首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Objectives:S100-β has been identified as a sensitive biomarker in central nervous system injuries. However, the functions and mechanisms of S100-β are unknown in spinal cord injury.Methods:Spinal cord injury (SCI) mouse model was generated by surgical operation, microglia activation model was established by inducing BV-2 cells with LPS. The SCI model was evaluated by Basso-Beattie-Bresnahan (BBB) behavioral score, HE staining, and Nissl staining. The expression level of S100-β was detected by qRT-PCR, western blot, and immunofluorescence. qRT-PCR and western blot were used to detect the expression of iNOS and CD16. Pro-inflammatory cytokines TNF-α and IL-1β levels were detected by qRT-PCR and ELISA.Results:The expression of IL-1β, TNF-α, iNOS, and CD16 increased at 3rd day after SCI. In BV2 microglia, LPS treatment promoted the expression of S100-β, IL-1β, TNF-α, iNOS, and CD16. Knockdown of S100-β reduced the expression of iNOS stimulated by LPS. Over-expression of S100-β increased IL-1β and TNF-α, and S100-β inhibition suppressed IL-1β and TNF-α. In SCI mice, knockdown of S100-β attenuated the spinal cord injury and inhibited the expression of iNOS, IL-1β, and TNF-α.Conclusions:Down-regulation of S100-β could inhibit the pathogenesis of SCI and inhibit the activation of M1 macrophages. S100-β may be a useful diagnostic biomarker or therapeutic target for SCI.  相似文献   

2.
OBJECTIVES: Several cytokines secreted from breast cancer tissues are suggested to be related to disease prognosis. We examined Th1/Th2/Th17 cytokines produced from three-dimensionally cultured breast cancer tissues and related them with patient clinical profiles. METHODS: 21 tumor tissues and 9 normal tissues surgically resected from breast cancer patients were cultured in thermoreversible gelatin polymer–containing medium. Tissue growth and Th1/Th2/Th17 cytokine concentrations in the culture medium were analyzed and were related with hormone receptor expressions and patient clinical profiles. RESULTS: IL-6 and IL-10 were expressed highly in culture medium of both cancer and normal tissues. However, IFN-γ, TNF-α, IL-2, and IL-17A were not detected in the supernatant of the three-dimensionally cultured normal mammary gland and are seemed to be specific to breast cancer tissues. The growth abilities of hormone receptor–negative cancer tissues were significantly higher than those of receptor-positive tissues (P = 0.0383). Cancer tissues of stage ≥ IIB patients expressed significantly higher TNF-α levels as compared with those of patients with stage < IIB (P = 0.0096). CONCLUSIONS: The tumor tissues resected from breast cancer patients can grow in the three-dimensional thermoreversible gelatin polymer culture system and produce Th1/Th2/Th17 cytokines. Hormone receptor–positive cancer tissues showed less growth ability. TNF-α is suggested to be a biomarker for the cancer stage.  相似文献   

3.
Many foods and food components boost the immune system, but little data are available regarding the mechanisms by which they do. Bacterial strains have disparate effects in stimulating the immune system. Indendritic cells, the gram-negative bacteria Escherichia coli upregulates proinflammatory cytokines, whereas gram-positive Lactobacillus acidophilus induces a robust interferon (IFN)-β response. The immune-modulating effects of astragalus root and elderberry fruit extracts were examined in bone marrow-derived murine dendritic cells that were stimulated with L. acidophilus or E. coli. IFN-β and other cytokines were measured by ELISA and RT-PCR. Endocytosis of fluorescence-labeled dextran and L. acidophilus in the presence of elderberry fruit or astragalus root extract was evaluated in dendritic cells. Our results show that both extracts enhanced L. acidophilus-induced IFN-β production and slightly decreased the proinflammatory response to E. coli. The enhanced IFN-β production was associated with upregulation of toll-like receptor 3 and to a varying degree, the cytokines IL-12, IL-6, IL-1β and TNF-α. Both extracts increased endocytosis in immature dendritic cells, and only slightly influenced the viability of the cells. In conclusion, astragalus root and elderberry fruit extracts increase the IFN-β inducing activity of L. acidophilus in dendritic cells, suggesting that they may exert antiviral and immune-enhancing activity.  相似文献   

4.
IntroductionCytokines produced by B cells are believed to play important roles in autoimmune diseases. CD22 targeting by epratuzumab has been demonstrated to inhibit phosphorylation of B cell receptor (BCR) downstream signaling in B cells. It has been shown that other sialoadhesin molecules related to CD22 have immunoregulatory functions; therefore, in the present study, we addressed the role of epratuzumab on the production of key cytokines by B cells of patients with systemic lupus erythematosus (SLE) and of healthy donors (HD).MethodsPeripheral blood B cells were purified and activated by BCR with or without Toll-like receptor 9 (TLR9) stimulation in the presence or absence of epratuzumab. Cytokine production by B cells (interleukin [IL]-6, tumor necrosis factor [TNF]-α and IL-10) in the supernatant and the induction of IL-10+ B cells from patients with SLE and HD were analyzed.ResultsThe secretion of the proinflammatory cytokines TNF-α and IL-6 by anti-BCR and BCR- and/or TLR9-activated B cells from HD and patients with SLE was inhibited by epratuzumab. In contrast, the production of IL-10 by B cells was not affected by epratuzumab under either stimulation condition. Consistently, the induction of IL-10–producing B cells in culture was not affected by epratuzumab.ConclusionsEpratuzumab, by targeting CD22, was able to inhibit the production of the proinflammatory cytokines IL-6 and TNF-α by B cells, in contrast to IL-10, in vitro. These data suggest that targeting CD22 alters the balance between proinflammatory cytokines (TNF-α, IL-6) and the regulatory cytokine IL-10 as another B cell effector mechanism.  相似文献   

5.
6.
7.
Background:Nigella sativa (N. sativa) and Silybum marianum (S. marianum) are used to regulate macrophage polarization in lipopolysaccharide-induced RAW 264.7 cells and thioglycollate-elicited peritoneal inflammation.Methods:Cytotoxicity assays and acute toxicity tests were performed to investigate the safe dose and toxicity of the prepared extracts. Also, nitric oxide production was determined by Griess assay on RAW264.7 and peritoneal macrophage supernatants. After RNA extraction from macrophages, real-time PCR was performed to measure the relative gene expression of tumor necrosis factor (TNF)-α, interleukin (IL)-6, transforming growth factor (TGF)-β, and IL-10. Finally, regulatory T cells (Treg cells) were counted by flow cytometry.Results:S. marianum methanolic extract (SME), N. sativa ethanolic extract (NEE), and their mixture (SME+NEE) decreased NO levels significantly in RAW264.7 and peritoneal murine macrophages. N. sativa ethanolic extract significantly increased IL-10 gene expression and significantly decreased IL-6 and TNF-α expression in RAW264.7 cells. In mixture-treated peritoneal macrophages, IL-10 and TGF-β expression were significantly increased, while IL-6 and TNF-α were significantly decreased. Also, the percentage of Treg cells was significantly greater in the mixture-treated cells than in controls.Conclusion:These results suggest that an SME and NEE mixture has anti-inflammatory and immunomodulatory activities and may be useful in the treatment of diseases of immunopathologic origin characterized by macrophage hyperactivation.Key Words: Cytokine, Inflammation, Nigella sativa, Nitric oxide, Silybum marianum  相似文献   

8.

Background

Neuroinflammation with activation of microglia and production of proinflammatory cytokines in the brain plays an active role in epileptic disorders. Brain oxidative stress has also been implicated in the pathogenesis of epilepsy. Damage in the hippocampus is associated with temporal lobe epilepsy, a common form of epilepsy in human. Peripheral inflammation may exacerbate neuroinflammation and brain oxidative stress. This study examined the impact of peripheral inflammation on seizure susceptibility and the involvement of neuroinflammation and oxidative stress in the hippocampus.

Results

In male, adult Sprague-Dawley rats, peripheral inflammation was induced by the infusion of Escherichia coli lipopolysaccharide (LPS, 2.5 mg/kg/day) into the peritoneal cavity for 7 days via an osmotic minipump. Pharmacological agents were delivered via intracerebroventricular (i.c.v.) infusion with an osmotic minipump. The level of cytokine in plasma or hippocampus was analyzed by ELISA. Redox-related protein expression in hippocampus was evaluated by Western blot. Seizure susceptibility was tested by intraperitoneal (i.p.)  injection of kainic acid (KA, 10 mg/kg). We found that i.p. infusion of LPS for 7 days induced peripheral inflammation characterized by the increases in plasma levels of interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). This is associated with a significant increase in number of the activated microglia (Iba-1+ cells), enhanced production of proinflammatory cytokines (including IL-1β, IL-6 and TNF-α), and tissue oxidative stress (upregulations of the NADPH oxidase subunits) in the hippocampus. These cellular and molecular responses to peripheral inflammation were notably blunted by i.c.v. infusion of a cycloxygenase-2 inhibitor, NS398 (5 μg/μl/h). The i.c.v. infusion of tempol (2.5 μg/μl/h), a reactive oxygen species scavenger, protected the hippocampus from oxidative damage with no apparent effect on microglia activation or cytokine production after peripheral inflammation. In the KA-induced seizure model, i.c.v. infusion of both NS398 and tempol ameliorated the increase in seizure susceptibility in animals succumbed to the LPS-induced peripheral inflammation.

Conclusions

Together these results indicated that LPS-induced peripheral inflammation evoked neuroinflammation and the subsequent oxidative stress in the hippocampus, resulting in the increase in KA-induced seizure susceptibility. Moreover, protection from neuroinflammation and oxidative stress in the hippocampus exerted beneficial effect on seizure susceptibility following peripheral inflammation.  相似文献   

9.
ObjectiveTo examine the impact of 5-Aza-2ʹ-deoxycytidine (5-AzadC) on methylation status of miR-124a genes in rheumatoid arthritis (RA) associated fibroblast-like synoviocytes (FLS) and its effect on RA-FLS proliferation and TNF-α expression.ResultsAfter 5-AzadC treatment, the expression of miR-124a was significantly increased compared with the control group (1.545 ± 0.189 vs 0.836 ± 0.166, p = 0.001). On the other hand, 5-AzadC significantly reduced IL-1β-mediated cell proliferation by nearly 2.5 fold (p = 0.006). Also, the level of TNF-α secreted from the cells treated with IL-1β plus 5-AzadC was considerably less than that from the cells treated with IL-1β alone (324.99 ± 22.73 ng/L vs 387.91 ± 58.51 ng/L, p = 0.022). After transfection with miR-124a inhibitor in RA-FLS treated with IL-1β plus 5-AzadC, the cell proliferation was increased by 18.2% and the TNF-α expression was increased by 19.0% (p = 0.001 and 0.011, respectively).ConclusionMethylation of miR-124a genes contributed to IL-1β-mediated RA-FLS proliferation and TNF-α expression.  相似文献   

10.
Pelargonium sidoides is a medical herb and respective extracts are used very frequently for the treatment of respiratory tract infections. However, the effects of Pelargonium sidoides and a special extract prepared from its roots (EPs 7630) on human immune cells are not fully understood. Here we demonstrate that EPs 7630 induced a rapid and dose-dependent production of TNF-α, IL-6, and IL-10 by human blood immune cells. This EPs 7630-induced cytokine profile was more pro-inflammatory in comparison with the profile induced by viral or bacterial infection-mimicking agents. The search for EPs 7630 target cells revealed that T-cells did not respond to EPs 7630 stimulation by production of TNF-α, IL-6, or IL-10. Furthermore, pretreatment of T-cells with EPs 7630 did not modulate their TNF-α, IL-6, and IL-10 secretion during subsequent activation. In contrast to lymphocytes, monocytes showed clear intracellular TNF-α staining after EPs 7630 treatment. Accordingly, EPs 7630 predominantly provoked activation of MAP kinases and inhibition of p38 strongly reduced the monocyte TNF-α production. The pretreatment of blood immune cells with EPs 7630 lowered their secretion of TNF-α and IL-10 and caused an IL-6 dominant response during second stimulation with viral or bacterial infection-mimicking agents. In summary, we demonstrate that EPs 7630 activates human monocytes, induces MAP kinase-dependent pro-inflammatory cytokines in these cells, and specifically modulates their production capacity of mediators known to lead to an increase of acute phase protein production in the liver, neutrophil generation in the bone marrow, and the generation of adaptive Th17 and Th22 cells.  相似文献   

11.
We recently discovered that the antidepressant sertraline is an effective inhibitor of hippocampus presynaptic Na+ channel permeability in vitro and of tonic-clonic seizures in animals in vivo. Several studies indicate that the pro-inflammatory cytokines in the central nervous system are increased in epilepsy and depression. On the other hand inhibition of Na+ channels has been shown to decrease pro-inflammatory cytokines in microglia. Therefore, the possibility that sertraline could overcome the rise in pro-inflammatory cytokine expression induced by seizures has been investigated. For this purpose, IL-1β and TNF-α mRNA expression was determined by RT-PCR in the hippocampus of rats administered once, or for seven consecutive days with sertraline at a low dose (0.75 mg/kg). The effect of sertraline at doses within the range of 0.75 to 25 mg/kg on the increase in IL-1β and TNF-α mRNA expression accompanying generalized tonic-clonic seizures, and increase in the pro-inflammatory cytokines expression induced by lipopolysaccharide was also investigated. We found that under basal conditions, a single 0.75 mg/kg sertraline dose decreased IL-1β mRNA expression, and also TNF-α expression after repeated doses. The increase in IL-1β and TNF-α expression induced by the convulsive agents and by the inoculation of lipopolysaccharide in the hippocampus was markedly reduced by sertraline also. Present results indicate that a reduction of brain inflammatory processes may contribute to the anti-seizure sertraline action, and that sertraline can be safely and successfully used at low doses to treat depression in epileptic patients.  相似文献   

12.
13.
Background:Non-alcoholic fatty liver disease (NAFLD) constitutes a global pandemic. An intricate network among cytokines and lipids possesses a central role in NAFLD pathogenesis. Red blood cells comprise an important source of both cytokines and signaling lipids and have an important role in molecular crosstalk during immunometabolic deregulation. However, their role in NAFLD has not been thoroughly investigated.Methods:Conditioned media from erythrocytes derived from 10 NAFLD patients (4 men, 6 women, aged 57.875±15.16) and 10 healthy controls (4 men, 6 women, aged 39.3±15.55) was analyzed for the cytokines IFN-γ, TNF-α, CCL2, CCL5, IL-8, IL-1β, IL-12p40, IL-17, MIP-1β, the signaling lipids sphingosine-1-phosphate (S1P) and lysophosphatidic acid (LPA), and cholesterol. Their effect on the cytokine profile released by RAW 264.7 macrophages was also studied.Results:MCP1 levels were greater in conditioned growth medium from NAFLD patient erythrocytes than in that from healthy controls (37±40 vs 6.51±5.63 pg/ml). No statistically significant differences were found between patients and healthy controls with regard to S1P, LPA, cholesterol, or eight other cytokines. TNF-a release by RAW 264.7 cells was greater after incubation with patient-derived erythrocyte-conditioned medium than in medium without RAW 264.7 cells from either healthy or NAFLD subjects.Conclusion:Erythrocytes may contribute to liver infiltration by monocytes, and macrophage activation, partially due to CCL2 release, in the context of NAFLD..Key Words: Cytokines, Erythrocytes, Lipids, Non-alcoholic fatty liver disease, Signaling  相似文献   

14.
15.
The effect of inhomogeneous static magnetic field (SMF)-exposure on the production of different cytokines from human peripheral blood mononuclear cells (PMBC), i.e., lymphocytes and macrophages, was tested in vitro. Some cultures were activated with lipopolysaccharide (LPS) at time point −3 h and were either left alone (positive control) or exposed to SMF continuously from 0 until 6, 18, or 24 h. The secretion of interleukin IL-6, IL-8, tumor necrosis factor TNF-α, and IL-10 was tested by ELISA. SMF-exposure caused visible morphological changes on macrophages as well as on lymphocytes, and also seemed to be toxic to lymphocytes ([36.58; 41.52]%, 0.308≤p≤0.444), but not to macrophages (<1.43%, p≥0.987). Analysis of concentrations showed a significantly reduced production of pro-inflammatory cytokines IL-6, IL-8, and TNF-α from macrophages compared to negative control ([56.78; 87.52]%, p = 0.031) and IL-6 compared to positive control ([45.15; 56.03]%, p = 0.035). The production of anti-inflammatory cytokine IL-10 from macrophages and from lymphocytes was enhanced compared to negative control, significantly from lymphocytes ([−183.62; −28.75]%, p = 0.042). The secretion of IL-6 from lymphocytes was significantly decreased compared to positive control ([−115.15; −26.84]%, p = 0.039). This massive in vitro evidence supports the hypotheses that SMF-exposure (i) is harmful to lymphocytes in itself, (ii) suppresses the release of pro-inflammatory cytokines IL-6, IL-8, and TNF-α, and (iii) assists the production of anti-inflammatory cytokine IL-10; thus providing a background mechanism of the earlier in vivo demonstrated anti-inflammatory effects of SMF-exposure.  相似文献   

16.
[Purpose]In this study, we investigated whether a 70% ethanolic (EtOH) extract of Sargassum horneri had antioxidant and anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated macrophage-like RAW 264.7 cells.[Methods]The proximate composition, fatty acids, amino acids, and dietary fiber of S. horneri, various biologically active compounds, and antioxidant activity were analyzed.[Results]The DPPH and ABTS free radical scavenging activities, as well as the reduction power, of the S. horneri extract used here were significantly increased in a concentration-dependent manner. This indicates that S. horneri contains bioactive compounds, such as phenols and flavonoids, that have excellent antioxidant activity. The cellular viability and metabolic activity results confirmed that the extract had no discernible toxicity at concentrations up to 100 μg/mL. The levels of nitrites and cytokines (PGE2, TNF-α and IL-6), which mediate pro-inflammatory effect, were significantly inhibited by treatment with either 50 or 100 μg/mL S. horneri extract, whereas that of IL-1β was significantly inhibited by treatment with 100 μg/mL of the extract. Similarly, the expression of iNOS and COX-2 proteins also decreased according to 50 or 100 μg/mL extract concentrations. NF-κB binding to DNA was also significantly inhibited by treatment with 100 μg/mL of extract.[Conclusion]These results suggest that 70% EtOH extracts of S. horneri can relieve inflammation caused by disease or high intensity exercise.  相似文献   

17.
The present study investigated the antifatigue effects of Panax ginseng C.A. Meyer in 90 subjects (21 men and 69 women) with idiopathic chronic fatigue (ICF) in a randomised, double-blind, placebo-controlled and parallel designed trial. A bespoke 20% ethanol extract of P. ginseng (1 g or 2 g day–1) or a placebo was administered to each group for 4 weeks, and then fatigue severity was monitored using a self-rating numeric scale (NRS) and a visual analogue scale (VAS) as a primary endpoint. Serum levels of reactive oxygen species (ROS), malondialdehyde (MDA), total glutathione (GSH) contents and glutathione reductase (GSH-Rd) activity were determined. After 4-week, P. ginseng administration decreased the total NRS score, but they were not statistically significant compared with placebo (P>0.05). Mental NRS score was significantly improved by P. ginseng administrations as 20.4±5.0 to 15.1±6.5 [95% CI 2.3∼8.2] for 1 g and 20.7±6.3 to 13.8±6.2 [95% CI −0.1∼4.2] for 2 g compared with placebo 20.9±4.5 to 18.8±2.9 [95% CI 4.1∼9.9, P<0.01]. Only 2 g P. ginseng significantly reduced the VAS score from 7.3±1.3 to 4.4±1.8 [95% CI 0.7∼1.8] compared with the placebo 7.1±1.0 to 5.8±1.3 [95% CI 2.2 ∼3.7, P<0.01]. ROS and MDA levels were lowered by P. ginseng compared to placebo. P. ginseng 1 g increased GSH concentration and GSH-Rd activity. Our results provide the first evidence of the antifatigue effects of P. ginseng in patients with ICF, and we submit that these changes in antioxidant properties contribute in part to its mechanism.

Trial Registration

Clinical Research Information Service (CRIS) KCT0000048  相似文献   

18.
IntroductionAlthough production of polybrominated diphenyl ethers (PBDEs) is now banned, release from existing products will continue for many years. The PBDEs are assumed to be neurotoxic and toxic to endocrine organs at low concentrations. Their effect on the immune system has not been investigated thoroughly. We aimed to investigate the influence of DE-71 on cytokine production by peripheral blood mononuclear cells (PBMCs) stimulated with Escherichia Coli lipopolysaccharide (LPS) or phytohaemagglutinin-L (PHA-L).ResultsAt non-cytotoxic concentrations (0.01–10 μg/mL), DE-71 significantly enhanced secretion of IL-1β, IL-6, CXCL8, IL-10, and TNF-α (p<0.001–0.019; n = 6) from LPS-stimulated PBMCs. IFN-γ, TNF-α, IL-17A, and IL-17F (p = <0.001–0.043; n = 6) secretion were enhanced from PHA-L-stimulated PBMCs as well. Secretion of IL-1β, IL-2, IL-10, IL-8 and IL-6 was not significantly affected by DE-71.ConclusionsWe demonstrate an enhancing effect of DE-71 on cytokine production by normal human PBMCs stimulated with LPS or PHA-L ex vivo.  相似文献   

19.

Background

Mycobacterium tuberculosis (MTb) infects approximately 2 billion people world-wide resulting in almost 2 million deaths per year. Determining biomarkers that distinguish different stages of tuberculosis (TB) infection and disease will provide tools for more effective diagnosis and ultimately aid in the development of new vaccine candidates. The current diagnostic kits utilising production of IFN-γ in response to TB antigens can detect MTb infection but are unable to distinguish between infection and disease. The aim of this study was to assess if the use of a longer term assay and the analysis of multiple cytokines would enhance diagnosis of active TB in a TB-endemic population.

Methods

We compared production of multiple cytokines (TNF-α, IFN-γ, IL-10, IL-12(p40), IL-13, IL-17 and IL-18) following long-term (7 days) stimulation of whole-blood with TB antigens (ESAT-6/CFP-10 (EC), PPD or TB10.4) from TB cases (n = 36) and their Mycobacterium-infected (TST+; n = 20) or uninfected (TST−; n = 19) household contacts (HHC).

Results and Conclusions

We found that TNF-α production following EC stimulation and TNF-α and IL-12(p40) following TB10.4 stimulation were significantly higher from TB cases compared to TST+ HHC, while production of IFN-γ and IL-13 were significantly higher from TST+ compared to TST- HHC following PPD or EC stimulation. Combined analysis of TNF-α, IL-12(p40) and IL-17 following TB10.4 stimulation resulted in 85% correct classification into TB cases or TST+ HHC. 74% correct classification into TST+ or TST− HHC was achieved with IFN-γ alone following TB10.4 stimulation (69% following EC) and little enhancement was seen with additional cytokines. We also saw a tendency for TB cases infected with M. africanum to have increased TNF-α and IL-10 production compared to those infected with M. tuberculosis. Our results provide further insight into the pathogenesis of tuberculosis and may enhance the specificity of the currently available diagnostic tests, particularly for diagnosis of active TB.  相似文献   

20.

Background

The extract from Moringa oleifera seeds is used worldwide, especially in rural areas of developing countries, to treat drinking water. M. oleifera seeds contain the lectins cmol and WSMoL, which are carbohydrate-binding proteins that are able to reduce water turbidity because of their coagulant activity. Studies investigating the ability of natural products to damage normal cells are essential for the safe use of these substances. This study evaluated the cytotoxic and anti-inflammatory properties of the aqueous seed extract, the extract used by population to treat water (named diluted seed extract in this work), and the isolated lectins cmol and WSMoL.

Methodology/Principal Findings

The data showed that the aqueous seed extract and cmol were potentially cytotoxic to human peripheral blood mononuclear cells, while WSMoL and diluted seed extract were not cytotoxic. The M. oleifera aqueous seed extract and the lectins cmol and WSMoL were weakly/moderately cytotoxic to the NCI-H292, HT-29 and HEp-2 cancer cell lines and were not hemolytic to murine erythrocytes. Evaluation of acute toxicity in mice revealed that the aqueous seed extract (2.000 mg/kg) did not cause systemic toxicity. The aqueous seed extract, cmol and WSMoL (6.25 µg/mL) and diluted seed extract at 50 µg/mL exhibited anti-inflammatory activity on lipopolyssaccharide-stimulated murine macrophages by regulating the production of nitric oxide, TNF-α and IL-1β. The aqueous seed extract reduced leukocyte migration in a mouse model of carrageenan-induced pleurisy; the myeloperoxidase activity and nitric oxide, TNF-α and IL-1β levels were similarly reduced. Histological analysis of the lungs showed that the extract reduced the number of leukocytes.

Conclusion/Significance

This study shows that the extract prepared according to folk use and WSMoL may be non-toxic to mammalian cells; however, the aqueous seed extract and cmol may be cytotoxic to immune cells which may explain the immunosuppressive potential of the extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号