linked with a maximum Lod score of 7.877 at 4% recombination. The close linkage and informativeness of the APOC2 polymorphism suggest that this probe may be of use for presymptomatic diagnosis of the myotonic dystrophy gene. The APOC2 gene was localised to the region 19p13–19q13 using somatic cell hybrids, providing further evidence that the myotonic dystrophy locus is situated in the central region of chromosome 19.  相似文献   

6.
Summary We describe two brothers with identical inherited deletions of one single exon within the middle of the DMD gene; one brother has Becker muscular dystrophy diagnosed at 11 years of age, whereas the older brother is normal at 18. These results have implications for genetic counselling and prenatal diagnosis in families with Becker muscular dystrophy.  相似文献   

7.
The development of a molecular genetics diagnostic service over a three year period was studied in a National Health Service region with a population of three million. Starting from a time when few diagnostic applications were possible, the number of disorders and the overall demand had grown rapidly. Conditions for which molecular genetic diagnosis had been provided included Duchenne and Becker muscular dystrophy, myotonic dystrophy, Huntington''s disease, and cystic fibrosis. Of 405 requests for diagnosis, 151 (37%) related to determination of carrier state, 187 (46%) to determining the feasibility of future prenatal diagnosis, and 67 (17%) were prenatal diagnostic biopsy samples, almost exclusively of first trimester chorion. DNA samples for future diagnostic use with a wide range of genetic disorders had also been banked. The study showed a need for close integration with clinical genetics services to allow satisfactory genetic counselling and interpretation of risks.  相似文献   

8.
Myotonic dystrophy (DM)--the most common form of muscular dystrophy in adults, affecting 1/8000 individuals--is a dominantly inherited disorder with a peculiar and rare pattern of multisystemic clinical features affecting skeletal muscle, the heart, the eye, and the endocrine system. Two genetic loci have been associated with the DM phenotype: DM1, on chromosome 19, and DM2, on chromosome 3. In 1992, the mutation responsible for DM1 was identified as a CTG expansion located in the 3' untranslated region of the dystrophia myotonica-protein kinase gene (DMPK). How this untranslated CTG expansion causes myotonic dystrophy type 1(DM1) has been controversial. The recent discovery that myotonic dystrophy type 2 (DM2) is caused by an untranslated CCTG expansion, along with other discoveries on DM1 pathogenesis, indicate that the clinical features common to both diseases are caused by a gain-of-function RNA mechanism in which the CUG and CCUG repeats alter cellular function, including alternative splicing of various genes. We discuss the pathogenic mechanisms that have been proposed for the myotonic dystrophies, the clinical and molecular features of DM1 and DM2, and the characterization of murine and cell-culture models that have been generated to better understand these diseases.  相似文献   

9.
Myotonic dystrophy is a progressive multisystem genetic disorder affecting about 1 in 8000 people worldwide. The unstable repeat expansions of (CTG)n or (CCTG)n in the DMPK and ZNF9 genes cause the two known subtypes of myotonic dystrophy: (i) myotonic dystrophy type 1 (DM1) and (ii) myotonic dystrophy type 2 (DM2) respectively. There is currently no cure but supportive management helps equally to reduce the morbidity and mortality and patients need close follow up to pay attention to their clinical problems. This review will focus on the clinical features, molecular view and genetics, diagnosis and management of DM1.  相似文献   

10.
11.
Histidine-rich calcium binding protein (HRC) is a luminal sarcoplasmic reticulum (SR) protein of 165 kDa identified by virtue of its ability to bind 125I-labeled low-density lipoprotein with high affinity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (Hofmann et al., J. Biol. Chem. 264: 8260-8270, 1989). Its role in SR function is unknown. In this report, the gene encoding human HRC was localized to human chromosome 19 and mouse chromosome 7 by hybridization of a human HRC cDNA fragment to a panel of somatic cell hybrids. Known synteny between a portion of human chromosome 19 and a portion of mouse chromosome 7 and in situ hybridization of a biotin-labeled HRC probe to human chromosomes suggest a localization to a region corresponding to 19q13.3. The locus for myotonic dystrophy resides in the region 19q13.2-13.3. Therefore, we considered HRC, a muscle-specific gene, to possibly represent a "candidate gene" for myotonic muscular dystrophy. As a first step toward localizing HRC in relation to the myotonic dystrophy locus, we report the cloning of the human HRC gene, its intron-exon organization, and characterization of several informative polymorphisms to be used in future linkage studies in families with myotonic dystrophy. Of particular interest is an Alu-associated poly-d(GA) sequence located in an intron in the middle of the gene, and two stretches of acidic amino acids in the coding region of exon 1 that vary in length among different individuals.  相似文献   

12.
The CTG repeat of the myotonic dystrophy (MD) gene was analyzed in 62 MD patients and 54 healthy members of their families. A CTG repeat expansion was revealed in 57 (92%) patients and in 12 relatives who did not express clinical signs of MD. Family analysis showed that the CTG repeat number increased, which was associated with anticipation, decreased, or remained the same (17.6%) in alleles transmitted from parents to their children. The spontaneous mutation rate of the CTG repeat was estimated at 4 x 10(-2). Instability was characteristic of alleles with more than 19 repeated units.  相似文献   

13.
Summary In seven large families with myotonic dystrophy (DM) comprising 102 individuals, linkage studies were perfermed employing restriction fragment length polymorphisms in the complement component 3 gene and the 19cen C banding heteromorphism as genetic markers. Three-point linkage analysis excludes DM from the 19cen-C3 segment and strongly supports its assignment to the proximal long arm of chromosome 19.  相似文献   

14.
Using a cDNA probe for the gamma gene of protein kinase C (PKCG), an informative RFLP with a PIC value of 0.62 has been identified with the enzyme MspI. The polymorphic bands have been assigned to chromosome 19. Analysis of the segregation of alleles for this probe in myotonic dystrophy families show several recombinants between PKCG and myotonic dystrophy (DM) and exclude this gene as a candidate for DM. Linkage relationships between PKCG and other loci on chromosome 19 are presented which exclude PKCG from the proximal region of chromosome 19 and which are consistent with the localization being at 19q13.2----qter.  相似文献   

15.
Anticipation in myotonic dystrophy: new light on an old problem.   总被引:29,自引:10,他引:19       下载免费PDF全文
The concept of anticipation, the occurrence of a genetic disorder at progressively earlier ages in successive generations, has been debated from the early years of this century, with myotonic dystrophy as the most striking example. Throughout most of this period there has been controversy as to whether the phenomenon resulted from observational and ascertainment biases or reflected a more fundamental mechanism. The recent discovery of inherited unstable DNA sequences, first in fragile-X mental retardation and now in myotonic dystrophy, not only confirms that anticipation indeed has a true biological basis but provides a specific molecular mechanism for it; this discovery can explain many of the puzzling anomalies in the inheritance of myotonic dystrophy and may prove relevant to comparable problems in other genetic disorders.  相似文献   

16.
17.
Summary We have studied the genetic linkage relationships of seven DNA polymorphisms on chromosome 19, with each other and with the myotonic dystrophy locus. The DNA sequences were localised to various regions of the chromosome using translocations in somatic cell hybrids. These results provide the basis for a linkage map of most of chromosome 19, and suggest that the myotonic dystrophy locus is close to the centromere.  相似文献   

18.
Familial amyloidotic polyneuropathy (FAP) is a lethal autosomal dominant type of amyloidosis resulting from the deposition of transthyretin (ATTR) variants in the peripheral and autonomic nervous systems. ATTR V30M-associated FAP exhibits marked genetic anticipation in some families, with clinical symptoms developing at an earlier age in successive generations. The genetic basis of this phenomenon in FAP is unknown. Anticipation has been associated with the dynamic expansion of trinucleotide repeats in several neurodegenerative disorders, such as Huntington disease, myotonic dystrophy, and fragile X syndrome. We have used the repeat expansion detection (RED) assay to screen affected members of Portuguese FAP kindreds for expansion of any of the ten possible trinucleotide repeats. Nine generational pairs with differences in their age of onset greater than 12 years and a control pair with identical ages of onset were tested. No major differences were found in the lengths of the ten trinucleotide repeats analyzed. The distribution of the maximal repeat sizes was consistent with reported studies in unrelated individuals with no known genetic disease. The present data do not support a role for trinucleotide repeat expansions as the molecular mechanism underlying anticipation in Portuguese FAP. Received: 13 December 1998 / Accepted: 23 March 1999  相似文献   

19.
Two prenatal diagnoses were carried out by the technique of intragenic polymorphous marker detecting heterozygosity in pregnant women in the families with cases of Duchenne muscular dystrophy. In both cases the DNA fragment from pERT87-15 region was amplified. This fragment includes a polymorphous site in BamHI region of recognition. DNA analyses of the families members have been made and the genetical risk has been calculated by the Bayes method. The prognoses for both fetuses are good.  相似文献   

20.
The subcellular localization of myotonic dystrophy protein kinase has been examined in human cardiac muscles with confocal laser-scanning microscopy and electron microscopy. A polyclonal antibody was produced against the synthesized peptide from a human kinase cDNA clone. We checked the antibody specificity for cardiac myotonic dystrophy protein kinase using an immunoblotting technique. Immunoblotting of extract from human cardiac muscles showed mainly 70 kDa and 55 kDa molecular weight bands. Confocal images of the protein kinase immunostaining showed striated banding patterns similar to those of skeletal muscles. In addition, the kinase was strongly detected around the intercalated disc. Immunoelectron microscopy showed that the kinase was mainly expressed in both corbular and junctional sarcoplasmic reticulum, but not in network sarcoplasmic reticulum. These results suggest that myotonic dystrophy protein kinase may be involved in the modulation of Ca2+ homeostasis in cardiac myofibres. © 1998 Chapman & Hall  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号