首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Supercoiling of intracellular DNA can occur in eukaryotic cells   总被引:40,自引:0,他引:40  
G N Giaever  J C Wang 《Cell》1988,55(5):849-856
  相似文献   

2.
3.
4.
5.
6.
proU expression has been proposed to form part of a general stress response that is regulated by increased negative DNA supercoiling brought about by environmental signals such as osmotic or anaerobic stress (N. Ni Bhriain, C. J. Dorman, and C. F. Higgins, Mol. Microbiol. 3:933-944, 1989). However, we find that although proU-containing plasmids derived from cells grown in media of elevated osmolarity were more supercoiled than plasmids from cells grown in standard media, they did not activate proU expression in vitro. The gyrA96 mutation and anaerobic conditions are known to affect DNA supercoiling but did not alter proU expression. Finally, the gyrase inhibitors coumermycin and novobiocin did not reduce in vitro proU expression. Therefore, this evidence rules out regulation by changes in DNA superhelicity for proU in Escherichia coli.  相似文献   

7.
8.
9.
10.
Y P Tsao  H Y Wu  L F Liu 《Cell》1989,56(1):111-118
  相似文献   

11.
In vivo correlation between DNA supercoiling and transcription   总被引:12,自引:0,他引:12  
  相似文献   

12.
The essential Bacillus subtilis DnaD and DnaB proteins have been implicated in the initiation of DNA replication. Recently, DNA remodeling activities associated with both proteins were discovered that could provide a link between global or local nucleoid remodeling and initiation of replication. DnaD forms scaffolds and opens up supercoiled plasmids without nicking to form open circular complexes, while DnaB acts as a lateral compaction protein. Here we show that DnaD-mediated opening of supercoiled plasmids is accompanied by significant untwisting of DNA. The net result is the conversion of writhe (Wr) into negative twist (Tw), thus maintaining the linking number (Lk) constant. These changes in supercoiling will reduce the considerable energy required to open up closed circular plectonemic DNA and may be significant in the priming of DNA replication. By comparison, DnaB does not affect significantly the supercoiling of plasmids. Binding of the DnaD C-terminal domain (Cd) to DNA is not sufficient to convert Wr into negative Tw, implying that the formation of scaffolds is essential for duplex untwisting. Overall, our data suggest that the topological effects of the two proteins on supercoiled DNA are different; DnaD opens up, untwists and converts plectonemic DNA to a more paranemic form, whereas DnaB does not affect supercoiling significantly and condenses DNA only via its lateral compaction activity. The significance of these findings in the initiation of DNA replication is discussed.  相似文献   

13.
DNA in bacterial chromosomes and bacterial plasmids is supercoiled. DNA supercoiling is essential for DNA replication and gene regulation. However, the density of supercoiling in vivo is circa twice smaller than in deproteinized DNA molecules isolated from bacteria. What are then the specific advantages of reduced supercoiling density that is maintained in vivo? Using Brownian dynamics simulations and atomic force microscopy we show here that thanks to physiological DNA–DNA crowding DNA molecules with reduced supercoiling density are still sufficiently supercoiled to stimulate interaction between cis-regulatory elements. On the other hand, weak supercoiling permits DNA molecules to modulate their overall shape in response to physiological changes in DNA crowding. This plasticity of DNA shapes may have regulatory role and be important for the postreplicative spontaneous segregation of bacterial chromosomes.  相似文献   

14.
Efficient repression of the two promoters P1 and P2 of the gal operon requires the formation of a DNA loop encompassing the promoters. In vitro, DNA looping-mediated repression involves binding of the Gal repressor (GalR) to two gal operators (OE and OI) and binding of the histone-like protein HU to a specific locus (hbs) about the midpoint between OE and OI, and supercoiled DNA. Without DNA looping, GalR binding to OE partially represses P1 and stimulates P2. We investigated the requirement for DNA supercoiling and HU in repression of the gal promoters in vivo in strains containing a fusion of a reporter gene, gusA or lacZ, to each promoter individually. While the P1 promoter was found to be repressible in the absence of DNA supercoiling and HU, the repression of P2 was entirely dependent upon DNA supercoiling in vivo. The P2 promoter was fully derepressed when supercoiling was inhibited by the addition of coumermycin in cells. P2, but not P1, was also totally derepressed by the absence of HU or the OI operator. From these results, we propose that the repression of the gal promoters in vivo is mediated by the formation of a higher order DNA-multiprotein complex containing GalR, HU and supercoiled DNA. In the absence of this complex, P1 but not P2 is still repressed by GalR binding to OE. The specific nucleoprotein complexes involving histone-like proteins, which repress promoter activity while remaining sensitive to inducing signals, as discussed, may occur more generally in bacterial nucleoids.  相似文献   

15.
16.
Structural and dynamic basis of a supercoiling-responsive DNA element   总被引:1,自引:0,他引:1  
  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号