首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Periodic climatic oscillations and species dispersal during the postglacial period are two important causes of plant assemblage and distribution on the Qinghai‐Tibet Plateau (QTP). To improve our understanding of the bio‐geological histories of shrub communities on the QTP, we tested two hypotheses. First, the intensity of climatic oscillations played a filtering role during community structuring. Second, species dispersal during the postglacial period contributed to the recovery of species and phylogenetic diversity and the emergence of phylogenetic overdispersion. To test these hypotheses, we investigated and compared the shrub communities in the alpine and desert habitats of the northeastern QTP. Notably, we observed higher levels of species and phylogenetic diversity in the alpine habitat than in the desert habitat, leading to phylogenetic overdispersion in the alpine shrub communities versus phylogenetic clustering in the desert shrub communities. This phylogenetic overdispersion increased with greater climate anomalies. These results suggest that (a) although climate anomalies strongly affect shrub communities, these phenomena do not act as a filter for shrub community structuring, and (b) species dispersal increases phylogenetic diversity and overdispersion in a community. Moreover, our investigation of the phylogenetic community composition revealed a larger number of plant clades in the alpine shrub communities than in the desert shrub communities, which provided insights into plant clade‐level differences in the phylogenetic structures of alpine and desert shrub communities in the northeastern QTP.  相似文献   

2.
Determining which drivers lead to a specific species assemblage is a central issue in community ecology. Although many processes are involved, plant–plant interactions are among the most important. The phylogenetic limiting similarity hypothesis states that closely related species tend to compete stronger than distantly related species, although evidence is inconclusive. We used ecological and phylogenetic data on alpine plant communities along an environmental severity gradient to assess the importance of phylogenetic relatedness in affecting the interaction between cushion plants and the whole community, and how these interactions may affect community assemblage and diversity. We first measured species richness and individual biomass of species growing within and outside the nurse cushion species, Arenaria tetraquetra. We then assembled the phylogenetic tree of species present in both communities and calculated the phylogenetic distance between the cushion species and its beneficiary species, as well as the phylogenetic community structure. We also estimated changes in species richness at the local level due to the presence of cushions. The effects of cushions on closely related species changed from negative to positive as environmental conditions became more severe, while the interaction with distantly related species did not change along the environmental gradient. Overall, we found an environmental context‐dependence in patterns of phylogenetic similarity, as the interaction outcome between nurses and their close and distantly‐related species showed an opposite pattern with environmental severity.  相似文献   

3.
Large-scale patterns of biodiversity and the underlying mechanisms that regulate these patterns are central topics in biogeography and macroecology. The Qinghai-Tibet Plateau serves as a natural laboratory for studying these issues. However, most previous studies have focused on the entire Qinghai-Tibet Plateau, leaving independent physical geographic subunits in the region less well understood. We studied the current plant diversity of the Kunlun Mountains, an independent physical geographic subunit located in northwestern China on the northern edge of the Qinghai-Tibet Plateau. We integrated measures of species distribution, geological history, and phylogeography, and analyzed the taxonomic richness, phylogenetic diversity, and community phylogenetic structure of the current plant diversity in the area. The distribution patterns of 1911 seed plants showed that species were distributed mainly in the eastern regions of the Kunlun Mountains. The taxonomic richness, phylogenetic diversity, and genera richness showed that the eastern regions of the Kunlun Mountains should be the priority area of biodiversity conservation, particularly the southeastern regions. The proportion of Chinese endemic species inhabiting the Kunlun Mountains and their floristic similarity may indicate that the current patterns of species diversity were favored via species colonization. The Hengduan Mountains, a biodiversity hotspot, is likely the largest source of species colonization of the Kunlun Mountains after the Quaternary. The net relatedness index indicated that 20 of the 28 communities examined were phylogenetically dispersed, while the remaining communities were phylogenetically clustered. The nearest taxon index indicated that 27 of the 28 communities were phylogenetically clustered. These results suggest that species colonization and habitat filtering may have contributed to the current plant diversity of the Kunlun Mountains via ecological and evolutionary processes, and habitat filtering may play an important role in this ecological process.  相似文献   

4.
Large‐scale patterns of biodiversity and formation have garnered increasing attention in biogeography and macroecology. The Qinghai‐Tibet Plateau (QTP) is an ideal area for exploring these issues. However, the QTP consists of multiple geographic subunits, which are understudied. The Kunlun Mountains is a geographical subunit situated in the northern edge of the QTP, in northwest China. The diversity pattern, community phylogenetic structures, and biogeographical roles of the current flora of the Kunlun Mountains were analyzed by collecting and integrating plant distribution, regional geological evolution, and phylogeography. A total of 1911 species, 397 genera, and 75 families present on the Kunlun Mountains, of which 29.8% of the seed plants were endemic to China. The mean divergence time (MDT) of the Kunlun Mountains flora was in the early Miocene (19.40 Ma). Analysis of plant diversity and MDT indicated that the eastern regions of the Kunlun Mountains were the center of species richness, endemic taxa, and ancient taxa. Geographical origins analysis showed that the Kunlun Mountains flora was diverse and that numerous clades were from East Asia and Tethyan. Analysis of geographical origins and geological history together highlighted that the extant biodiversity on the Kunlun Mountains appeared through species recolonization after climatic fluctuations and glaciations during the Quaternary. The nearest taxon index speculated that habitat filtering was the most important driving force for biodiversity patterns. These results suggest that the biogeographical roles of the Kunlun Mountains are corridor and sink, and the corresponding key processes are species extinction and immigration. The Kunlun Mountains also form a barrier, representing a boundary among multiple floras, and convert the Qinghai‐Tibet Plateau into a relatively closed geographical unit.  相似文献   

5.
The Qinghai–Tibet Plateau (QTP) is the highest and largest plateau in the world. It covers correspondingly wide geological, topographical, and climatic gradients, and thus hosts greater biodiversity than surrounding lowlands and other high elevation regions. Due to its extreme environmental and biological diversity, the QTP is an ideal region for studying adaptations of plant species under harsh environmental conditions at multiple evolutionary levels. Many recent ecological studies have revealed functions of distinctive morphological features of various plants in the region that improve their reproductive success. Examples include large and showy bracts, hairy inflorescences, and drooping flowers. Numerous other investigations have examined QTP plants' sexual systems, patterns of biomass allocations, and biotic interactions. This paper summarizes recent advances in understanding of morphological adaptations, plant–plant interactions, plant–pollinator interactions, floral color patterns, pollination adaptations, and resource allocation patterns of alpine plants of the QTP. The overall aim is to synthesize current knowledge of the general mechanisms of plant survival and reproduction in this fascinating region.  相似文献   

6.
祁连山中部4种典型植被类型土壤细菌群落结构差异   总被引:2,自引:0,他引:2  
朱平  陈仁升  宋耀选  韩春坛  刘光琇  陈拓  张威 《生态学报》2017,37(10):3505-3514
土壤微生物参与土壤生态过程,在土壤生态系统的结构和功能中发挥着重要作用。2013年7月采集了祁连山中段4种典型植被群落(垫状植被、高寒草甸、沼泽草甸和高寒灌丛)的表层土壤,分析了表层土壤微生物生物量碳氮和采用Illumina高通量测序技术研究了土壤细菌群落结构及多样性,并结合土壤因子对土壤细菌群落结构和多样性进行了相关性分析。结果表明:(1)土壤微生物生物量碳氮的大小排序为:沼泽草甸高寒草甸高寒灌丛垫状植被;(2)土壤细菌群落相对丰度在5%以上的优势类群是放线菌门、酸杆菌门、α-变形菌、厚壁菌门和芽单胞菌门5大门类;(3)沼泽草甸土壤细菌α多样性(物种丰富度和系统发育多样性)显著高于其它3种植被类型(P0.05),而垫状植被土壤细菌α多样性最低;(4)冗余分析和Pearson相关性分析表明,土壤pH、土壤含水量、土壤有机碳和总氮是土壤细菌群落结构和α多样性的主要影响因子。研究结果可为祁连山高寒生态系统稳定和保护提供理论依据。  相似文献   

7.
Relatively, few species have been able to colonize extremely cold alpine environments. We investigate the role played by the cushion life form in the evolution of climatic niches in the plant genus Androsace s.l., which spreads across the mountain ranges of the Northern Hemisphere. Using robust methods that account for phylogenetic uncertainty, intraspecific variability of climatic requirements and different life-history evolution scenarios, we show that climatic niches of Androsace s.l. exhibit low phylogenetic signal and that they evolved relatively recently and punctually. Models of niche evolution fitted onto phylogenies show that the cushion life form has been a key innovation providing the opportunity to occupy extremely cold environments, thus contributing to rapid climatic niche diversification in the genus Androsace s.l. We then propose a plausible scenario for the adaptation of plants to alpine habitats.  相似文献   

8.
Ecosystem engineers are organisms able to modulate environmental forces and, hence, may change the habitat conditions for other species. In so doing, ecosystem engineers may affect both species richness and evenness of communities and, in consequence, change species diversity. If these changes in community attributes are related to the magnitude of the habitat changes induced by the engineers, it seems likely that engineer species will have greater effects on diversity in sites where they cause larger habitat changes. We addressed this issue by evaluating the effects of three alpine cushion plants on species richness, evenness, and diversity of high-Andean plant communities. Given that the difference in microclimatic conditions between cushions and the external environment increases with elevation, we proposed that these organisms should have greater effects on community attributes at higher than at lower elevation sites. Results showed that the three cushion species had positive effects on species richness, diversity, and evenness of plant communities. It was also observed that the magnitude of these effects changed with elevation: positive effects on species richness and diversity increased towards upper sites for the three cushions species, whereas positive effects on evenness increased with elevation for one cushion species but decreased with elevation for other two cushion species. These results suggest that the presence of cushions is important to maintain plant diversity in high-Andean communities, but this positive effect on diversity seems to increase as the difference in environmental conditions between cushions and the external environment increases with elevation.  相似文献   

9.
Mount Kenya is of ecological importance in tropical east Africa due to the dramatic gradient in vegetation types that can be observed from low to high elevation zones. However, species richness and phylogenetic diversity of this mountain have not been well studied. Here, we surveyed distribution patterns for a total of 1,335 seed plants of this mountain and calculated species richness and phylogenetic diversity across seven vegetation zones. We also measured phylogenetic structure using the net relatedness index (NRI) and the nearest species index (NTI). Our results show that lower montane wet forest has the highest level of species richness, density, and phylogenetic diversity of woody plants, while lower montane dry forest has the highest level of species richness, density, and phylogenetic diversity in herbaceous plants. In total plants, NRI and NTI of four forest zones were smaller than three alpine zones. In woody plants, lower montane wet forest and upper montane forest have overdispersed phylogenetic structures. In herbaceous plants, NRI of Afro‐alpine zone and nival zone are smaller than those of bamboo zone, upper montane forest, and heath zone. We suggest that compared to open dry forest, humid forest has fewer herbaceous plants because of the closed canopy of woody plants. Woody plants may have climate‐dominated niches, whereas herbaceous plants may have edaphic and microhabitat‐dominated niches. We also proposed lower and upper montane forests with high species richness or overdispersed phylogenetic structures as the priority areas in conservation of Mount Kenya and other high mountains in the Eastern Afro‐montane biodiversity hotspot regions.  相似文献   

10.
Environmental gradients have been postulated to generate patterns of diversity and diet specialization, in which more stable environments, such as tropical regions, should promote higher diversity and specialization. Using field sampling and phylogenetic analyses of butterfly fauna over an entire alpine region, we show that butterfly specialization (measured as the mean phylogenetic distance between utilized host plants) decreases at higher elevations, alongside a decreasing gradient of plant diversity. Consistent with current hypotheses on the relationship between biodiversity and the strength of species interactions, we experimentally show that a higher level of generalization at high elevations is associated with lower levels of plant resistance: across 16 pairs of plant species, low-elevation plants were more resistant vis-à-vis their congeneric alpine relatives. Thus, the links between diversity, herbivore diet specialization, and plant resistance along an elevation gradient suggest a causal relationship analogous to that hypothesized along latitudinal gradients.  相似文献   

11.
Molenda O  Reid A  Lortie CJ 《PloS one》2012,7(5):e37223
Alpine ecosystems are important globally with high levels of endemic and rare species. Given that they will be highly impacted by climate change, understanding biotic factors that maintain diversity is critical. Silene acaulis is a common alpine nurse plant shown to positively influence the diversity and abundance of organisms--predominantly other plant species. The hypothesis that cushion or nurse plants in general are important to multiple trophic levels has been proposed but rarely tested. Alpine arthropod diversity is also largely understudied worldwide, and the plant-arthropod interactions reported are mostly negative, that is,. herbivory. Plant and arthropod diversity and abundance were sampled on S. acaulis and at paired adjacent microsites with other non-cushion forming vegetation present on Whistler Mountain, B.C., Canada to examine the relative trophic effects of cushion plants. Plant species richness and abundance but not Simpson's diversity index was higher on cushion microsites relative to other vegetation. Arthropod richness, abundance, and diversity were all higher on cushion microsites relative to other vegetated sites. On a microclimatic scale, S. acaulis ameliorated stressful conditions for plants and invertebrates living inside it, but the highest levels of arthropod diversity were observed on cushions with tall plant growth. Hence, alpine cushion plants can be foundation species not only for other plant species but other trophic levels, and these impacts are expressed through both direct and indirect effects associated with altered environmental conditions and localized productivity. Whilst this case study tests a limited subset of the membership of alpine animal communities, it clearly demonstrates that cushion-forming plant species are an important consideration in understanding resilience to global changes for many organisms in addition to other plants.  相似文献   

12.
河西走廊水生植物多样性格局、群落特征及影响因素   总被引:1,自引:0,他引:1  
水生植物是湿地生态系统重要组成部分,研究水生植物多样性分布格局及其影响因素对地区水生植物资源保护具有重要意义。通过野外调查并结合气候等环境因素,研究了河西走廊主要水生植物群落类型、数量特征、水生植物多样性分布格局及影响因素,并对中域效应假说进行了验证。研究结果表明:(1)河西走廊地区共有水生植物29科42属84种,群落的聚类分析可将河西走廊水生植物群落划分为15个主要群落类型;(2)河西走廊水生植物群落类型主要受到水温、海拔、经纬度等环境因子影响,群落物种多样性指数与盐度以及溶解性固体总量呈显著性相关;(3)河西走廊水生植物多样性空间格局呈现出"∩"型的单峰格局,中域效应模型能较好地解释该地区水生植物多样性水平的纬度格局及海拔垂直分布格局,对该区域水生植物物种丰富度在纬度和海拔梯度上的变异解释率分别为57.56%、63.5%。分析表明,河西走廊水生植物物种丰富度格局由几何(边界)限制和随机过程及其他未知因素共同控制,且几何(边界)限制和随机过程贡献率较大;同时本研究中未考虑的环境异质性、气候、人为干扰等因素也对河西走廊水生植物多样性空间分布产生重要影响。  相似文献   

13.
Aim  To integrate the effects of ecosystem engineers (organisms that create, maintain or destroy habitat for other species) sharing the same archetype on species diversity, and assess whether different engineer species have generalized or idiosyncratic effects across environmentally similar ecosystems.
Location  High-Andean habitats of Chile and Argentina, from 23° S to 41° S.
Methods  We measured and compared the effects of eight alpine plants with cushion growth-form on species richness, species diversity (measured as the Shannon–Wiener index) and evenness of vascular plant assemblages across four high-Andean ecosystems of Chile and Argentina.
Results  The presence of cushion plants always increased the species richness, diversity (measured as the Shannon–Wiener index) and evenness of high-Andean plant assemblages. However, while the presence of different cushion species within the same ecosystem controlled species diversity in the same way, these effects varied between cushion species from different ecosystems.
Main conclusions  Results consistently supported the idea that increases in habitat complexity due to the presence of ecosystem engineers, in this case cushion plants, would lead to higher community diversity. Results also indicate that effects of the presence of different cushion species within the same ecosystem could be generalized, while the effects of cushion species from different ecosystems should be considered idiosyncratic.  相似文献   

14.
Large-scale patterns of species richness and the underlying mechanisms regulating these patterns have long been the central issues in biogeography and macroecology. Phylogenetic community structure is a result of combined effects of contemporary ecological interactions, environmental filtering, and evolutionary history, and it links community ecology with biogeography and trait evolution. The Qinghai-Tibetan Plateau provides a good opportunity to test the influence of contemporary climate on shaping species richness because of its unique geological history, cold climate, and high biodiversity. In this study, based on high-resolution distributions of ˜9000 vascular plant species, we explored how species richness and phylogenetic structure of vascular plants correlate with climates on the highest (and species rich) plateau on the Earth. The results showed that most of the vascular plants were distributed on the eastern part of the plateau; there was a strong association between species richness and climate, even after the effects of habitat heterogeneity were controlled. However, the responses of richness to climate remarkably depended on life-forms. Richness of woody plants showed stronger climatic associations than that of herbaceous plants; energy and water availability together regulated richness pattern of woody plants; whereas water availability predominantly regulated richness pattern of herbaceous plants. The phylogenetic structure of vascular species clustered in most areas of the plateau, suggesting that rapid speciation and environment filtering dominated the assembly of communities on the plateau. We further propose that biodiversity conservation in this area should better take into account ecological features for different life-forms and phylogenetic lineages.  相似文献   

15.
Petr Sklenář 《Flora》2009,204(4):270-277
Cushion plants are a common growth form in the equatorial páramo vegetation and their surfaces are often colonized by other plants. This paper analyzes the effect of the cushion plants on the community diversity at 4650 m on the eastern slope of the Iliniza volcano in Ecuador. Ninety sample plots of 1 m2 size were located in the study area and were divided into 25 subplots in which presence and abundance of plant species was recorded. The community diversity was expressed as species richness, Simpson's diversity index, and evenness. Correlation between the cushion species and the composition of the colonists was measured with the CCA ordination analysis, correlation between the cushion cover and community diversity was measured by means of correlation analysis. Randomized species–area curves were used to compare richness of plant communities with and without the cushions. A total of 32 species were found including five cushion plants. Most species preferred to grow on the cushion surface whereas only a few species were able to colonize open ground. Species richness and Simpson's index were significantly correlated to the cushion area but no correlation was found for evenness. The cushions were usually composed of more than one species which hampered the examination of the cushion–colonist specific relationships. Nevertheless, cushions of Azorella and Arenaria seemed to provide more favorable habitat for colonization than the other cushion species. Comparison with an earlier study made on Iliniza indicates that the presence of the cushions significantly increases the richness of the plant community.  相似文献   

16.
The Qinghai–Tibet Plateau (QTP) comprises a platform (sometimes called the Qinghai–Tibet Plateau sensu stricto), the Himalayas, and Hengduan Mountains (Liang et al.,2018; Mao et al.,2021). The latter two parts and adjacent highlands are also called the Pan-Himalaya. Numerous plants are distributed there with many endemic species, probably because of the high diverse landscapes created by continuous geological and climatic activities (Favre et al.,2015; Mao et al.,2021). As the well known biodiversity hotspot of the alpine plants in the world (Sun et al.,2017), many studies have been conducted on evolutionary origin and ecological adaptation of those species occurring in the QTP (e.g., Wen et al.,2014, 2019; Zhang et al.,2019). In the present special issue, we collected 15 related papers on this topic. Among them, two are invited reviews. Mao et al. (2021) provide a comprehensive review of evolutionary origin of species diversity on the QTP. Especially, they outlined major disputes and likely causes in this research topic, including circumscribing and naming the QTP, the QTP uplifts, dating of molecular phylogenetic trees, non-causal correlations between QTP uplifts and species diversification and the unified ice sheet. The authors also summarized genomic advancements related to high-altitude adaptation of both plants and animals. Tong et al. (2021) reviewed the reproductive strategies of animal-pollinated alpine plants on the QTP, involving pollination system, pollen limitation, self-pollination, and sexual system. In this region, 95.4% of animal-pollinated plants are pollinated by insects (i.e., bees, moths, butterflies, and flies) with only 4% by vertebrates (i.e., bats and birds). Self-pollination through self-compatibility shift from outcrossing has become an effective reproductive strategy to overcome pollen limitation in alpine plants. The other 13 research papers aimed to address origin and adaptation of alpine flora involving three major lines of evidence: genomics, ecology, and paleobotany. We hope that the collection of these papers will increase our understanding of the origin, speciation, and adaptation of alpine species on the QTP.  相似文献   

17.
太白山森林样地系统发育多样性格局及其影响因素 系统发育多样性指数常被用作区分植物群落构建过程中生态和演化过程的相对作用。系统发育多样性格局的推断方法(如系统树的构建和不同的系统发育多样性指数)、演化历史(如生活型)以及环境梯度都可能影响系统发育多样性格局的估计值,进而可能影响我们对植物群落构建过程的认知。因此,有必要区分这些因素如何作用于系统发育多样性格局的估计值,但其相对重要性及其交互作用仍不清楚。本研究利用位于太白山北坡沿海拔分布的20个森林样地(整体高差2800 m左右)的野外调查数据,包括274种木本植物和581种草本植物。对于上述样地内所有植物,我们构建了当前广泛采用的合成树和分子树以比较系统树的构建,特别是合成树末端的多歧分支结构,及其对系统发育多样性格局估计值的可能影响。同时,我们计算了每个样地的3种不同的系统发育多样性指数,包括Faith’s PD, 平均成对距离(MPD)和平均最近类群距离(MNTD),并分别对木本和草本植物进行计算。多模型比较分析系统发育多样性格局的估计值与系统树重建方法、多样性指数、生活型、海拔及其交互作用的最简约关系。研究结果表明,基于合成树和分子树所得到的系统发育多样性格局之间没有显著差异。海拔和多样性指数与生活型在解释系统发育多样性格局方面存在强烈的交互作用,并且能够解释44%以上的变异。系统发育多样性格局的估计值总体随海拔升高而降低,但草本植物相比木本植物变化更平缓。对于木本植物,3种系统发育多样性指数表现出一致的海拔分布格局(即系统发育聚集),而草本植物的平均成对距离指数则表现为随机的海拔分布格局。因此,分析沿环境梯度的系统发育多样性格局需要考虑系统发育格局的推断方法和演化历史的影响,以帮助我们更好地理解植物群落的构建过程。  相似文献   

18.
刘晓娟  孙学刚  田青 《生态学报》2016,36(10):2905-2913
在甘肃盐池湾国家级自然保护区内海拔4137 m处,选择典型的囊种草垫状植被设置研究样地,研究了垫状植物囊种草对群落物种组成和群落物种多样性的影响,并且定量的研究了囊种草对群落物种丰富度的影响能力和维持潜力。研究结果表明:囊种草为群落中增加了新的植物种类,并且提高了部分生境一般种的多度;囊种草的出现提高了群落物种密度和物种丰富度,进而提高了群落物种多样性;囊种草斑块的增加将会引起景观水平物种丰富度的增加,表明囊种草具有为群落中引入新的植物种类进而提高群落物种丰富度的能力;在景观水平,囊种草所创造的生境多样性则成为一种保障,可以维持景观中物种丰富度从而降低物种损失的风险,表明囊种草具有较高的群落物种丰富度维持潜力。  相似文献   

19.
孙德鑫  刘向  周淑荣 《生物多样性》2018,26(7):655-1265
已有大量研究利用功能性状或系统发育来推断群落构建机制, 然而不同过程可能会导致相似的格局。本文基于对甘南高寒草甸植物功能群去除处理后群落恢复过程的跟踪调查, 对比了物种多样性、功能多样性和系统发育多样性的动态变化, 并分析了物种定殖与消失过程对功能多样性和系统发育多样性变化的影响。结果表明: 去除不同数量功能群的群落中: (1)包括物种丰富度(SR)、Shannon-Wiener指数(H°)和Simpson指数(D)在内的传统物种多样性均随时间快速上升并与自然群落趋同, 不同群落的均匀度指数(J)随时间呈增加趋势并趋于相似; 功能多样性(FD)与系统发育多样性(PD)呈现出与物种多样性相似的动态变化趋势, 而平均配对距离(MPD/MPDa、MFD/MFDa)则向中等程度聚集。(2)不同群落的功能群和物种组成在短期内均恢复到与自然群落非常相似的程度。(3)物种定殖与消失过程的功能格局是群落恢复过程中趋同效应的主要驱动力。本研究揭示了高寒草甸植物功能群去除停止后群落短期内快速恢复的过程, 说明在小尺度且周边具有大范围未退化草甸的情况下, 无论物种多样性、功能多样性还是系统发育多样性都具有较快的恢复能力, 同时说明了利用群落系统发育多样性格局来推断群落构建机制的局限性。  相似文献   

20.
It remains unclear whether the latitudinal diversity gradients of micro- and macro-organisms are driven by the same macro-environmental variables. We used the newly completed species catalog and distribution information of bryophytes in China to explore their spatial species richness patterns, and to investigate the underlying roles of energy availability, climatic seasonality, and environmental heterogeneity in shaping these patterns. We then compared these patterns to those found for woody plants. We found that, unlike woody plants, mosses and liverworts showed only weakly negative latitudinal trends in species richness. The spatial patterns of liverwort richness and moss richness were overwhelmingly explained by contemporary environmental variables, although explained variation was lower than that for woody plants. Similar to woody plants, energy and climatic seasonality hypotheses dominate as explanatory variables but show high redundancy in shaping the distribution of bryophytes. Water variables, that is, the annual availability, intra-annual variability and spatial heterogeneity in precipitation, played a predominant role in explaining spatial variation of species richness of bryophytes, especially for liverworts, whereas woody plant richness was affected most by temperature variables. We suggest that further research on spatial patterns of bryophytes should incorporate the knowledge on their ecophysiology and evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号