首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pompe disease is a lysosomal glycogen storage disorder characterized by acid alpha-glucosidase (GAA) deficiency. More than 110 different pathogenic mutations in the gene encoding GAA have been observed. Patients with this disease are being treated by intravenous injection of recombinant forms of the enzyme. Focusing on recombinant approaches to produce the enzyme means that specific attention has to be paid to the generated glycosylation patterns. Here, human GAA was expressed in the mammary gland of transgenic rabbits. The N-linked glycans of recombinant human GAA (rhAGLU), isolated from the rabbit milk, were released by peptide-N(4)-(N-acetyl-beta-glucosaminyl)asparagine amidase F. The N-glycan pool was fractionated and purified into individual components by a combination of anion-exchange, normal-phase, and Sambucus nigra agglutinin-affinity chromatography. The structures of the components were analyzed by 500 MHz one-dimensional and 600 MHz cryo two-dimensional (total correlation spectroscopy [TOCSY] nuclear Overhauser enhancement spectroscopy) (1)H nuclear magnetic resonance spectroscopy, combined with two-dimensional (31)P-filtered (1)H-(1)H TOCSY spectroscopy, matrix-assisted laser desorption ionization time-of-flight mass spectrometry, and high-performance liquid chromatography (HPLC)-profiling of 2-aminobenzamide-labeled glycans combined with exoglycosidase digestions. The recombinant rabbit glycoprotein contained a broad array of different N-glycans, comprising oligomannose-, hybrid-, and complex-type structures. Part of the oligomannose-type glycans showed the presence of phospho-diester-bridged N-acetylglucosamine. For the complex-type glycans (partially) (alpha2-6)-sialylated (nearly only N-acetylneuraminic acid) diantennary structures were found; part of the structures were (alpha1-6)-core-fucosylated or (alpha1-3)-fucosylated in the upper antenna (Lewis x). Using HPLC-mass spectrometry of glycopeptides, information was generated with respect to the site-specific location of the various glycans.  相似文献   

2.
The asparagine-linked carbohydrate structures at each of the three glycosylation sites of human thyrotrophin were investigated by 400 MHz 1H-NMR spectroscopy. Highly purified, biologically active human thyrotrophin (hTSH) was dissociated into its subunits hTSH alpha (glycosylated at Asn 52 and Asn 78) and hTSH beta (glycosylated at Asn 23). The alpha-subunit was further treated with trypsin which gave two glycopeptides that were subsequently separated by reverse-phase HPLC and identified by amino acid sequence analysis. The oligosaccharides were liberated from hTSH alpha glycopeptides and from intact hTSH beta by hydrazinolysis, and were fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC preparatory to structural analysis. The N-glycans present on hTSH were mainly diantennary complex-type structures with a common Man alpha 1-3 branch that terminated with 4-O-sulphated GalNAc. The Man alpha 1-6 branch displayed structural heterogeneity in the terminal sequence, with chiefly alpha 2-3-sialylated Gal and/or 4-O-sulphated GalNAc. The relative amounts of the two major complete diantennary oligosaccharides and their core fucosylation differed according to glycosylation site; the sulphated/sialylated diantennary oligosaccharide was most abundant at the two sites on the alpha-subunit, whereas the disulphated, core-fucosylated oligosaccharide was more plentiful on the beta-subunit. Some interesting structural features, not previously reported for the N-glycans of hTSH, included 3-O-sulphated galactose (SO4-3Gal) and peripheral fucose (Fuc alpha 1-3GlcNAc) in the Man alpha 1-6 branch of some diantennary structures; the former suggests the presence of a hitherto uncharacterized galactose-3-O-sulphotransferase in thyrotroph cells of the human anterior pituitary gland.  相似文献   

3.
Transferrin, a glycoprotein involved in iron transport in body fluids, was isolated from amniotic fluid of a hydramniospatient by sequential anion-exchange chromatography and gel filtration. The N-glycans of human amniotic fluid transferrin (hAFT) were enzymatically liberated by PNGase-F digestion, isolated by gel filtration and fractionated by (high-pH) anion-exchange chromatography. After alkaline borohydride treatment of native hAFT, the released O-glycans were isolated by gel filtration and fractionated by anion-exchange chroma-tography. Structure elucidation of 14 N- and 2 O-glycans was performed by 500 or 600 MHz1H-NMR spectroscopy. Besides conventional N-glycans established earlier for human serum transferrin (hST), new (alpha1-3)-fucosylated N- glycans were found, representing sialyl Le(x) elements. Furthermore, as compared to hST, a higher degree of (alpha1-6)-fucosylation and an increase in branching from di- to triantennary compounds has been detected. The presence of O-glycans is demonstrated for the first time in transferrin.   相似文献   

4.
The large-scale production of recombinant biopharmaceutical glycoproteins in the milk of transgenic animals is becoming more widespread. However, in comparison with bacterial, plant cell, or cell culture production systems, little is known about the glycosylation machinery of the mammary gland, and hence on the glycosylation of recombinant glycoproteins produced in transgenic animals. Here the influence is presented of several lactation parameters on the N-glycosylation of recombinant C1 inhibitor (rhC1INH), a human serum glycoprotein, expressed in the milk of transgenic rabbits. Enzymatically released N-glycans of series of rhC1INH samples were fluorescently labeled and fractionated by HPLC. The major N-glycan structures on rhC1INH of pooled rabbit milk were similar to those on native human C1 inhibitor and recombinant human C1 inhibitor produced in transgenic mouse milk, with only the degree of sialylation and core fucosylation being lower. Analyses of individual animals furthermore showed slight interindividual differences; a decrease in the extent of sialylation, core fucosylation, and oligomannose-type glycosylation with the progress of lactation; and a positive correlation between expression level and oligomannose-type N-glycan content. However, when large quantities of rhC1INH were isolated for preclinical and clinical studies, highly consistent N-linked glycan profiles and monosaccharide compositions were found.  相似文献   

5.
The N- and O-glycans of recombinant amyloid precursor protein (APP), purified from Chinese hamster ovary cells transfected with the human 695-amino acid form of APP, were separately released by hydrazinolysis under different conditions. The reducing ends of the released N- and O-glycans were reduced with NaB3H4 and derivatized with 2-aminobenzamide (2AB), respectively. After acidic N-glycans were obtained by anion-exchange column chromatography, these were converted to neutral oligosaccharides by sialidase digestion, demonstrating that their acidic nature was entirely due to sialylation. The sialidase-treated N-glycans were then fractionated by lectin column chromatography and their structures were determined by linkage-specific sequential exoglycosidase digestion. These results demonstrated that recombinant APP has bi- and triantennary complex type N-glycans with fucosylated and nonfucosylated trimannosyl cores. In a similar fashion, the 2AB-labeled O-glycans derived from APP were determined to be mono- and disialylated core type 1 structures. Taken together, these results indicate that recombinant APP has sialylated bi- and triantennary N-glycans with fucosylated and nonfucosylated cores and sialylated O-glycans with core type 1 structures.  相似文献   

6.
The N-linked carbohydrate chains of the beta subunit of human chorionic gonadotropin (hCG-beta) isolated from the culture fluid of the choriocarcinoma cell line BeWo were released enzymatically by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Subsequently, the O-linked oligosaccharides were split off from the N-deglycosylated protein by mild alkaline borohydride treatment. The carbohydrate chains were purified in their intact sialylated forms by FPLC anion-exchange chromatography on Mono Q, HPLC on Lichrosorb-NH2, and high-pH anion-exchange chromatography on CarboPac PA1. 1H-NMR spectroscopic analysis of the major fractions demonstrates the occurrence of the following sialylated diantennary and triantennary N-linked oligosaccharides. Residues not written in bold letters are variably present. [formula: see text] The incidence of triantennary carbohydrate chains is much higher than in normal urinary hCG-beta (26% vs 2%). The same holds for the alpha 1-6-fucosylation of the asparagine-bound GlcNAc (95% vs 42%). The presence of a bisecting GlcNAc and the occurrence of alpha 2-6-linked Neu5Ac in the most abundant N-glycans, are new features for hCG-beta. The major O-linked carbohydrate chains identified are the tetrasaccharide Neu5Ac alpha 2-3Gal beta 1-3(Neu5Ac alpha 2-6)GalNAc-ol and the hexasaccharide Neu5Ac alpha 2-3Gal beta 1-4GlcNAc beta 1-6(Neu5Ac alpha 2-3Gal beta 1-3)GalNAc-ol, both also found in normal urinary hCG. In addition, two novel O-glycans were characterized: [formula: see text]  相似文献   

7.
Human lutropin or luteinizing hormone (hLH) is a heterodimeric glycoprotein, composed of two subunits. hLH alpha (N-glycosylated at Asn52 and Asn78) and hLH beta (N-glycosylated at Asn30). The sugar chains were liberated by hydrazinolysis from intact hLH beta and from glycopeptides obtained after tryptic digestion of hLH alpha, subsequently reduced and fractionated as alditols by anion-exchange and ion-suppression amine-adsorption HPLC and identified mainly by one-dimensional (1D) and two-dimensional (2D) 1H-NMR spectroscopy. The results indicate predominantly diantennary. N-acetyllactosamine-type structures at all three glycosylation sites. The oligosaccharides attached to Asn52 (hLH alpha) and Asn30 (hLH beta) show a remarkably similar pattern, with mainly chain-terminating 4-sulphated 2-deoxy-2-N-acetylamino-D-galactose (GalNAc) and a sulphated/sialylated structure as the major single component. However, virtually all N-glycans on the beta subunit bear a fucose residue alpha 1-6-linked to the proximal GlcNAc, whereas those at Asn52 (and Asn78) of the alpha subunit are predominantly non-fucosylated. The oligosaccharides at Asn78 (hLH alpha) are sialylated rather than sulphated and contain the unique sequence NeuAc alpha 2-6 GalNAc beta 1-4GlcNAc beta 1-2 Man alpha 1-3 as part of the majority of mono- and disialylated compounds. The major single constituent at Asn78 has the following structure: [formula, see text]  相似文献   

8.
Specificity of DC-SIGN for mannose- and fucose-containing glycans   总被引:1,自引:0,他引:1  
The dendritic cell specific C-type lectin dendritic cell specific ICAM-3 grabbing non-integrin (DC-SIGN) binds to "self" glycan ligands found on human cells and to "foreign" glycans of bacterial or parasitic pathogens. Here, we investigated the binding properties of DC-SIGN to a large array of potential ligands in a glycan array format. Our data indicate that DC-SIGN binds with K(d)<2muM to a neoglycoconjugate in which Galbeta1-4(Fucalpha1-3)GlcNAc (Le(x)) trisaccharides are expressed multivalently. A lower selective binding was observed to oligomannose-type N-glycans, diantennary N-glycans expressing Le(x) and GalNAcbeta1-4(Fucalpha1-3)GlcNAc (LacdiNAc-fucose), whereas no binding was observed to N-glycans expressing core-fucose linked either alpha1-6 or alpha1-3 to the Asn-linked GlcNAc of N-glycans. These results demonstrate that DC-SIGN is selective in its recognition of specific types of fucosylated glycans and subsets of oligomannose- and complex-type N-glycans.  相似文献   

9.
This article reports the first rigorous evidence for the existence of N-glycans in Giardia intestinalis, a parasite that is a widespread human pathogen, being a major cause of enteric disease in the world. Excreted/secreted molecules of G. intestinalis are known to stimulate the immune system. Structural strategies based on MALDI and electrospray mass spectrometry were employed to examine the excreted/secreted molecules for their N-glycan content. These revealed that the major oligosaccharides released by peptide N-glycosidase F are complex-type structures and correspond to bi-, and triantennary structures without core (alpha1,6) fucosylation. The major nonreducing epitopes in these complex-type glycans are: Galbeta1-4GlcNAc (LacNAc) and NeuAc alpha2-6Galbeta1-4GlcNAc (sialylated LacNAc).  相似文献   

10.
Recombinant equine luteinizing hormone/chorionic gonadotropin (eLH/CG) was expressed in Mimic insect cells, that are commercial stably transformed Spodoptera frugiperda (Sf9) cells expressing five mammalian genes encoding glycosyltransferases involved in the synthesis of complex-type monosialylated N-glycans. We previously showed that it exhibited no in vivo bioactivity although expressing full in vitro bioactivity, and it was suspected that this was because of insufficient sialylation of eLH/CG N-glycans. Lectin binding analyses were performed with recombinant dimeric eLH/CG or its alpha subunit, secreted in the serum-containing supernatant of infected Sf9 and Mimic cells. Two types of specific lectin affinity assays (blot analyses and enzyme-linked immunosorbent assay) were used to compare the ability or inability of natural and recombinant gonadotropins to bind to various lectins. In natural equine chorionic gonadotropin (eCG), complex-type N-glycans terminating with both Siaalpha2,3Gal (based on Maackia amurensis agglutinin [MAA] binding) and Siaalpha2,6Gal (based on Sambucus nigra agglutinin [SNA] binding) were found, but in the alpha subunit dissociated from natural eCG, we only detected Siaalpha2-6Gal. In eLH/CG and its alpha subunit produced by Sf9 cells, N-glycans were found to be terminated by mannosyl residues (based on Galanthus nivalis agglutinin [GNA] binding), whereas those produced in Mimic cells were terminated by galactoses (based on binding to Ricinus communis agglutinin I [RCA I] , but not to SNA or MAA). This is in agreement with the fact that the nucleotide donor substrate of sialic acid is not naturally synthesized in insect cells. On the basis of binding to Arachis Hypogaea agglutinin [PNA], O-glycans exhibited the Galbeta1-3GalNAc structure in recombinant-free alpha and eLH/CG from both Sf9 and Mimic cell lines. Both N- and O-linked carbohydrate side chains synthesized in Mimic cells should thus be amenable to further acellular sialylation.  相似文献   

11.
Khoo KH  Huang HH  Lee KM 《Glycobiology》2001,11(2):149-163
Schistosomal egg N-glycans are the only examples in nature that have been structurally shown to contain beta2-xylosylation, alpha6-fucosylation, and alpha3-fucosylation on the N,N'-diacetyl chitobiose core. We present evidence that core difucosylated and xylosylated N-glycans are characteristics of Schistosoma japonicum eggs but not of the cercariae and adults, for which neither core xylosylation nor alpha3-fucosylation could be readily detected. In contrast, a majority of the N-glycans from Schistosoma mansoni cercariae but not the adults are core xylosylated. Tandem mass spectrometry analysis coupled with chromatographic mapping, sequential exoglycosidase digestion, and methylation analysis were employed to unambiguously define the structures of core beta2-xylosylated, alpha6-fucosylated N-glycans from S. mansoni cercariae. Unexpectedly, a majority of these N-glycans were found to carry Lewis X determinant, Galbeta1-->4(Fucalpha1-->3)GlcNAcbeta1-->, on the nonreducing termini of mono- and biantennary structures. The Lewis X-containing glycoproteins were found to be distinct from those carrying the complex, multifucosylated glycocalyx O-glycans reported previously. The corresponding N-glycans from S. japonicum cercariae are likewise dominated by Lewis X termini but without the core xylosylation. We concluded that the invading cercariae present an important and abundant source of Lewis X antigens, which may contribute to the induced humoral response upon infection. Following transformation and development into the adults, the N-glycans synthesized comprise a significantly larger amount of high mannose and fucosylated pauci-mannose structures in comparison with the cercarial N-glycans. A portion of the mono- and biantennary complex types were identified to carry Lewis X and fucosylated LacdiNAc termini, which could also be detected by mass spectrometry analysis on larger, complex-type structures.  相似文献   

12.
Galactosialidosis urine was fractionated by gel-permeation chromatography on Bio-Gel P-6. The obtained sialic acid-containing carbohydrate fractions were purified by reversed-phase chromatography and separated according to charge by medium-pressure anion-exchange chromatography on Mono Q. The Mono Q fractions, being mixtures of sialyloligosaccharides differing mainly in sialic acid-linkage type (alpha 2-3/alpha 2-6), were subfractionated by high-performance liquid chromatography on Lichrosorb-NH2. The purified compounds were analysed by 500-MHz 1H-NMR spectroscopy. Twenty-one fully and partially sialylated N-acetyllactosamine-type compounds include mono-, di-, tri- and tetra-antennary structures. All structures have the sequence Man beta 1-4Glc-NAc at the reducing terminus in common, except one diantennary structure bearing an intact N,N'-diacetylchitobiose unit at the reducing end, which is a new feature in human glycoproteinosis urine.  相似文献   

13.
Sun Q  Zhao L  Song Q  Wang Z  Qiu X  Zhang W  Zhao M  Zhao G  Liu W  Liu H  Li Y  Liu X 《Glycobiology》2012,22(3):369-378
N-linked glycans are composed of three major types: high-mannose (Man), hybrid or complex. The functional role of hybrid- and complex-type N-glycans in Newcastle disease virus (NDV) infection and fusion was examined in N-acetylglucosaminyltransferase I (GnT I)-deficient Lec1 cells, a mutant Chinese hamster ovary (CHO) cell incapable of synthesizing hybrid- and complex-type N-glycans. We used recombinant NDV expressing green fluorescence protein or red fluorescence protein to monitor NDV infection, syncytium formation and viral yield. Flow cytometry showed that CHO-K1 and Lec1 cells had essentially the same degree of NDV infection. In contrast, Lec2 cells were found to be resistant to NDV infection. Compared with CHO-K1 cells, Lec1 cells were shown to more sensitive to fusion induced by NDV. Viral attachment was found to be comparable in both lines. We found that there were no significant differences in the yield of progeny virus produced by both CHO-K1 and Lec1 cells. Quantitative analysis revealed that NDV infection and fusion in Lec1 cells were also inhibited by treatment with sialidase. Pretreatment of Lec1 cells with Galanthus nivalis agglutinin specific for terminal α1-3-linked Man prior to inoculation with NDV rendered Lec1 cells less sensitive to cell-to-cell fusion compared with mock-treated Lec1 cells. Treatment of CHO-K1 and Lec1 cells with tunicamycin, an inhibitor of N-glycosylation, significantly blocked fusion and infection. In conclusion, our results suggest that hybrid- and complex-type N-glycans are not required for NDV infection and fusion. We propose that high-Man-type N-glycans could play an important role in the cell-to-cell fusion induced by NDV.  相似文献   

14.
Murine sperm initiate fertilization by binding to specific oligosaccharides linked to the zona pellucida, the specialized matrix coating the egg. Biophysical analyses have revealed the presence of both high mannose and complex-type N-glycans in murine zona pellucida. The predominant high mannose-type glycan had the composition Man(5)GlcNAc(2), but larger oligosaccharides of this type were also detected. Biantennary, triantennary, and tetraantennary complex-type N-glycans were found to be terminated with the following antennae: Galbeta1-4GlcNAc, NeuAcalpha2-3Galbeta1-4GlcNAc, NeuGcalpha2-3Galbeta1-4GlcNAc, the Sd(a) antigen (NeuAcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc, NeuGcalpha2-3[GalNAcbeta1-4]Galbeta1-4GlcNAc), and terminal GlcNAc. Polylactosamine-type sequence was also detected on a subset of the antennae. Analysis of the O-glycans indicated that the majority were core 2-type (Galbeta1-4GlcNAcbeta1-6[Galbeta1-3]GalNAc). The beta1-6-linked branches attached to these O-glycans were terminated with the same sequences as the N-glycans, except for terminal GlcNAc. Glycans bearing Galbeta1-4GlcNAcbeta1-6 branches have previously been suggested to mediate initial murine gamete binding. Oligosaccharides terminated with GalNAcbeta1-4Gal have been implicated in the secondary binding interaction that occurs following the acrosome reaction. The significant implications of these observations are discussed.  相似文献   

15.
N-linked carbohydrate chains of the major 55-kDa family, PZP3, of porcine zona pellucida glycoproteins are composed of neutral (28%) and acidic (72%) complex-type chains. The structures of the main components of the neutral chain have been established [Noguchi, S., Hatanaka, Y., Tobita, T. & Nakano, M. (1992) Eur. J. Biochem. 204, 1089-1100]. Here we report the structures of the acidic chains. Only two kinds of acidic fragments were released from PZP3 by endo-beta-galactosidase digestion following beta-elimination of O-linked chains. 500-MHz one-dimensional and two-dimensional 1H-NMR spectroscopy revealed their structures to be Sia alpha(2-3)Gal beta(1-4) [HSO3-6]GlcNAc beta(1-3)Gal and HSO3-6GlcNAc beta(1-3)Gal, showing that the sulfate-containing acidic chains are constructed with non-branched N-acetyllactosamine repeats which have sialic acid(s) at the non-reducing end(s) and sulfate at the C-6 position of GlcNAc residues. The acidic N-linked chains obtained from PZP3 by hydrazinolysis were separated into diantennary chains (34%) and tri- and tetra-antennary chains (66%) by concanavalin-A--agarose gel chromatography. The diantennary chains and their sialidase digests were fractionated by DEAE-HPLC. From the analyses of the endo-beta-galactosidase digests of each fraction, structures of the diantennary acidic chains were determined. They are classified into four groups. The first group is the sialylated chains without the sulfated N-acetyllactosamine repeating unit. The other three groups have the chains of various lengths differing in the number of monosulfated N-acetyllactosamine unit. These chains are extended from the Man alpha(1-3) branch of the trimannosyl core in the second group, from the Man alpha(1-6) branch in the third group, and from both branches in the fourth group. The structural features of the tri- and tetra-antennary acidic chains are also presented.  相似文献   

16.
Human alpha1-antitrypsin (A1PI) is a well-known glycoprotein in human plasma important for the protection of tissues from proteolytic enzymes. The three N-glycosylation sites of A1PI contain diantennary N-glycans but also triantennary and even traces of tetraantennary structures leading to the typical IEF pattern observed for A1PI. Here we present an approach to characterize A1PI isoforms from human plasma and its PTMs by LC-ESI-MS and LC-ESI-MS/MS of peptides obtained by proteolytic digestion. The single cysteine residue of A1PI formed a disulfide bridge with free cysteine. The variability of the number of antennae and hence sialic acids on glycosylation site N107, which even contained minute amounts of tetraantennary structures, emerged as a major cause for the IEF pattern of A1PI. Only negligible amounts of triantennary structures were identified attached to N70, and exclusively diantennary structures were present on site N271 in each of the isoforms analyzed. Exoglycosidase digests revealed alpha2,6-linked neuraminic acids on diantennary N-glycans, and triantennary contained additionally one single alpha2,3-neuraminic acid per N-glycan, which, together with a fucose, formed a sialyl Lewis X determinant on the beta1,4-linked N-acetylglucosamine, as shown by 2-D-HPLC of pyridylaminated asialoglycans. Fucosylation of diantennary structures was marginal and of the core alpha1,6 type.  相似文献   

17.
Polysialylated neural cell adhesion molecule (NCAM) was immunoaffinity-purified from the brains of newborn calves. A degree of polymerization of up to 40 was chromatographically determined for released polysialic acid (PSA) chains. For characterization of N-glycan structures and attachment sites, PSA-NCAM was digested with trypsin, and the generated glycopeptides were fractionated by serial immunoaffinity chromatography using immobilized monoclonal antibodies specific for PSA or the HNK1 epitope, i.e., HSO(3)-3GlcA(beta 1-3)Gal(beta 1-4)GlcNAc(beta 1-, yielding PSA-glycopeptides, HNK-glycopeptides and non-PSA/HNK1-(glyco) peptides. Using a combination of enzymatic deglycosylation, peptide fractionation, mass spectrometry and Edman degradation, HNK1-N-glycans could be assigned to glycosylation sites 2, 4, 5 and 6. Non-PSA/HNK1-glycans were assigned to glycosylation site 2, whereas PSA-N-glycans of bovine NCAM had been already previously shown to be restricted to glycosylation sites 5 and 6 (Glycobiology 12 (2002) 47). Respective oligosaccharides were enzymatically released, labeled with 2-aminopyridine and characterized by linkage analysis and mass spectrometry. Carbohydrate chains bearing PSA or the HNK1 epitope comprised mainly fucosylated, partially sulfated diantennary, triantennary or tetraantennary glycans without bisecting GlcNAc or fucosylated diantennary and triantennary species carrying, in part, bisecting GlcNAc residues, respectively. Some N-glycans simultaneously contained both the HNK1-epitope and PSA. Non-PSA/HNK1-glycans exhibited a heterogeneous pattern of partially truncated, mostly diantennary structures with one to three fucose residues, bisecting GlcNAc and/or sulfate residues. In addition, they were demonstrated to carry, to some extent, the Lewis X epitope. When compared with previous data on murine NCAM glycosylation, our results indicate a conservation of structural features and attachment sites for the different types of NCAM N-glycans.  相似文献   

18.
Poly-N-acetyllactosamine extension has been found in O-glycans in addition to N-glycans and glycosphingolipids. Attempts were made in HL-60 and K562 cells to determine the amount of poly-N-acetyllactosaminyl O-glycans in the major sialoglycoprotein, leukosialin. Leukosialin was immunoprecipitated from [3H]glucosamine-labeled HL-60 and K562 cells. Glycopeptides were prepared by Pronase digestion, and O-glycan-containing glycopeptides were isolated by affinity chromatography using Jacalin-agarose. The glycopeptides bound to Jacalin-agarose and those unbound were treated with alkaline borohydride, and the released O-glycans were fractionated by Bio-Gel P-4 filtration. Sequential glycosidase digestion of the O-glycans, with or without pretreatment by fucosidase or neuraminidase, revealed the following conclusions. 1) Leukosialin from HL-60 cells contains about 1-2 poly-N-acetyllactosaminyl O-glycan chains/molecule. 2) About 50% of these poly-N-acetyllactosaminyl O-glycans contain sialyl Le(x) termini, NeuNAc alpha 2-->3Gal beta 1-->4 (Fuc alpha 1-->3)GlcNAc beta 1-->R. The amount of sialyl Le(x) structure in leukosialin is roughly equivalent to that on cell surfaces of HL-60 cells. 3) Leukosialin from K562 cells, on the other hand, contains no detectable amount of poly-N-acetyllactosaminyl O-glycans. 4) The presence of poly-N-acetyllactosamine in O-glycans is dependent on the core 2 beta 1,6-N-acetylglucosaminyl transferase. 5) Jacalin-agarose binds to sialylated small oligosaccharides such as NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->6) GalNAc but not the hexasaccharide NeuNAc alpha 2-->3Gal beta 1-->3(NeuNAc alpha 2-->3Gal beta 1-->4GlcNAc beta 1-->6) GalNAc. These results indicate that the formation of polylactosaminyl O-glycans and sialyl Le(x) structure in O-glycans is dependent on the core 2 formation.  相似文献   

19.
The asparagine-linked sugar chains of fibronectin purified from human placenta were quantitatively released as oligosaccharides by hydrazinolysis. After N-acetylation, they were converted to radioactive oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharides were fractionated by their charge on an anion-exchange column chromatography. All of the acidic oligosaccharides could be converted to neutral oligosaccharides by sialidase digestion. These oligosaccharides were then fractionated by serial affinity chromatography using immobilized lectin columns. Study of each oligosaccharide by sequential exoglycosidase digestion and methylation analysis revealed the following information as to the structures of the sugar chains of human placental fibronectin: 1) nine sugar chains are included in one molecule; 2) all sialic acid residues are exclusively linked at the C-3 position of the galactose residues; 3) bi-, tri-, and tetraantennary complex-type oligosaccharides with the Man alpha 1----6(Man alpha 1----3)Man beta 1----4GlcNAc beta 1----4 (+/- Fuc alpha 1----6)-GlcNac as their cores were found; 4) the bisecting N-acetylglucosamine residue and the Gal beta 1----4GlcNAc beta 1----repeating groups are included in some of the sugar chains.  相似文献   

20.
Glycans containing the GalNAcbeta1-4GlcNAc (LacdiNAc or LDN) motif are expressed by many invertebrates, but this motif also occurs in vertebrates and is found on several mammalian glycoprotein hormones. This motif contrasts with the more commonly occurring Galbeta1-4GlcNAc (LacNAc or LN) motif. To better understand LDN biosynthesis and regulation, we stably expressed the cDNA encoding the Caenorhabditis elegans beta1,4-N-acetylgalactosaminyltransferase (GalNAcT), which generates LDN in vitro, in Chinese hamster ovary (CHO) Lec8 cells, to establish L8-GalNAcT CHO cells. The glycan structures from these cells were determined by mass spectrometry and linkage analysis. The L8-GalNAcT cell line produces complex-type N-glycans quantitatively bearing LDN structures on their antennae. Unexpectedly, most of these complex-type N-glycans contain novel "poly-LDN" structures consisting of repeating LDN motifs (-3GalNAcbeta1-4GlcNAcbeta1-)n. These novel structures are in contrast to the well known poly-LN structures consisting of repeating LN motifs (-3Galbeta1-4GlcNAcbeta1-)n. We also stably expressed human alpha1,3-fucosyltransferase IX in the L8-GalNAcT cells to establish a new cell line, L8-GalNAcT-FucT. These cells produce complex-type N-glycans with alpha1,3-fucosylated LDN (LDNF) GalNAcbeta1-4(Fucalpha1-3)GlcNAcbeta1-R as well as novel "poly-LDNF" structures (-3GalNAcbeta1-4(Fucalpha 1-3)GlcNAcbeta1-)n. The ability of these cell lines to generate glycoprotein hormones with LDN-containing N-glycans was studied by expressing a recombinant form of the common alpha-subunit in L8-GalNAcT cells. The alpha-subunit N-glycans carried LDN structures, which were further modified by co-expression of the human GalNAc 4-sulfotransferase I, which generates SO4-4GalNAcbeta1-4GlcNAc-R. Thus, the generation of these stable mammalian cells will facilitate future studies on the biological activities and properties of LDN-related structures in glycoproteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号