首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sterols are moved between cellular membranes by nonvesicular pathways whose functions are poorly understood. In yeast, one such pathway transfers sterols from the plasma membrane (PM) to the endoplasmic reticulum (ER). We show that this transport requires oxysterol-binding protein (OSBP)-related proteins (ORPs), which are a large family of conserved lipid-binding proteins. We demonstrate that a representative member of this family, Osh4p/Kes1p, specifically facilitates the nonvesicular transfer of cholesterol and ergosterol between membranes in vitro. In addition, Osh4p transfers sterols more rapidly between membranes containing phosphoinositides (PIPs), suggesting that PIPs regulate sterol transport by ORPs. We confirmed this by showing that PM to ER sterol transport slows dramatically in mutants with conditional defects in PIP biosynthesis. Our findings argue that ORPs move sterols among cellular compartments and that sterol transport and intracellular distribution are regulated by PIPs.  相似文献   

2.
StarD4 protein is a member of the StarD4 subfamily of steroidogenic acute regulatory-related lipid transfer (START) domain proteins that includes StarD5 and StarD6, proteins whose functions remain poorly defined. The objective of this study was to isolate and characterize StarD4's sterol binding and to determine in a hepatocyte culture model its sterol transport capabilities. Utilizing purified full-length StarD4, in vitro binding assays demonstrated a concentration-dependent binding of [(14)C]cholesterol by StarD4 similar to that of the cholesterol binding START domain proteins StarD1 and StarD5. Other tested sterols showed no detectable binding to StarD4, except for 7alpha-hydroxycholesterol, for which StarD4 demonstrated weak binding on lipid protein overlay assays. Subsequently, an isolated mouse hepatocyte model was used to study the ability of StarD4 to bind/mobilize/distribute cellular cholesterol. Increased expression of StarD4 in primary mouse hepatocytes led to a marked increase in the intracellular cholesteryl ester concentration and in the rates of bile acid synthesis. The ability and specificity of StarD4 to bind cholesterol and, as a function of its level of expression, to direct endogenous cellular cholesterol suggest that StarD4 plays an important role as a directional cholesterol transporter in the maintenance of cellular cholesterol homeostasis.  相似文献   

3.
Pulmonary surfactant, a mixture of proteins and phospholipids, plays an important role in facilitating gas exchange by maintaining alveolar stability. Saturated phosphatidylcholine (SatPC), the major component of surfactant, is synthesized both de novo and by the remodeling of unsaturated phosphatidylcholine (PC) by lyso-PC acyltransferase 1 (LPCAT1). After synthesis in the endoplasmic reticulum, SatPC is routed to lamellar bodies (LBs) for storage prior to secretion. The mechanism by which SatPC is transported to LB is not understood. The specificity of LPCAT1 for lyso-PC as an acyl acceptor suggests that formation of SatPC via LPCAT1 reacylation is a final step in SatPC synthesis prior to transport. We hypothesized that LPCAT1 forms a transient complex with SatPC and specific phospholipid transport protein(s) to initiate trafficking of SatPC from the endoplasmic reticulum to the LB. Herein we have assessed the ability of different StarD proteins to interact with LPCAT1. We found that LPCAT1 interacts with StarD10, that this interaction is direct, and that amino acids 79–271 of LPCAT1 and the steroidogenic acute regulatory protein-related lipid transfer (START) domain of START domain-containing protein 10 (StarD10) are sufficient for this interaction. The role of StarD10 in trafficking of phospholipid to LB was confirmed by the observation that knockdown of StarD10 significantly reduced transport of phospholipid to LB. LPCAT1 also interacted with one isoform of StarD7 but showed no interaction with StarD2/PC transfer protein.  相似文献   

4.
Sterols are transferred between cellular membranes by vesicular and poorly understood nonvesicular pathways. Oxysterol-binding protein–related proteins (ORPs) have been implicated in sterol sensing and nonvesicular transport. In this study, we show that yeast ORPs use a novel mechanism that allows regulated sterol transfer between closely apposed membranes, such as organelle contact sites. We find that the core lipid-binding domain found in all ORPs can simultaneously bind two membranes. Using Osh4p/Kes1p as a representative ORP, we show that ORPs have at least two membrane-binding surfaces; one near the mouth of the sterol-binding pocket and a distal site that can bind a second membrane. The distal site is required for the protein to function in cells and, remarkably, regulates the rate at which Osh4p extracts and delivers sterols in a phosphoinositide-dependent manner. Together, these findings suggest a new model of how ORPs could sense and regulate the lipid composition of adjacent membranes.  相似文献   

5.
Recently identified StarD5 belongs to the StarD4 subfamily, a subfamily of steroidogenic acute regulatory related lipid transfer (START) domain proteins that includes StarD4 and StarD6, proteins whose functions remain unknown. The objective of this study was to confirm StarD5's protein localization and sterol binding capabilities as measures to pursue function. Using rabbit polyclonal antibody against newly purified human histidine-tagged/StarD5 protein, StarD5 was detected in human liver. In parallel studies, increased expression of StarD5 in primary hepatocytes led to a marked increase in microsomal free cholesterol. Cell fractionation studies demonstrated StarD5 protein in liver cytosolic fractions only, suggesting StarD5 as a directional cytosolic sterol carrier. Supportive in vitro binding assays demonstrated a concentration-dependent binding of cholesterol by StarD5 similar to that of the cholesterol binding START domain protein StarD1. In contrast to selective cholesterol binding by StarD1, StarD5 bound the potent regulatory oxysterol, 25-hydroxycholesterol, in a concentration-dependent manner. StarD5 binding appeared selective for cholesterol and 25-hydroxycholesterol, as no binding was observed for other tested sterols. The ability of StarD5 to bind not only cholesterol but also 25-hydroxycholesterol, a potent inflammatory mediator and regulatory oxysterol, raises basic fundamental questions about StarD5's role in the maintenance of cellular cholesterol homeostasis.  相似文献   

6.
7.
Human StarD5 belongs to the StarD4 subfamily of START (for steroidogenic acute regulatory lipid transfer) domain proteins. We previously reported that StarD5 is located in the cytosolic fraction of human liver and binds cholesterol and 25-hydroxycholesterol. After overexpression of the gene encoding StarD5 in primary rat hepatocytes, free cholesterol accumulated in intracellular membranes. These findings suggested StarD5 to be a directional cytosolic sterol transporter. The objective of this study was to determine the localization of StarD5 in human liver. Western blot analysis confirmed StarD5's presence in the liver but not in human hepatocytes. Immunohistochemistry studies showed StarD5 localized within sinusoidal lining cells in the human liver and colocalized with CD68, a marker for Kupffer cells. Western blot analyses identified the presence of StarD5 in monocytes and macrophages as well as mast cells, basophils, and promyelocytic cells, but not in human hepatocytes, endothelial cells, fibroblasts, osteocytes, astrocytes, or brain tissue. Cell fractionation and immunocytochemistry studies on THP-1 macrophages localized StarD5 to the cytosol and supported an association with the Golgi. The presence of this cholesterol/25-hydroxycholesterol-binding protein in cells related to inflammatory processes provides new clues to the role of this protein in free sterol transport in the cells and in lipid-mediated atherogenesis.  相似文献   

8.
Lipid transport between intracellular organelles is mediated by vesicular and nonvesicular transport mechanisms and is critical for maintaining the identities of different cellular membranes. Nonvesicular lipid transport between the endoplasmic reticulum (ER) and the Golgi complex has been proposed to affect the lipid composition of the Golgi membranes. Here, we show that the integral ER-membrane proteins VAP-A and VAP-B affect the structural and functional integrity of the Golgi complex. Depletion of VAPs by RNA interference reduces the levels of phosphatidylinositol-4-phosphate (PI4P), diacylglycerol, and sphingomyelin in the Golgi membranes, and it leads to substantial inhibition of Golgi-mediated transport events. These effects are coordinately mediated by the lipid-transfer/binding proteins Nir2, oxysterol-binding protein (OSBP), and ceramide-transfer protein (CERT), which interact with VAPs via their FFAT motif. The effect of VAPs on PI4P levels is mediated by the phosphatidylinositol/phosphatidylcholine transfer protein Nir2, which is required for Golgi targeting of OSBP and CERT and the subsequent production of diacylglycerol and sphingomyelin. We propose that Nir2, OSBP, and CERT function coordinately at the ER-Golgi membrane contact sites, thereby affecting the lipid composition of the Golgi membranes and consequently their structural and functional identities.  相似文献   

9.
StarD7 is a surface active protein, structurally related with the START lipid transport family. So, the present work was aimed at elucidating a potential mechanism of action for StarD7 that could be related to its interaction with a lipid-membrane interface. We applied an assay based on the fluorescence de-quenching of BD-HPC-labeled DMPC-DMPS 4:1 mol/mol SUVs (donor liposomes) induced by the dilution with non-labeled DMPC-DMPS 4:1 mol/mol LUVs (acceptor liposomes). Recombinant StarD7 accelerated the dilution of BD-HPC in a concentration-dependent manner. This result could have been explained by either a bilayer fusion or monomeric transport of the labeled lipid between donor and acceptor liposomes. Further experiments (fluorescence energy transfer between DPH-HPC/BD-HPC, liposome size distribution analysis by dynamic light scattering, and the multinuclear giant cell formation induced by recombinant StarD7) strongly indicated that bilayer fusion was the mechanism responsible for the StarD7-induced lipid dilution. The efficiency of lipid dilution was dependent on StarD7 electrostatic interactions with the lipid-water interface, as shown by the pH- and salt-induced modulation. Moreover, this process was favored by phosphatidylethanolamine which is known to stabilize non-lamellar phases considered as intermediary in the fusion process. Altogether these findings allow postulate StarD7 as a fusogenic protein.  相似文献   

10.
The StarD4 and StarD5 proteins share approximately 30% identity, and each is a steroidogenic acute regulatory protein (StAR)-related lipid transfer (START) domain. We previously showed StarD4 expression is sterol-repressed, consistent with regulation by sterol regulatory element-binding proteins (SREBPs), whereas StarD5 is not sterol-regulated. Here we further address the regulation and function of StarD4 and StarD5. Unlike StAR, the START family prototype, StarD4 and StarD5 were not induced by steroidogenic stimuli in Leydig cells. However, StarD4 and StarD5 showed StAR-like activity in a cell culture steroidogenesis assay, indicating cholesterol transfer. In transgenic mice expressing active SREBPs, StarD4 was predominantly activated by SREBP-2 rather than SREBP-1a. The mouse and human StarD4 proximal promoters share approximately 70% identity, including several potential sterol regulatory elements (SREs). Reporters driven by the StarD4 promoter from either species were transfected into NIH-3T3 cells, and reporter activity was highly repressed by sterols. Site-directed mutagenesis of potential SREs identified a conserved functional SRE in the mouse (TCGGTCCAT) and human (TCATTCCAT) promoters. StarD5 was not sterol-repressed via SREBPs nor was it sterol-activated via liver X receptors (LXRs). Even though StarD4 and StarD5 were not LXR targets, their overexpression stimulated LXR reporter activity, suggesting roles in cholesterol metabolism. StarD5 expression increased 3-fold in free cholesterol-loaded macrophages, which activate the endoplasmic reticulum (ER) stress response. When NIH-3T3 cells were treated with agents to induce ER stress, StarD5 expression increased 6-8-fold. Because StarD4 is regulated by sterols via SREBP-2, whereas StarD5 is activated by ER stress, they likely serve distinct functions in cholesterol metabolism.  相似文献   

11.
12.
StAR family proteins, including StarD4, play a key role in steroidogenesis by transporting cholesterol (Ch) into mitochondria for conversion to pregnenolone. Using a model system consisting of peroxidized cholesterol (7α-OOH)-containing liposomes as donors, we showed that human recombinant StarD4 accelerates 7α-OOH transfer to isolated liver mitochondria, and to a greater extent than Ch transfer. StarD4 had no effect on transfer of non-oxidized or peroxidized phosphatidylcholine, consistent with sterol ring specificity. StarD4-accelerated 7α-OOH transfer to mitochondria resulted in greater susceptibility to free radical lipid peroxidation and loss of membrane potential than in a non-StarD4 control. The novel implication of these findings is that in oxidative stress states, inappropriate StAR-mediated trafficking of peroxidized Ch in steroidogenic tissues could result in damage and dysfunction selectively targeted to mitochondria.  相似文献   

13.
Phosphatidylinositolphosphates (PIPs) are phospholipids that contain a phosphorylated inositol head group. PIPs represent a minor fraction of total phospholipids, but are involved in many regulatory processes, such as cell signalling and intracellular trafficking. Membrane compartments are enriched or depleted in specific PIPs, providing a unique composition for these compartments and contributing to their identity. The precise subcellular localization and dynamics of most PIP species is not fully understood in plants. Here, we designed genetically encoded biosensors with distinct relative affinities and expressed them stably in Arabidopsis thaliana. Analysis of this multi‐affinity ‘PIPline’ marker set revealed previously unrecognized localization of various PIPs in root epidermis. Notably, we found that PI(4,5)P2 is able to localize PIP2‐interacting protein domains to the plasma membrane in non‐stressed root epidermal cells. Our analysis further revealed that there is a gradient of PI4P, with the highest concentration at the plasma membrane, intermediate concentration in post‐Golgi/endosomal compartments, and the lowest concentration in the Golgi. Finally, we also found a similar gradient of PI3P from high in late endosomes to low in the tonoplast. Our library extends the range of available PIP biosensors, and will allow rapid progress in our understanding of PIP dynamics in plants.  相似文献   

14.
Our studies on homeostatic restitution of cellular and subcellular membranes showed that vesicular intracellular transport is engaged in systematic and coordinated replacement of lipids and proteins in the membranes of the secretory, non-dividing epithelial cells (Slomiany et al., J. Physiol. Pharmacol. 2004; 55: 837-860). In this report, we present evidence on the homeostatic restitution of lipids in the biomembranes that constitute nuclear envelopes. We investigated nuclear membranes lipid synthesis by employing purified intact nuclei (IN), the outer nuclear membrane (ONM), the inner nuclear membrane (INM) and the cell cytosol (CC). In contrast to Endoplasmic Reticulum (ER) which in the presence of CC generates new biomembrane that forms ER vesicles transporting ER products to Golgi, the IN, ONM and INM are not producing transport vesicles. Instead, the newly synthesized lipids remain in the nuclear membranes. The membranes (INM, ONM) of IN incubated with CC become enriched with newly synthesized phosphatidylcholine (PC), phosphatidylinositol (PI), phosphatidylinositol phosphates (PIPs) and phosphatidic acid (PA). The incubation of separated ONM and INM with CC also enriched the membranes with IN specific lipids identified above. Moreover, the incubation of IN or its membranes with CC afforded retention of numerous CC proteins on the nuclear membrane. Here, we concentrated on 30kDa CC protein that displayed affinity to nuclear membrane PIP2. The 30kDa CC protein bound to PIP2 of IN, INM, and ONM. With IN, initially the PIP2-30kDa CC protein complex was detected on ONM, after 30-120 min of incubation, was found on INM and in nuclear contents. At the same time when the 30 kDa protein was released from INM and found in nuclear contents, the PIP2 of INM and ONM became undetectable, while the lipid extract from the membrane displaced from IN contained labeled PI only. Since ONM is an uninterrupted continuum of ER and INM, we speculate that the synthesis of the lipids in the ER, in the region adjacent to nucleus, is defining nuclear outer and inner biomembrane composition, is responsible for transport of the cytosolic protein into the nucleus and, replenishment of ER membrane used for vesicular transport.  相似文献   

15.
Wu H  Feng W  Chen J  Chan LN  Huang S  Zhang M 《Molecular cell》2007,28(5):886-898
Multiple PDZ domain scaffold protein Par-3 and phosphoinositides (PIPs) are required for polarity in diverse cell types. We show that the second PDZ domain of Par-3 binds to phosphatidylinositol (PI) lipid membranes with high affinity. We further demonstrate that a large subset of PDZ domains in mammalian genomes are capable of binding to PI lipid membranes, indicating that lipid binding is the second most prevalent interaction mode of PDZ domains known to date. The biochemical and structural basis of Par-3 PDZ2-mediated membrane interaction is characterized in detail. The membrane binding capacity of Par-3 PDZ2 is critical for epithelial cell polarization. Interestingly, the lipid phosphatase PTEN directly binds to the third PDZ domain of Par-3. The concatenation of the PIP-binding PDZ2 and the lipid phosphatase PTEN-binding PDZ3 endows Par-3 as an ideal scaffold protein for integrating PIP signaling events during cellular polarization.  相似文献   

16.
We originally identified StarD10 as a protein overexpressed in breast cancer that cooperates with the ErbB family of receptor tyrosine kinases in cellular transformation. StarD10 contains a steroidogenic acute regulatory protein (StAR/StarD1)-related lipid transfer (START) domain that is thought to mediate binding of lipids. We now provide evidence that StarD10 interacts with phosphatidylcholine (PC) and phosphatidylethanolamine (PE) by electron spin resonance measurement. Interaction with these phospholipids was verified in a fluorescence resonance energy transfer-based assay with 7-nitro-2,1,3-benzoxadiazol-4-yl-labeled lipids. Binding was not restricted to lipid analogs since StarD10 selectively extracted PC and PE from small unilamellar vesicles prepared with endogenous radiolabeled lipids from Vero monkey kidney cells. Mass spectrometry revealed that StarD10 preferentially selects lipid species containing a palmitoyl or stearoyl chain on the sn-1 and an unsaturated fatty acyl chain (18:1 or 18:2) on the sn-2 position. StarD10 was further shown to bind lipids in vivo by cross-linking of protein expressed in transfected HEK-293T cells with photoactivable phosphatidylcholine. In addition to a lipid binding function, StarD10 transferred PC and PE between membranes. Interestingly, these lipid binding and transfer specificities distinguish StarD10 from the related START domain proteins Pctp and CERT, suggesting a distinct biological function.  相似文献   

17.
Oxysterol-binding protein (OSBP) and OSBP-related proteins (ORPs) are a conserved family of soluble cytoplasmic proteins that can bind sterols, translocate between membrane compartments, and affect sterol trafficking. These properties make ORPs attractive candidates for lipid transfer proteins (LTPs) that directly mediate nonvesicular sterol transfer to the plasma membrane. To test whether yeast ORPs (the Osh proteins) are sterol LTPs, we studied endoplasmic reticulum (ER)-to-plasma membrane (PM) sterol transport in OSH deletion mutants lacking one, several, or all Osh proteins. In conditional OSH mutants, ER-PM ergosterol transport slowed ~20-fold compared with cells expressing a full complement of Osh proteins. Although this initial finding suggested that Osh proteins act as sterol LTPs, the situation is far more complex. Osh proteins have established roles in Rho small GTPase signaling. Osh proteins reinforce cell polarization and they specifically affect the localization of proteins involved in polarized cell growth such as septins, and the GTPases Cdc42p, Rho1p, and Sec4p. In addition, Osh proteins are required for a specific pathway of polarized secretion to sites of membrane growth, suggesting that this is how Osh proteins affect Cdc42p- and Rho1p-dependent polarization. Our findings suggest that Osh proteins integrate sterol trafficking and sterol-dependent cell signaling with the control of cell polarization.  相似文献   

18.
19.
The transport of water through membranes is regulated in part by aquaporins or water channel proteins. These proteins are members of the larger family of major intrinsic proteins (MIPs). Plant aquaporins are categorized as either tonoplast intrinsic proteins (TIPs) or plasma membrane intrinsic proteins (PIPs). Sequence analysis shows that PIPs form several subclasses. We report on the characterization of three maize (Zea mays) PIPs belonging to the PIP1 and PIP2 subfamilies (ZmPIP1a, ZmPIP1b, and ZmPIP2a). The ZmPIP2a clone has normal aquaporin activity in Xenopus laevis oocytes. ZmPIP1a and ZmPIP1b have no activity, and a review of the literature shows that most PIP1 proteins identified in other plants have no or very low activity in oocytes. Arabidopsis PIP1 proteins are the only exception. Control experiments show that this lack of activity of maize PIP1 proteins is not caused by their failure to arrive at the plasma membrane of the oocytes. ZmPIP1b also does not appear to facilitate the transport of any of the small solutes tried (glycerol, choline, ethanol, urea, and amino acids). These results are discussed in relationship to the function and regulation of the PIP family of aquaporins.  相似文献   

20.
Sterols are important components of many biological membranes, and changes in sterol levels can have dramatic effects on membrane properties. Sterols are transported rapidly between cellular organelles by vesicular and nonvesicular processes. Recent studies have identified transmembrane proteins that facilitate the removal of sterols from membranes as well as soluble cytoplasmic proteins that play a role in their movement through the cytoplasm. The mechanisms by which these proteins work are generally not well understood. Cells maintain large differences in the sterol:phospholipid ratio in different organelles. Recent theoretical and experimental studies indicate ways in which the lipid environment can alter the chemical potential of sterols, which may help to explain aspects of their transport kinetics and distribution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号