首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glutathione monoethyl ester (L-gamma-glutamyl-L-cysteinylglycyl ethyl ester), in contrast to glutathione itself, is effectively transported into many types of cells. The ester is converted intracellularly into glutathione. Intraperitoneal injection of 35S-labeled ester into mice was followed by rapid appearance of isotope in the glutathione of liver, kidney, spleen, pancreas, and heart; the glutathione levels of these tissues also increased. Oral administration of the ester to mice also increased cellular glutathione levels. Relatively little extracellular deesterification was found. Transport of glutathione ester into human erythrocytes and intracellular conversion to glutathione was observed. The findings suggest that the glutathione ester will be useful as a radioprotecting agent and in the prevention and treatment of toxicity due to certain foreign compounds and oxygen. The ester may be useful in experimental work on glutathione transport, metabolism, and function, and in related studies on oxygen toxicity, radiation, mutagenesis, and ageing. Methods for the preparation of glutathione monoethyl ester and several related compounds are given.  相似文献   

2.
Isolated perfused choroid plexus preparations from sheep were used to study the effects of low concentrations of magnesium in the perfusion fluid on the transfer of magnesium into choroid plexus fluid (CPF). A perfusion fluid of similar electrolyte composition to sheep blood resulted in CPF similar to ventricular cerebrospinal fluid at a rate of 2.2 microliter min-1 mg-1 dry choroidal tissue. Decreasing the concentration of magnesium in the perfusion fluid caused a fall in the concentration of magnesium in the CPF, although it remained higher than in the perfusion fluid. The rate of transfer of magnesium from the perfusion fluid to the CPF decreased in the presence of high levels of potassium in the perfusion fluid. But decreasing the concentration of calcium in the perfusion fluid had no effect on magnesium transfer rates. These results suggest that the ability of the choroid plexus to transport magnesium against a concentration gradient is an important control of the concentration of the cerebrospinal fluid. However, this ability is insufficient to maintain cerebrospinal fluid concentrations of magnesium at normal levels when the blood magnesium concentration is below about 0.5 mmol l-1.  相似文献   

3.
Choroid plexus protects cerebrospinal fluid against toxic metals.   总被引:9,自引:0,他引:9  
Although heavy metal ions are known to be toxic to the central nervous system (CNS), the mechanisms by which the CNS may protect itself from initial challenges of such toxic ions is unknown. The choroid plexus is the principal site of formation of the cerebrospinal fluid (CSF) which bathes the brain. We have determined in rats and rabbits that after intraperitoneal administration of lead, cadmium, mercury, and arsenic compounds, these toxic metal ions accumulated in the lateral choroid plexus at concentrations of Pb, Hg, and As that were 70-, 95-, and 40-fold higher, respectively, than those found in the CSF. Cd was not detected in the CSF. In addition, concentrations of these heavy metal ions were found to be many fold greater in the choroid plexus than in the brain or blood. The accumulation of Pb in the choroid plexus was dose-dependent and time-related. When the choroid plexus was preincubated, in vitro, with ouabain (1.5 mM), the uptake of Cd from the CSF side of the choroid plexus was inhibited 57%. Cadmium metallothionein was not found in the choroid plexus. Whereas the concentration of reduced glutathione in the choroid plexus was less than that in the brain cortex, the concentration of cystine was fourfold greater. The lateral choroid plexus sequesters Pb, Cd, As, and Hg. It appears to be one of the important mechanisms that protects the CSF and the brain from the fluxes of toxic heavy metals in the blood.  相似文献   

4.
During neurosurgery the freshly secreted extracellular fluid (ECF) from the choroid plexus was sampled with small pieces of application paper in three patients with intractable epilepsy. The samples were analyzed for free amino acids and for soluble proteins. The results were compared with corresponding data on extracellular fluid from the brain surface obtained with dialysis-perfusion as well as with the cerebrospinal fluid (CSF) acquired by lumbar punction. The dialysis data were calibrated against the paper results. The choroid plexus secretion had a high concentration of transthyretin as well as of an unidentified protein with an isoelectric point of 7.4. The cortical ECF exhibited high concentrations of tau-globulin and gamma-trace protein. Among the amino acids, glutamine had lower concentration in the choroid plexus secretion and higher concentrations in the ECF of the brain compared to the CSF. The amino acid derivative ethanolamine exhibited a similar pattern. This was interpreted to demonstrate that these compounds enter the CSF from the brain tissue. In contrast, alanine, serine, and taurine had a lower concentration in the CSF than in the plexus secretion which suggests that they are removed from the CSF by brain tissue.  相似文献   

5.
Accumulation of Tyr-d-Ala-Gly (TAG) in choroid plexus was studied with ventriculocisternal perfusion of anesthetized rats. The choroid plexus of the lateral ventricles and the fourth ventricle accumulated TAG against a concentration gradient with regards to cerebrospinal fluid (CSF) but not plasma. This accumulation was inhibited by some metabolic inhibitors and peptides which had the same effect on accumulation of TAG in isolated choroid plexus. These results indicate that the active transport of TAG is present in the epithelium facing CSF. This active accumulation was affected by morphine. Reserpine, which is a chemical denervation of sympathetic nerves has no effect on the active accumulation of TAG. Thus, all these results suggest that, in vivo accumulation of TAG in choroid plexus during ventriculocisternal perfusion is similar to in vitro accumulation of TAG in isolated plexus.  相似文献   

6.
Glutathione monoethyl ester (L-gamma-glutamyl-L-cysteinylglycine ethyl ester) was shown by R. N. Puri and A. Meister (1983, Proc. Natl. Acad. Sci. USA 80, 5258-5260) to be taken up by several tissues and intracellularly hydrolyzed to GSH. Since GSH itself is not significantly taken up by tissues, glutathione monoesters provide the most direct and convenient means available for increasing the intracellular GSH concentration of many tissues and cell types. In previous studies glutathione esters were prepared by HCl- or H2SO4-catalyzed esterification, and the product esters were precipitated as acidic salts by addition of ether to the reaction mixtures. In the present studies, glutathione monoethyl ester was synthesized by H2SO4-catalyzed esterification in the presence of sodium sulfate as the dehydrating agent. When no GSH remained, alcohol-washed Dowex-1 resin (hydroxide form) was added to remove sulfate and neutralize the reaction mixture. After the resin was removed by filtration, glutathione monoethyl ester crystallized in the chilled filtrate. The product was free of sulfate, GSH, and glutathione diester; its solutions in water or saline were neutral. Preparations obtained to date are nontoxic when administered to mice in doses up to at least 10 mmol/kg. Progress of the esterification reaction and purity of the product were determined quantitatively by HPLC after derivatization of the thiols with monobromobimane. Elution times of GSH, glutathione diester, and glutathione monoesters involving either the glutamyl or the glycyl carboxylate groups are reported.  相似文献   

7.
The biological effects of the insulin-like growth factors, IGF-I and IGF-II, on their receptors are modulated by IGF-binding proteins. Recently, we isolated a cDNA clone for one member of the family of IGF-binding proteins, BP-3A, a 30 kilodalton (kDa) protein synthesized by the BRL-3A rat liver cell line. BP-3A is related to but distinct from two other cloned IGF-binding proteins, the human amniotic fluid binding protein and the glycosylated binding subunit of the 150 kDa IGF-binding protein complex in serum. It is expressed in multiple nonneural tissues and in serum in the fetal rat and decreases after birth, similar to the developmental pattern of IGF-II expression. IGF-I, IGF-II, and their receptors are expressed in brain. The present study examines the expression of BP-3A in the rat central nervous system. By Northern blot analysis, BP-3A mRNA is present at high levels in brain stem, cerebral cortex, and hypothalamus from 21-day gestation rats and, like IGF-II mRNA, persists in adult rat brain. The site of BP-3A mRNA synthesis was localized by in situ hybridization to coronal sections of adult rat brain using 35S-labeled oligonucleotides, 48 bases in length, complementary and anticomplementary to the coding region of BP-3A. Specific hybridization of the BP-3A probe was observed exclusively to the choroid plexus extending from the level of the medial preoptic nucleus to the arcuate nucleus of the hypothalamus, similar to the previously reported preferential localization of IGF-II mRNA to the choroid plexus. Synthesis of BP-3A mRNA by choroid plexus suggested that BP-3A might be secreted into the cerebrospinal fluid. A 30 kDa IGF-binding protein was demonstrated in rat cerebrospinal fluid that is recognized by antibodies to BP-3A and, like purified BP-3A, has equal affinity for IGF-I and IGF-II. By analogy with other transport proteins synthesized by the choroid plexus, BP-3A may facilitate the secretion of IGF-II to the cerebrospinal fluid and modulate its biological actions at distant sites within the brain.  相似文献   

8.
1. The exact role of the parathyroid hormone-related peptide (PTHrP) is not fully understood. We used immunohistochemistry to localize the PTHrP and its receptor in the brain of the red stingray, particularly in the saccus vasculosus (SV) and choroid plexus.2. Immunoreactive PTHrP and its receptor were detected in the epithelial cells of the SV and the choroid plexus. In addition, the neuronal perikarya in the nucleus of the SV located in the hypothalamus is positive for the PTHrP.3. No PTHrP-containing neurons were detected in the choroid plexus. Extracts of SV and choroid plexus showed positive reactions against the PTHrP and its receptor antibody in Western blot analysis.4. High levels of immunoreactive PTHrP were detected in the plasma equivalent to those present in human humoral malignant hypercalcemia. In contrast, the immunoreactive PTHrP concentration in the cerebrospinal fluid was below detectable levels.5. Our results suggest that the regulation of the PTHrP in the SV differs from that in the choroid plexus in the red stingray.  相似文献   

9.
Abdominal deposits of a choroid plexus carcinoma in a patient with a ventriculoperitoneal shunt were cytologically diagnosed by examination of ascitic fluid after regression of the primary tumor. The morphology of the malignant cells in ascitic fluid was more similar to that of mesothelial cells than to the appearance of cells from this lesion in cerebrospinal fluid.  相似文献   

10.
11.
12.
The choroid plexus in the brain is unique because it is a non-neural secretory tissue. It secretes the cerebrospinal fluid and functions as a blood-brain barrier, but the precise mechanism of specification of this non-neural tissue has not yet been determined. Using mouse embryos and lineage-tracing analysis, we found that the prospective choroid plexus region initially gives rise to Cajal-Retzius cells, specialized neurons that guide neuronal migration. Inactivation of the bHLH repressor genes Hes1, Hes3 and Hes5 upregulated expression of the proneural gene neurogenin 2 (Ngn2) and prematurely depleted Bmp-expressing progenitor cells, leading to enhanced formation of Cajal-Retzius cells and complete loss of choroid plexus epithelial cells. Overexpression of Ngn2 had similar effects. These data indicate that Hes genes promote specification of the fate of choroid plexus epithelial cells rather than the fate of Cajal-Retzius cells by antagonizing Ngn2 in the dorsal telencephalic midline region, and thus this study has identified a novel role for bHLH genes in the process of deciding which cells will have a non-neural versus a neural fate.  相似文献   

13.
Glutathione (GSH) is important in detoxification and regulating cyclooxygenase activity. Since the liver has high levels of GSH, xenobiotic-induced changes in hepatic GSH could affect hepatic tissue blood perfusion (HP) via alterations in prostaglandin synthesis. In anesthetized male New Zealand rabbits, elevating GSH with GSH monoethyl ester had no affect on HP. Treatment of rabbits with diethyl maleate to deplete GSH also had no affect on HP in animals previously given GSH monoethyl ester. However, HP increased within 20 min in rabbits treated with diethyl maleate prior to GSH monoethyl ester. In another experiment, a similar rise in HP following GSH depletion was accompanied by arterial plasma 6-ketoPGF1 alpha (the stable metabolite of prostacyclin) levels that were 4-times higher than in the controls. Plasma TxB2 (the stable metabolite of thromboxane) also increased following diethyl maleate, but only to levels that were 25-times lower than for 6-ketoPGF1 alpha. Since indomethacin blocked the rise in HP, as well as the increases in 6-ketoPGF1 alpha and TxB2, these results indicate changes in HP may occur following GSH depletion as a result of increased synthesis of one or more arachidonic acid metabolites and implicate prostacyclin as a possible mediator of this phenomenon.  相似文献   

14.
Melatonin content of the cerebrospinal fluid (CSF), serum and choroid plexus was measured in untreated and melatonin-injected cats using the Xenopus laevis melanophore-contracting bioassay. CSF and choroid plexus had a considerable melanophore contracting activity in the untreated animals. Intravenously injected melatonin considerably enhanced the melanophore-contracting activity of the CSF and choroid plexus. Two hours later, melatonin was still present at high concentrations in these tissues, whereas it had considerably diminished in the blood. It is concluded that the choroid plexus concentrates and secretes melatonin into the CSF in a bioactive form.  相似文献   

15.
The secretion of cerebrospinal fluid by the epithelial cells of choroid plexus is regulated by membrane receptors coupled to adenylyl cyclases or to phospholipase C. These intracellular signalling pathways as their interactions were investigated in a sheep choroid plexus cell line. Endothelin-1, bradykinin and serotonin induced a transient dose-dependent increase in intracellular calcium. EC 50 were 10(-8) M for endothelin-1, 10(-8) M for bradykinin and 10(-6) M for serotonin. Maximal increase in intracellular calcium was comparable for bradykinin and serotonin, but was 3 to 5 fold larger for endothelin-1. Successive stimulations with endothelin-1, serotonin or bradykinin elicited calcium increases similar to single stimulations reflecting absence of heterologous desensitization between these receptors. Forskolin-induced cAMP accumulation was potentiated by bradykinin, but not by serotonin and endothelin-1. This potentiation resulted from an increase in cAMP production rather than to an inhibition of cAMP hydrolysis. These data suggest that serotonin, endothelin-1 and bradykinin each use specific signalling pathways in the sheep choroid plexus cells.  相似文献   

16.
H2 Histamine Receptors on the Epithelial Cells of Choroid Plexus   总被引:2,自引:2,他引:0  
A major site of cerebrospinal fluid production in vertebrates is the choroid plexus. The epithelial cells of the choroid plexus accumulate intracellular cyclic AMP in response to several effectors, including histamine. Since histamine is known to regulate fluid secretion in the stomach via H2 histamine receptors, we asked whether H2 receptors might also be present on epithelial cells of bovine choroid plexus. Using agonists and antagonists of histamine, we show that an agonist and antagonist pair specific for the H2 subtype were clearly more effective than an H1 agonist and antagonist pair in mimicking or inhibiting histamine stimulation of cellular cyclic AMP. Analysis by Schild plot allowed assignment of an apparent dissociation constant to the H2 antagonist metiamide which was 34-fold lower than that of its H1 counterpart, diphenhydramine. These results indicate that epithelial cells of the choroid plexus possess H2 histamine receptors.  相似文献   

17.
Neural progenitors in the developing neocortex, neuroepithelial cells and radial glial cells, have a bipolar shape with a basal process contacting the basal membrane of the meninge and an apical plasma membrane facing the lateral ventricle, which the cerebrospinal fluid is filled with. Recent studies revealed that the meninges and the cerebrospinal fluid have certain roles to regulate brain development. γ-aminobutyric acid (GABA) is a neurotransmitter which appears first during development and works as a diffusible factor to regulate the properties of neural progenitors. In this study, we examined whether GABA can be released from the meninges and the choroid plexus in the developing mouse brain. Immunohistochemical analyses showed that glutamic acid decarboxylase 65 and 67 (GAD65 and GAD67), both of which are GABA-synthesizing enzymes, are expressed in the meninges. The epithelial cells in the choroid plexus express GAD65. GABA immunoreactivity could be observed beneath the basal membrane of the meninge and in the epithelial cells of the choroid plexus. Expression analyses on Bestrophin-1, which is known as a GABA-permeable channel in differentiated glial cells, suggested that the cells in the meninges and the epithelial cells in the choroid plexus have the channels able to permeate non-synaptic GABA into the extracellular space. Further studies showed that GAD65/67-expressing meningeal cells appear in a manner with rostral to caudal and lateral to dorsal gradient to cover the entire neocortex by E14.5 during development, while the cells in the choroid plexus in the lateral ventricle start to express GAD65 on E11–E12, the time when the choroid plexus starts to develop in the developing brain. These results totally suggest that the meninges and the choroid plexus can work as non-neuronal sources for ambient GABA which can modulate the properties of neural progenitors during neocortical development.  相似文献   

18.
19.
The role of aquaporins in cerebrospinal fluid (CSF) secretion was investigated in this study. Western analysis and immunocytochemistry were used to examine the expression of aquaporin 1 (AQP1) and aquaporin 4 (AQP4) in the rat choroid plexus epithelium. Western analyses were performed on a membrane fraction that was enriched in Na(+)/K(+)-ATPase and AE2, marker proteins for the apical and basolateral membranes of the choroid plexus epithelium, respectively. The AQP1 antibody detected peptides with molecular masses of 27 and 32 kDa in fourth and lateral ventricle choroid plexus. A single peptide of 29 kDa was identified by the AQP4 antibody in fourth and lateral ventricle choroid plexus. Immunocytochemistry demonstrated that AQP1 is expressed in the apical membrane of both lateral and fourth ventricle choroid plexus epithelial cells. The immunofluorescence signal with the AQP4 antibody was diffusely distributed throughout the cytoplasm, and there was no evidence for AQP4 expression in either the apical or basolateral membrane of the epithelial cells. The data suggest that AQP1 contributes to water transport across the apical membrane of the choroid plexus epithelium during CSF secretion. The route by which water crosses the basolateral membrane, however, remains to be determined.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号