首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract 3-Chlorobenzoate (3CB) was incompletely degraded by bacterial cultures growing continuously with benzoate (Ben) or 3-methylbenzoate (3MB). Accumulation of chlorocatechols as dead-end metabolites was avoided if, prior to the exposure to 3CB, the population had been supplemented with Pseudomonas sp. strain B13 as a chlorocatechol-assimilating member. After acclimatisation, the substrate mixture Ben/3CB was completely degraded via 2 compatible ortho -cleavage pathways.
In contrast, 3MB and 3CB were found to be incompatible substrates: as a result of suicide and genetic inactivation of catechol 2,3-dioxygenase, methylcatechols are subject to unproductive ortho -cleavage. In a defined mixed culture ( Pseudomonas putida mt-2 plus strain B13), 4-carboxymethyl-2-methylbut-2-en-4-olide and 4-carboxymethyl-4-methylbut-2-en-4-olide were excreted as dead-end products, whereas in an undefined mixed culture, degraders of these metabolites became stable members of the community.
Characteristically, with increasing 3CB load, the relative number of 3CB-degrading organisms increased which were Ben+ or 3MB+ and which had acquired from Pseudomonas sp. strain B13 the ability to assimilate chlorocatechols.  相似文献   

2.
The transformation of 3-chlorobenzoate (3CB) and acetate at initial concentrations in the wide range of 10 nM to 16 mM was studied in batch experiments with Pseudomonas sp. strain B13. Transformation rates of 3CB at millimolar concentrations could be described by Michaelis-Menten kinetics (K(infm), 0.13 mM; V(infmax), 24 nmol (middot) mg of protein(sup-1) (middot) min(sup-1)). Experiments with nanomolar and low micromolar concentrations of 3CB indicated the possible existence of two different transformation systems for 3CB. The first transformation system operated above 1 (mu)M 3CB, with an apparent threshold concentration of 0.50 (plusmn) 0.11 (mu)M. A second transformation system operated below 1 (mu)M 3CB and showed first-order kinetics (rate constant, 0.076 liter (middot) g of protein(sup-1) (middot) min(sup-1)), with no threshold concentration in the nanomolar range. A residual substrate concentration, as has been reported for some other Pseudomonas strains, could not be detected for 3CB (detection limit, 1.0 nM) in batch incubations with Pseudomonas sp. strain B13. The addition of various concentrations of acetate as a second, easily degradable substrate neither affected the transformation kinetics of 3CB nor induced a detectable residual substrate concentration. Acetate alone also showed no residual concentration (detection limit, 0.5 nM). The results presented indicate that the concentration limits for substrate conversion obtained by extrapolation from kinetic data at higher substrate concentrations may underestimate the true conversion capacity of a microbial culture.  相似文献   

3.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
Two genetically engineered microorganisms (GEMs), Pseudomonas sp. strain B13 FR1(pFRC20P) (FR120) and Pseudomonas putida KT2440(pWWO-EB62) (EB62), were introduced into activated sludge microcosms that had the level of aeration, nutrient makeup, and microbial community structure of activated sludge reactors. FR120 contains an experimentally assembled ortho cleavage route for simultaneous degradation of 3-chlorobenzoate (3CB) and 4-methyl benzoate (4MB); EB62 contains a derivative TOL plasmid-encoded degradative pathway for toluene experimentally evolved so that it additionally processes 4-ethyl benzoate (4EB). Experiments assessed survival of the GEMs, their ability to degrade target substrates, and lateral transfer of plasmid-encoded recombinant DNA. GEMs added at initial densities of 10(6) to 10(7) bacteria per ml of activated sludge declined to stable population densities of 10(4) to 10(5) bacteria per ml. FR120 degraded combinations of 3CB and 4MB (1 mM each) following 3 days of adaptation in the microcosms. Indigenous microorganisms required an 8-day adaptation period before degradation of 4MB was observed; 3CB was degraded only after the concentration of 4MB was much reduced. The indigenous microbial community was killed when both compounds were present at concentrations of 4.0 mM. However, in parallel microcosms containing FR120, the microbial community maintained a normal density of viable cells. Indigenous microbes readily degraded 4EB (2 mM), and EB62 did not significantly increase the observed rate of degradation. In filter matings, transfer of pFRC20P, which specifies mobilization but not transfer functions, from FR120 to P. putida UWC1 was not detectable (< 10(-7) transconjugants per donor cell).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The minimum substrate concentration required for growth, Smin, was measured for Pseudomonas sp. strain B13 with 3-chlorobenzoate (3CB) and acetate in a recycling fermentor. The substrates were provided alone or in a mixture. Smin values predicted with kinetic parameters from resting-cell batches and chemostat cultures differed clearly from the values measured in the recycling fermentor. When 3CB and acetate were fed as single substrates, the measured Smin values were higher than the individual Smin values in the mixture. The Smin in the mixture reflected the relative energy contributions of the two substrates in the fermentor feed. The energy-based maintenance coefficients during zero growth in the recycling fermentor were comparable for all influent compositions (mean +/- standard deviation, 0.34 +/- 0.07 J mg [dry weight]-1 h-1). Maintenance coefficient values for acetate were significantly higher in chemostat experiments than in recycling-fermentor experiments. 3CB maintenance coefficients were comparable in both experimental systems. The parameters for 3CB consumption kinetics varied remarkably with the experimental growth conditions in batch, chemostat, and recycling-fermentor environments. The results demonstrate that the determination of kinetic parameters in the laboratory for prediction of microbial activity in complex natural systems should be done under conditions which best mimic the system under consideration.  相似文献   

6.
A genetically engineered microorganism (GEM), Pseudomonas sp. B13 FRI (pFRC20P) (abbreviated FR120), has previously been engineered to simultaneously mineralize mixtures of methylated and chlorinated benzoic acids and phenols through a modified ortho cleavage pathway. In this study, its performance was investigated both in different types of aquatic microcosms and in pure culture to determine (1) if under simulated in situ conditions the genetically engineered pathway effectively removes mixtures of model pollutants simultaneously, quickly, and completely; (2) where the optimum pollutant concentration range for this activity lies; and (3) how physical, chemical, and biological factors in the microcosms influence degradation rates. Growth and degradation parameters of FR 120 in pure culture were determined with 3-chlorobenzoate (3CB), 4-methylbenzoate (4MB), and equimolar mixtures of both as carbon sources. These substrates were degraded simultaneously, albeit with different degradation velocities, by FR120. The optimum growth concentrations for 3CB and 4MB were 3.0 mm and 2.1 mm, respectively, and the inhibition constants (Ki) were 11 mm (3CB) and 6 mm (4MB). The pathway was induced at low concentrations of substrate (> 1 [m). The first order degradation constants (kl) were determined with respect to substrate concentration, cell density, and temperature. In aquatic microcosms inoculated with FR120, first order degradation constants and half lives of target chemicals were calculated based on the total amount of aromatics recovered. Half lives ranged from 1.3 days to 3.0 days, depending on the target chemical and the type of microcosm. Degradation constants determined in pure culture were extrapolated to the densities of FR120, substrate concentrations, and temperature occurring in the microcosm experiments, and used to calculate theoretical half lives. In water microcosms, theoretical and observed half lives corresponded well, indicating that FR120 functioned optimally in this environment. In whole core sediment microcosms, and especially at low cell densities, the observed degradation activity was in some cases considerably higher than expected from pure culture degradation rates. This suggests that environmental conditions in the sediment were more favorable to the degradation of substituted aromatics than those in pure culture. The physiological characteristics of FR120 and its performance in aquatic microcosms make it a good candidate for bioremediation at sites contamninated with mixtures of chlorinated and methylated aromatics. Correspondence to: I. Wagner-Döbler  相似文献   

7.
Genetically engineered Pseudomonas sp. strain B13(FR1) was released into laboratory-scale marine ecosystem models (microcosms). Survival of the introduced population in the water column and the sediment was determined by plating on a selective medium and by quantitative competitive PCR. The activity of the released bacteria was determined by in situ hybridization of single cells with a specific rRNA-targeting oligonucleotide probe. Two microcosms were inoculated with 10(6) cells ml-1, while an uninoculated microcosm served as a control. The number of Pseudomonas sp. strain B13(FR1) cells decreased rapidly to ca. 10(2) cells ml-1 within 2 days after the release, which is indicative of grazing by protozoa. Three days after the introduction into seawater, cells were unculturable, but PCR continued to detect cells in low numbers. Immediately after the release, the ribosomal content of Pseudomonas sp. strain B13(FR1) corresponded to a generation time of 2 h. The growth rate decreased to less than 0.04 h-1 in 5 days and remained low, probably because of carbon limitation of the cells. Specific amendment of the microcosms with 10 mM 4-chlorobenzoate resulted in a rapid increase of the growth rate and an exponentially increasing number of cells detected by PCR, but not in resuscitation of the cells to a culturable state. The release of Pseudomonas sp. strain B13(FR1) into the microcosms seemed to affect only the indigenous bacterioplankton community transiently. Effects on the community were also apparent from the handling of water during filling of the microcosms and the amendment with 4-chlorobenzoate.  相似文献   

8.
Pseudomonas pseudoalcaligenes POB310 contains genes that encode phenoxybenzoate dioxygenase. The enzyme transforms mono- and dichlorinated phenoxybenzoates to yield protocatechuate that is used as a growth substrate and chlorophenols that are nonmetabolizable. Mass spectral analysis of (18)O metabolites obtained from the protocatechuate 3,4-dioxygenase-deficient mutant, POB310-B1, suggested that the reaction mechanism is a regioselective angular dioxygenation. A cloning vector containing reaction relevant genes (pD30.9) was transferred into Pseudomonas sp. strain B13 containing a modified ortho-cleavage pathway for aromatic compounds. The resultant Pseudomonas sp. strain B13-D5 (pD30.9) completely metabolized 3-(4-chlorophenoxy)benzoate. During growth on 3-phenoxybenzoate, strain B13-D5 (pD30.9) (K(s) = 0.70+/-0.04 mM, mu(max) = 0.45+/-0.03 h(-1), t(d) = 1.5 h, Y = 0.45+/-0.03 g bio- mass x g substrate(-1)) was better adapted to low substrate concentrations, had a faster rate of growth, and a greater yield than POB310 (K(s) = 1.13+/-0.06 mM, mu(max) = 0.31+/-0.02 h(-1), t(d) = 2.2 h, Y = 0.39+/-0.02 g biomass. g substrate(-1)).  相似文献   

9.
A flow cell-grown model consortium consisting of two organisms, Burkholderia sp. LB400 and Pseudomonas sp. B13(FR1), was studied. These bacteria have the potential to interact metabolically because Pseudomonas sp. B13(FR1) can metabolize chlorobenzoate produced by Burkholderia sp. LB400 when grown on chlorobiphenyl. The expected metabolic interactions in the consortium were demonstrated by high performance liquid chromatography (HPLC) analysis. The spatial structure of the consortium was studied by fluorescent in situ rRNA hybridization and scanning confocal laser microscopy. When the consortium was fed with medium containing a low concentration of chlorobiphenyl, microcolonies consisting of associated Burkholderia sp. LB400 and Pseudomonas sp. B13(FR1) bacteria were formed, and separate Pseudomonas sp. B13(FR1) microcolonies were evidently not formed. When the consortium was fed citrate, which can be metabolized by both species, the two species formed separate microcolonies. The structure development in the consortium was studied online using a gfp -tagged Pseudomonas sp. B13(FR1) derivative. After a shift in carbon source from citrate to a low concentration of chlorobiphenyl, movement of the Pseudomonas sp. B13(FR1) bacteria led to a change in the spatial structure of the consortium from the unassociated form towards the associated form within a few days. Experiments involving a gfp -based Pseudomonas sp. B13(FR1) growth activity reporter strain indicated that chlorobenzoate supporting growth of Pseudomonas sp. B13(FR1) is located close to the Burkholderia sp. LB400 microcolonies in chlorobiphenyl-grown consortia.  相似文献   

10.
Pseudomonas pseudoalcaligenes POB310(pPOB) and Pseudomonas sp. strains B13-D5(pD30.9) and B13-ST1(pPOB) were introduced into soil microcosms containing 3-phenoxybenzoic acid (3-POB) in order to evaluate and compare bacterial survival, degradation of 3-POB, and transfer of plasmids to a recipient bacterium. Strain POB310 was isolated for its ability to use 3-POB as a growth substrate; degradation is initiated by POB-dioxygenase, an enzyme encoded on pPOB. Strain B13-D5 contains pD30.9, a cloning vector harboring the genes encoding POB-dioxygenase; strain B13-ST1 contains pPOB. Degradation of 3-POB in soil by strain POB310 was incomplete, and bacterial densities decreased even under the most favorable conditions (100 ppm of 3-POB, supplementation with P and N, and soil water-holding capacity of 90%). Strains B13-D5 and B13-ST1 degraded 3-POB (10 to 100 ppm) to concentrations of <50 ppb with concomitant increases in density from 10(6) to 10(8) CFU/g (dry weight) of soil. Thus, in contrast to strain POB310, the modified strains had the following two features that are important for in situ bioremediation: survival in soil and growth concurrent with removal of an environmental contaminant. Strains B13-D5 and B13-ST1 also completely degraded 3-POB when the inoculum was only 30 CFU/g (dry weight) of soil. This suggests that in situ bioremediation may be effected, in some cases, with low densities of introduced bacteria. In pure culture, transfer of pPOB from strains POB310 and B13-ST1 to Pseudomonas sp. strain B13 occurred at frequencies of 5 x 10(-7) and 10(-1) transconjugant per donor, respectively. Transfer of pPOB from strain B13-ST1 to strain B13 was observed in autoclaved soil but not in nonautoclaved soil; formation of transconjugant bacteria was more rapid in soil containing clay and organic matter than in sandy soil. Transfer of pPOB from strain POB310 to strain B13 in soil was never observed.  相似文献   

11.
4-Carboxymethyl-4-methylbut-2-en-4-olide (4-methyl-2-enelactone) isomerase, transforming 4-methyl-2-enelactone to 3-methyl-2-enelactone, was purified from a derivative strain of Pseudomonas sp. B13, named B13 FR1, carrying the plasmid pFRC2OP. This plasmid contained the isomerase gene cloned from Alcaligenes eutrophus JMP 134, which uses 4-methyl-2-enelactone as a carbon source. The enzyme consists of a single peptide chain of Mr 40,000 as judged by SDS/PAGE. In addition to 4-methyl-2-enelactone, the putative reaction intermediate, 1-methyl-3,7-dioxo-2,6-dioxy-bicyclo[3.3.0]octane (1-methylbislactone), was a substrate for the enzyme, but kinetic data presented did not favour its role as a reaction intermediate. Isomeric methyl-substituted 4-carboxymethylbut-2-en-4-olides were neither substrates nor inhibitors. Possible reaction mechanisms are discussed.  相似文献   

12.
Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp.   总被引:9,自引:8,他引:1       下载免费PDF全文
A bacterium, tentatively identified as a representative of the genus Pseudomonas (strain MB86), was isolated from soil contaminated by wood-preservation chemicals by using 4-chlorobenzoate as an enrichment substrate. The pseudomonad was able to grow on 4-chlorobenzoic acid and 4-chlorobiphenyl as sole carbon and energy sources. Spent culture medium from 4-chlorobiphenyl-grown cells contained 4-chlorobenzoic acid, 4'-chloroacetophenone, 2-hydroxy,2-[4'-chlorophenyl] ethane, and 2-oxo,2-[4'-chlorophenyl] ethanol as metabolites. 4'-Chloroacetophenone was produced in large amounts, possibly as a dead-end metabolite.  相似文献   

13.
Novel biotransformations of 4-chlorobiphenyl by a Pseudomonas sp   总被引:7,自引:0,他引:7  
A bacterium, tentatively identified as a representative of the genus Pseudomonas (strain MB86), was isolated from soil contaminated by wood-preservation chemicals by using 4-chlorobenzoate as an enrichment substrate. The pseudomonad was able to grow on 4-chlorobenzoic acid and 4-chlorobiphenyl as sole carbon and energy sources. Spent culture medium from 4-chlorobiphenyl-grown cells contained 4-chlorobenzoic acid, 4'-chloroacetophenone, 2-hydroxy,2-[4'-chlorophenyl] ethane, and 2-oxo,2-[4'-chlorophenyl] ethanol as metabolites. 4'-Chloroacetophenone was produced in large amounts, possibly as a dead-end metabolite.  相似文献   

14.
The Monod or Andrews kinetic parameters describing the growth of Pseudomonas sp. CPE2 strain on 2,5-dich!orobenzoic acid and 2-chlorobenzoic acid, and Al-caligenes sp. CPE3 strain on 3,4-dichlorobenzoic acid, 4-chlorobenzoic acid, and 3-chlorobenzoic acid were determined from batch and continuous growth experiments conducted in the presence or absence of yeast extract (50 mg/L). Strain CPE2 displayed inhibitory growth kinetics in the absence of yeast extract and a noninhibitory kinetics in the presence of yeast extract. Similar results were obtained for CPE3. The presence of yeast extract also resulted in a significant increase in the affinity of the strains for the chlorobenzoic acids they degraded. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

16.
Recombinant Pseudomonas sp. strain CB15, which grows on 3-chlorobiphenyl (3CB), was constructed from Pseudomonas sp. strain HF1, which grows on 3-chlorobenzoate, and from Acinetobacter sp. strain P6, which grows on biphenyl, by using a continuous amalgamated culture apparatus. DNA from strains CB15 and HF1 hybridized very strongly to each other, while hybridization between both parental strains, HF1 and P6, was negligible. However, DNA from the recombinant CB15 hybridized moderately to strongly with three specific fragments of parental strain P6. Strains HF1 and P6 did not grow on 3CB, but recombinant strain CB15 mineralized this compound and released inorganic chloride. When growing on 3CB, strain CB15 accumulated brown products, one of which was identified as 3-chloro-5-(2'-hydroxy-3'-chlorophenyl)-1,2-benzoquinone by mass spectrometry. Emulsification and mechanical fragmentation greatly increased the rate of 3CB mineralization by strain CB15. At least three methods of inhibition from catecholic intermediates may account for slow growth on 3CB. The meta fission of 2,3-dihydroxybiphenyl (the nonchlorinated analog of the metabolic intermediate 3-chloro-2',3'-dihydroxybiphenyl) was affected by substrate inhibition (Vmax = 359 nmol.min-1.mg-1, Km = 114 microM, Kss [the inhibition constant] = 951 microM) and was also inhibited by 3-chlorocatechol. The ortho fission of 3-chlorocatechol, a degradation product, followed Michaelis-Menten kinetics (Vmax = 365 nmol.min-1.mg-1, Km = 1 microM), but the addition of 2,3-dihydroxybiphenyl inhibited the reaction (Ki = 0.87 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Recombinant Pseudomonas sp. strain CB15, which grows on 3-chlorobiphenyl (3CB), was constructed from Pseudomonas sp. strain HF1, which grows on 3-chlorobenzoate, and from Acinetobacter sp. strain P6, which grows on biphenyl, by using a continuous amalgamated culture apparatus. DNA from strains CB15 and HF1 hybridized very strongly to each other, while hybridization between both parental strains, HF1 and P6, was negligible. However, DNA from the recombinant CB15 hybridized moderately to strongly with three specific fragments of parental strain P6. Strains HF1 and P6 did not grow on 3CB, but recombinant strain CB15 mineralized this compound and released inorganic chloride. When growing on 3CB, strain CB15 accumulated brown products, one of which was identified as 3-chloro-5-(2'-hydroxy-3'-chlorophenyl)-1,2-benzoquinone by mass spectrometry. Emulsification and mechanical fragmentation greatly increased the rate of 3CB mineralization by strain CB15. At least three methods of inhibition from catecholic intermediates may account for slow growth on 3CB. The meta fission of 2,3-dihydroxybiphenyl (the nonchlorinated analog of the metabolic intermediate 3-chloro-2',3'-dihydroxybiphenyl) was affected by substrate inhibition (Vmax = 359 nmol.min-1.mg-1, Km = 114 microM, Kss [the inhibition constant] = 951 microM) and was also inhibited by 3-chlorocatechol. The ortho fission of 3-chlorocatechol, a degradation product, followed Michaelis-Menten kinetics (Vmax = 365 nmol.min-1.mg-1, Km = 1 microM), but the addition of 2,3-dihydroxybiphenyl inhibited the reaction (Ki = 0.87 microM).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Comparative studies were performed to investigate the contribution of microbial consortia, individual microbial populations, and specific plasmids to chlorinated biphenyl biodegradation among microbial communities from a polychlorinated biphenyl-contaminated freshwater environment. A bacterial consortium, designated LPS10, was shown to mineralize 4-chlorobiphenyl (4CB) and dehalogenate 4,4'-dichlorobiphenyl. The LPS10 consortium involved three isolates: Pseudomonas testosteroni (LPS10A), which mediated the breakdown of 4CB and 4,4'-dichlorobiphenyl to 4-chlorobenzoic acid; an isolate tentatively identified as an Arthrobacter sp. (LPS10B), which mediated 4-chlorobenzoic acid degradation; and Pseudomonas putida bv. A (LPS10C), whose role in the consortium has not been determined. None of these isolates contained detectable plasmids or sequences homologous to the 4CB-degradative plasmid pSS50. A freshwater isolate, designated LBS1C1, was found to harbor a 41-megadalton plasmid that was related to the 35-megadalton plasmid pSS50, and this isolate was shown to mineralize 4CB. In chemostat enrichments with biphenyl and 4CB as primary carbon sources, the LPS10 consortium was found to outcomplete bacterial populations harboring plasmids homologous to pSS50. These results demonstrate that an understanding of the biodegradative capacity of individual bacterial populations as well as interacting populations of bacteria must be considered in order to gain a better understanding of polychlorinated biphenyl biodegradation in the environment.  相似文献   

19.
The chlorobenzoates constitute an important class of recalcitrant compounds polluting this biosphere. Two bacterial strains B16 (Pseudomonas aeruginosa) and DT4 (Pseudomonas sp.) isolated by enrichment technique were found to utilize 2-chlorobenzoic acid (2-Cba) and 4-chlorobenzoic acid (4-Cba) respectively as sole source of carbon and energy. 2-Cba and 4-Cba were supplemented in synthetic medium at 1500 micrograms/ml and 1000 micrograms/ml (w/v) respectively. Addition of 100 micrograms/ml (w/v) yeast extract stimulated growth of cultures. Degradation studies revealed that substrates were degraded without release of chloride ion with possible accumulation of respective chlorophenols. Respiration studies revealed inducible nature of enzymes for break down of 2-Cba, 4-Cba benzoic acid, 4-hydroxybenzoic acid and catechol. Extraction of plasmid DNA from parent strains showed presence of plasmid of same size in both strains. Cured strains showed absence of corresponding plasmid DNA bands thus indicating plasmid-borne genes for degradation of chlorobenzoates.  相似文献   

20.
Pseudomonas acidovorans M3GY is a recombinant bacterium with the novel capacity to utilize a biphenyl congener chlorinated on both rings, 3,4'-dichlorobiphenyl (3,4'-DCBP), as a sole carbon and energy source. Strain M3GY was constructed with a continuous amalgamated culture apparatus (L. Kr?ckel and D. D. Focht, Appl. Environ. Microbiol. 53:2470-2475, 1987) with P. acidovorans CC1(19), a chloroacetate and biphenyl degrader, and Pseudomonas sp. strain CB15(1), a biphenyl and 3-chlorobenzoate degrader. Genetic and phenotypic data showed the recipient parental strain to be P. acidovorans CC1 and the donor parental strain to be Pseudomonas sp. strain CB15. In growth experiments with 3,4'-DCBP as a sole source of carbon, cultures of strain M3GY increased in absorbance from 0.07 to 0.39 in 29 days while reaching a protein concentration of 58 mug ml and 67% substrate dehalogenation. 4-Chlorobenzoate was identified from culture supernatants of strain M3GY by gas chromatography-infrared spectrometry-mass spectrometry; this would be consistent with the oxidation of the m-chlorinated ring through the standard biphenyl pathway. 4-Chlorobenzoate was converted to 4-chlorocatechol, which was metabolized through the meta-fission pathway. The construction of P. acidovorans M3GY, with the novel capability to utilize 3,4'-DCBP, thus involves the complete use of meta-fission pathways for sequential rupture of the biphenyl and chlorobenzoate rings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号