首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High-resolution NO3 profiles in freshwater sediment covered with benthic diatoms were obtained with a new microscale NO3 biosensor characterized by absence of interference from chemical species other than NO2 and N2O. Analysis of the microprofiles obtained indicated no nitrification during darkness, high rates of nitrification and a tight coupling between nitrification and denitrification during illumination, and substantial rates of NO3 assimilation during illumination. Nitrification during darkness could be induced by purging the bulk water with O2 gas, indicating that the stimulatory effect on nitrification by illumination was caused by algal production of O2. NH4+ addition did not stimulate nitrification during darkness when O2 was restricted to the upper 1-mm layer, and there was thus a low nitrification potential in the permanently oxic top 1 mm of the sediment.  相似文献   

2.
The coupling between nitrification and denitrification and the regulation of these processes by oxygen were studied in freshwater sediment microcosms with O2 and NO3- microsensors. Depth profiles of nitrification (indicated as NO3- production), denitrification (indicated as NO3- consumption), and O2 consumption activities within the sediment were calculated from the measured concentration profiles. From the concentration profiles, it was furthermore possible to distinguish between the rate of denitrification based on the diffusional supply of NO3- from the overlying water and the rate based on NO3- supplied by benthic nitrification (Dw and Dn, respectively). An increase in O2 concentration caused a deeper O2 penetration while a decrease in Dw and an increase in Dn were observed. The relative importance for total denitrification of NO3- produced by nitrification thus increased compared with NO3- supplied from the water phase. The decrease in Dw at high oxygen was due to an increase in diffusion path for NO3- from the overlying water to the denitrifying layers in the anoxic sediment. At high O2 concentrations, nitrifying activity was restricted to the lower part of the oxic zone where there was a continuous diffusional supply of NH4+ from deeper mineralization processes, and the long diffusion path from the nitrification zone to the overlying water compared with the path to the denitrifying layers led to a stimulation in Dn.  相似文献   

3.
Nitrogen and oxygen transformations were studied in a bioturbated (reworked by animals) estuarine sediment (Norsminde Fjord, Denmark) by using a combination of 15N isotope (NO3-), specific inhibitor (C2H2), and microsensor (N2O and O2) techniques in a continuous-flow core system. The estuarine water was NO3- rich (125 to 600 μM), and NO3- was consistently taken up by the sediment on the four occasions studied. Total NO3- uptake (3.6 to 34.0 mmol of N m-2 day-1) corresponded closely to N2 production (denitrification) during the experimental steady state, which indicated that dissimilatory, as well as assimilatory, NO3- reduction to NH4+ was insignificant. When C2H2 was applied in the flow system, denitrification measured as N2O production was often less (58 to 100%) than the NO3- uptake because of incomplete inhibition of N2O reduction. The NO3- formed by nitrification and not immediately denitrified but released to the overlying water, uncoupled nitrification, was calculated both from 15NO3- dilution and from changes in NO3- uptake before and after C2H2 addition. These two approaches gave similar results, with rates ranging between 0 and 8.1 mmol of N m-2 day-1 on the four occasions. Attempts to measure total nitrification activity by the difference between NH4+ fluxes before and after C2H2 addition failed because of non-steady-state NH4+ fluxes. The vertical distribution of denitrification and oxygen consumption was studied by use of N2O and O2 microelectrodes. The N2O profiles measured during the experimental steady state were often irregularly shaped, and the buildup of N2O after C2H2 was added was much too fast to be described by a simple diffusion model. Only bioturbation by a dense population of infauna could explain these observations. This was corroborated by the relationship between diffusive and total fluxes, which showed that only 19 to 36 and 29 to 62% of the total O2 uptake and denitrification, respectively, were due to diffusion-reaction processes at the regular sediment surface, excluding animal burrows.  相似文献   

4.
A model was constructed to simulate the results of experiments which investigated nitrification and denitrification in the freshwater sediment of Lake Vilhelmsborg, Denmark (K. Jensen, N. P. Sloth, N. Risgaard-Petersen, S. Rysgaard, and N. P. Revsbech, Appl. Environ. Microbiol. 60:2094-2100, 1994). The model output faithfully represented the profiles of O2 and NO3- and rates of nitrification, denitrification, and O2 consumption as the O2 concentration in the overlying water was increased from 10 to 600 μM. The model also accurately predicted the response, to increasing O2 concentrations, of the integrated (micromoles per square meter per hour) rates of nitrification and denitrification. The simulated rates of denitrification of NO3- diffusing from the overlying water (Dw) and of NO3- generated by nitrification within the sediment (Dn) corresponded to the experimental rates as the O2 concentration in the overlying water was altered. The predicted Dw and Dn rates, as NO3- concentration in the overlying water was changed, closely resembled those determined experimentally. The model was composed of 41 layers 0.1 mm thick, of which 3 represented the diffusive boundary layer in the water. Large first-order rate constants for nitrification and denitrification were required to completely oxidize all NH4+ diffusing from the lower sediment layers and to remove much of the NO3- produced. In addition to the flux of NH4+ from below, the model required a flux of an electron donor, possibly methane. Close coupling between nitrification and denitrification, achieved by allowing denitrification to tolerate some O2 (~10 μM), was necessary to reproduce the real data. Spatial separation of the two processes (no toleration by denitrification of O2) resulted in too high NO3- concentrations and too low rates of denitrification.  相似文献   

5.
Summary

Oxygen (O2)-dependent and O2-independent antimicrobial mechanisms are used by alveolar macrophages (AM) to maintain lung sterility, but these mechanisms are underdeveloped in neonatal AM. Nitric oxide (NO.), a more recently described antimicrobial and immunomodulating molecule, has not been studied in neonatal AM. Lavaged AM from 3-day-old, 10-day-old, maternal and adult rats were treated with or without lipopolysaccharide (LPS) and/or interferon-γ (IFN-γ) and NO. synthase activity was measured as its L-arginine metabolites: NO2?, NO3?, and citrulline. Superoxide anion (O2.-) production by suspended macrophages, initiated by either opsonized zymosan or phorbol, was used as a marker of O2-dependent antimicrobial activity. Lysozyme content of AM was measured as a component of O2-independent antimicrobial activity. Unstimulated 3-day-old macrophages generated >10-fold more NO2? + NO3? than did 10-day-old, maternal or adult AM. Twenty hours after LPS and IFN-γ stimulation, 3-day-old AM produced > 2 times more NO2? and NO3? than did the more mature macrophages. Basal and stimulated O2.- release was similar among 3-day-old, 10-day-old and adult AM, while lysozyme concentrations were > 4-fold higher in adult macrophages compared to AM from 3-day-old pups. Rather than having a role in NO.-dependent antimicrobial activity, we propose that newborn AM have amplified NO. production to modulate their own differentiation and replication after birth. The age-dependent differences in NO. synthase expression by AM may lend insight into the regulation of this important enzyme.  相似文献   

6.
Methyl fluoride (CH3F) and dimethyl ether (DME) inhibited nitrification in washed-cell suspensions of Nitrosomonas europaea and in a variety of oxygenated soils and sediments. Headspace additions of CH3F (10% [vol/vol]) and DME (25% [vol/vol]) fully inhibited NO2- and N2O production from NH4+ in incubations of N. europaea, while lower concentrations of these gases resulted in partial inhibition. Oxidation of hydroxylamine (NH2OH) by N. europaea and oxidation of NO2- by a Nitrobacter sp. were unaffected by CH3F or DME. In nitrifying soils, CH3F and DME inhibited N2O production. In field experiments with surface flux chambers and intact cores, CH3F reduced the release of N2O from soils to the atmosphere by 20- to 30-fold. Inhibition by CH3F also resulted in decreased NO3- + NO2- levels and increased NH4+ levels in soils. CH3F did not affect patterns of dissimilatory nitrate reduction to ammonia in cell suspensions of a nitrate-respiring bacterium, nor did it affect N2O metabolism in denitrifying soils. CH3F and DME will be useful in discriminating N2O production via nitrification and denitrification when both processes occur and in decoupling these processes by blocking NO2- and NO3- production.  相似文献   

7.
The transformation of nitrogen compounds in lake and estuarine sediments incubated in the dark was analyzed in a continuous-flowthrough system. The inflowing water contained 15NO3-, and by determination of the isotopic composition of the N2, NO3-, and NH4+ pools in the outflowing water, it was possible to quantify the following reactions: total NO3- uptake, denitrification based on NO3- from the overlying water, nitrification, coupled nitrification-denitrification, and N mineralization. In sediment cores from both lake and estuarine environments, benthic microphytes assimilated NO3- and NH4+ for a period of 25 to 60 h after darkening. Under steady-state conditions in the dark, denitrification of NO3- originating from the overlying water accounted for 91 to 171 μmol m-2 h-1 in the lake sediments and for 131 to 182 μmol m-2 h-1 in the estuarine sediments, corresponding to approximately 100% of the total NO3- uptake for both sediments. It seems that high NO3- uptake by benthic microphytes in the initial dark period may have been misinterpreted in earlier investigations as dissimilatory reduction to ammonium. The rates of coupled nitrification-denitrification within the sediments contributed to 10% of the total denitrification at steady state in the dark, and total nitrification was only twice as high as the coupled process.  相似文献   

8.
Addition of nitrate to a suspension of NO3 --depleted Chlorella vulgaris cells raised the O2-evolving capacity of the organism by 60%. The rate of O2-evolution under flash irradiation of the depleted cells was drastically reduced, which could be restored by addition of NO3 -. The 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB)-insensitive O2-evolution, i.e., photosystem (PS) 2 activity of NO3--depleted cells, showed a 75% stimulation by addition of NO3 -. PS1-mediated electron transport was also stimulated (50%) by addition of NO3 -. Fluorescence yields of the NO3 --depleted cells were significantly reduced. A normal fluorescence response was restored by the addition of NO3 -. The fluorescence yield of the NO3 --depleted and DCMU-treated-cells increased significantly after addition of NO3 - ions, indicating a further reduction of the primary acceptor of PS2 (Q). In addition, the low temperature fluorescence emission spectra showed that energy transfer to PS2 and PS1 was much higher when nitrate was present. Hence nitrate accelerates the light-induced charge transfer from the intact O2-evolving system to the primary electron acceptor of PS2 and stimulates the PS1-mediated electron transport. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

9.
Summary The effects of furano compounds, furfural (furfuraldehyde) and furfuryl alcohol (5, 10, 20 and 30% of N applied) on nitrification of ammonium sulfate and urea N were studied in a sandy clay loam in laboratory. Both furfural and furfuryl alcohol significantly retarded the nitrification rates of both the fertilizers by inhibiting the conversion of NH4 + to NO2 - without affecting the oxidation of NO2 - to NO3 --N. 10, 20 and 30% concentrations of the compounds were effective up to 75 days with ammonium sulfate but more or less up to 45 days with urea. re]19760322  相似文献   

10.
Potential rates of nitrification and denitrification were measured in an oligotrophic sediment system. Nitrification potential was estimated using the CO oxidation technique, and potential denitrification was measured by the acetylene blockage technique. The sediments demonstrated both nitrifying and denitrifying activity. Eh, O2, and organic C profiles showed two distinct types of sediment. One type was low in organic C, had high O2 and Eh, and had rates of denitrification 1,000 times lower than the other which had high organic C, low O2, and low Eh. Potential nitrification and denitrification rates were negatively correlated with Eh. This suggests that environmental heterogeneity in denitrifier and nitrifier populations in oligotrophic sediment systems may be assessed using Eh before sampling protocols for nitrification or denitrification rates are established. There was no correlation between denitrification and nitrification rates or between either of these processes and NH4 + or NO3 concentrations. The maximum rate of denitrification was 0.969 nmole N cm–3 hour–1, and the maximum rate of nitrification was 23.6 nmole cm–3 hour–1, suggesting nitrification does not limit denitrification in these oligotrophic sediments. Some sediment cores had mean concentrations of 6.0 mg O2/liter and still showed both nitrification and denitrification activity.  相似文献   

11.
We report the effect of CH4 and of CH4 oxidation on nitrification in freshwater sediment from Hamilton Harbour, Ontario, Canada, a highly polluted ecosystem. Aerobic slurry experiments showed a high potential for aerobic N2O production in some sites. It was suppressed by C2H2, correlated to NO3- production, and stimulated by NH4+ concentration, supporting the hypothesis of a nitrification-dependent source for this N2O production. Diluted sediment slurries supplemented with CH4 (1 to 24 μM) showed earlier and enhanced nitrification and N2O production compared with unsupplemented slurries (≤1 μM CH4). This suggests that nitrification by methanotrophs may be significant in freshwater sediment under certain conditions. Suppression of nitrification was observed at CH4 concentrations of 84 μM and greater, possibly through competition for O2 between methanotrophs and NH4+ -oxidizing bacteria and/or competition for mineral N between these two groups of organisms. In Hamilton Harbour sediment, the very high CH4 concentrations (1.02 to 6.83 mM) which exist would probably suppress nitrification and favor NH4+ accumulation in the pore water. Indeed, NH4+ concentrations in Hamilton Harbour sediment are higher than those found in other lakes. We conclude that the impact of CH4 metabolism on N cycling processes in freshwater ecosystems should be given more attention.  相似文献   

12.
Depth distributions of O2 respiration and denitrification activity were studied in 1- to 2-mm thick biofilms from nutrient-rich Danish streams. Acetylene was added to block the reduction of N2O, and micro-profiles of O2 and N2O in the biofilm were measured simultaneously with a polarographic microsensor. The specific activities of the two respiratory processes were calculated from the microprofiles using a one-dimensional diffusion-reaction model. Denitrification only occurred in layers where O2 was absent or present at low concentrations (of a fewM). Introduction of O2 into deeper layers inhibited denitrification, but the process started immediately after anoxic conditions were reestablished. Denitrification activity was present at greater depth in the biofilm when the NO3 concentration in the overlying water was elevated, and the deepest occurrence of denitrification was apparently determined by the depth penetration of NO3 . The denitrification rate within each specific layer was not affected by an increase in NO3 concentration, and the half-saturation concentration (Km) for NO3 therefore considered to be low (<25M). Addition of 0.2% yeast extract stimulated denitrification only in the uppermost 0.2 mm of the denitrification zone indicating a very efficient utilization of the dissolved organic matter within the upper layers of the biofilm.  相似文献   

13.
Laboratory experiments were conducted with three California agricultural soils to examine substrate and process controls over temporal variability of NO and N2O production during nitrification, and to quantify the kinetics of HNO2‐mediated chemical reactions. Gross NO production rates were highly correlated (r2 = 0.93–0.97) with calculated concentrations of HNO2, which were shown to originate from autotrophic microbial oxidation of NH4 + to NO2 ? Production of NO was not correlated with NH4 + or NO3, or with the overall nitrification rate. Distinct periods of high NO2 accumulation occurred below critical pH values in each soil, apparently due to inhibition of microbial NO2 oxidation. Data suggest that even during periods of relatively low NO2 accumulation and rapid overall nitrification, HNO2‐mediated reactions may have been the primary source of NO. Rate coefficients (kPNO) relating NO production to HNO2 concentrations were determined for sterile (λ‐irradiated) soils, and were similar to kPNO values in 2 of 3 nonsterile soils undergoing nitrification. Production of N2O was correlated with HNO2 (r2 = 0.88–0.99) in sterile soils, and with NO2 and NO3 (R2 = 0.72–0.91) in nonsterile soils. Experiments using 15N confirmed that dissimilatory NO3 reduction contributed to N2O production even under primarily aerobic conditions. Sterile kPNO and kPN2O values were correlated (r2 = 0.90 and 0.82) with soil organic matter content. Overall, the results demonstrate that both steps of the nitrification sequence, together with abiotic reactions involving NO2/HNO2 need to be considered in developing improved models of NO and N2O emissions from soils.  相似文献   

14.
Identification of Heterotrophic Nitrification in a Sierran Forest Soil   总被引:14,自引:9,他引:14       下载免费PDF全文
A potential for heterotrophic nitrification was identified in soil from a mature conifer forest and from a clear-cut site. Potential rates of NO2 production were determined separately from those of NO3 by using acetylene to block autotrophic NH4+ oxidation and chlorate to block NO2 oxidation to NO3 in soil slurries. Rates of NO2 production were similar in soil from the forest and the clear-cut site and were strongly inhibited by acetylene. The rate of NO3 production was much greater than that of NO2 production, and NO3 production was not significantly affected by acetylene or chlorate. Nitrate production was partially inhibited by cycloheximide, but was not significantly reduced by streptomycin. Neither the addition of ammonium nor the addition of peptone stimulated NO3 production. 15N labeling of the NH4+ pool demonstrated that NO3 was not coming from NH4+. The potential for heterotrophic nitrification in these forest soils was greater than that for autotrophic nitrification.  相似文献   

15.
In order to understand the role of nitrification and denitrification in the accumulation of nitrous oxide (N2O) in the hypolimnetic water of brackish Lake Nakaumi, the effects of dissolved oxygen (DO) concentration on these activities were investigated by incubation experiments. N2O was produced during the oxidation of NH4 + to NO2 in nitrification and during the reduction of NO3 to N2 in denitrification. N2O-producing activity by nitrification (N2ON) increased markedly with decreasing concentrations of DO. Low DO (10%–30% saturation) induced high N2ON. In contrast to nitrification, N2O-producing activity by denitrification (N2OD) decreased with decreasing concentrations of DO. Little N2O was accumulated during denitrification under low-level conditions of DO (10%–30%), because of further reduction of N2O to N2. It can therefore be assumed that N2O produced as the by-product of nitrification is concurrently reduced to N2 by denitrification under low-DO conditions. This would result in no substantial accumulation of N2O during active nitrification in the hypolimnetic water of Lake Nakaumi. Received: July 6, 2001 / Accepted: December 10, 2001  相似文献   

16.
B. R. Grant  D. T. Canvin 《Planta》1970,95(3):227-246
Summary Intact chloroplasts isolated from spinach reduced NO3 - and NO2 - in the light without the addition of either co-factors or added enzymes. The maximum rate observed, however, for the reduction of NO3 - was approximately 3Moles hr-1 mg-1 (chlorophyll) and for NO2 - 6 Moles hr-1 mg-1 (chlorophyll). These rates were consistent with the enzyme content of whole chloroplasts, but much lower than those found in whole leaf extracts.The addition of both NO3 - and NO2 - in low concentrations resulted in transient increases in both O2 evolution and CO2 fixation. The increases in oxygen evolution were not consistent in amount and bore no relation to the amount of substrate reduced. Similar transients were observed in a number of experiments when NaCl or NH4Cl were added.The addition of NO2 - at concentrations of 10-4 M and above resulted in marked inhibition of both O2 evolution and CO2 fixation. NO2 - appears to inhibit by blocking the reduction of NADP. NO3 - at similar concentrations had no such effect.An increase in the soluble amino nitrogen content of the chloroplasts was observed when NO3 - or NO2 - was reduced. There was, however, no increase in the incorporation of 14C from 14CO2 into amino acids under these conditions. Even with the addition of ammonia the amount of 14C incorporated into the amino acids was not changed from less than 5% of the total 14C fixed. We conclude that while intact chloroplasts do have the ability to reduce both NO3 - and NO2 - at low rates, they do not synthesize appreciable amounts of amino acid directly, and this fact must be considered when formulating any pathways for nitrogen metabolism during photosynthesis.Supported in part by the National Research Council of Canada.  相似文献   

17.
The effects of increasing rhizosphere pO2on nitrogenase activity and nodule resistance to O2diffusion were investigated in soybean plants [Glycine max (L.) Merr. cv. Harosoy 63] in which nitrogenase (EC 1.7.99.2) activities were inhibited by (a) removal of the phloem tissue at the base of the stem (stem girdling), (b) exposure of roots to 10 mM NO3over 5 days (NO3-treated), or (c) partial inactivation of nitrogenase activity by an exposure of nodulated roots to 100 kPa O2(O2-inhibitcd). In control plants and in plants which had been treated with 100 kPa O2, increasing rhizosphere O2concentrations in 10 kPa increments from 20 to 70 kPa did not alter the steady-state nitrogenase activity. In contrast, in plants in which nitrogenase activities were depressed by stem girdling or by exposure to NO3, increasing rhizosphere pO2resulted in a recovery of 57 or 67%, respectively, of the initial, depressed rates of nitrogenase activity. This suggests that the nitrogenase activity of stem-girdled and NO3-treated soybeans was O2-limited. For each treatment, theoretical resistance values for O2diffusion into nodules were estimated from measured rates of CO2exchange, assuming a respiratory quotient of 1.1 and 0 kPa of O2in the infected cells. At an external partial pressure of 20 kPa O2, the stem-girdled and NO3--treated plants displayed resistance values which were 4 to 8.6 times higher than those in the nodules of the control plants. In control and O2-inhibited plants, increases in pO2from 20 to 70 kPa in 10 kPa increments resulted in a 2.5- to 3.9-fold increase in diffusion resistance to O2, and had little effect on either respiration or nitrogenase activity. In contrast, in stem-girdled and NO3--treated plants, increases in external pO2had little effect on diffusion resistance to O2, but resulted in a 2.3- to 3.2-fold increase in nodule respiration and nitrogenase activity. These results are consistent with stem-girdling and NO3--inhibition treatments limiting phloem supply to nodules causing an increase in diffusion resistance to O2at 20 kPa and an apparent insensitivity of diffusion resistance to increases in external pO2.  相似文献   

18.
晋西北不同年限小叶锦鸡儿灌丛土壤氮矿化和硝化作用   总被引:1,自引:0,他引:1  
白日军  杨治平  张强  张训忠 《生态学报》2016,36(24):8008-8014
利用PVC管顶盖埋管法研究了晋西北黄土高原区小叶锦鸡儿人工灌丛不同定植年限(5,10,20,30,40a)土壤氮矿化与硝化速率的动态和净矿化与硝化总量。结果表明,⑴小叶锦鸡儿灌丛土壤无机氮主要以NO_-~3-N形式存在,不同生长年限相同月份的土壤硝态氮(NO-3-N)含量分别是铵态氮(NH+4-N)含量的1.5—15.4倍;⑵土壤氮素硝化速率和矿化速率随生长年限延长而加快,30年生时达到高峰,数值达40.2,44.1 mg m~(-2)d~(-1)。从季节性变化看,7—8月份是硝化速率和矿化速率快速增长期,30年生小叶锦鸡儿灌丛土壤硝化速率和矿化速率分别达到86.9,93.1 mg m~(-2)d~(-1),显著高于其它生长年限(P0.05);(3)土壤氮素硝化与矿化总量同样随小叶锦鸡儿生长年限延长而增加,30年生时达到最高,与5年生相比,分别增加了3.7和3.1倍。(4)5—10月份小叶锦鸡儿生长期内,各年限土壤全氮量的2.3%被矿化成无机氮,其中87%最终被转化成NO-3-N形式存在于土体中。  相似文献   

19.
Nitrite (NO2) can accumulate during nitrification in soil following fertilizer application. While the role of NO2 as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil‐to‐atmosphere fluxes as a function of NO2 levels under aerobic conditions. The current study investigated these kinetics as influenced by soil physical and biochemical factors in soils from cultivated and uncultivated fields in Minnesota, USA. A linear response of N2O production rate () to NO2 was observed at concentrations below 60 μg N g−1 soil in both nonsterile and sterilized soils. Rate coefficients (Kp) relating to NO2 varied over two orders of magnitude and were correlated with pH, total nitrogen, and soluble and total carbon (C). Total C explained 84% of the variance in Kp across all samples. Abiotic processes accounted for 31–75% of total N2O production. Biological reduction of NO2 was enhanced as oxygen (O2) levels were decreased from above ambient to 5%, consistent with nitrifier denitrification. In contrast, nitrate (NO3)‐reduction, and the reduction of N2O itself, were only stimulated at O2 levels below 5%. Greater temperature sensitivity was observed for biological compared with chemical N2O production. Steady‐state model simulations predict that NO2 levels often found after fertilizer applications have the potential to generate substantial N2O fluxes even at ambient O2. This potential derives in part from the production of N2O under conditions not favorable for N2O reduction, in contrast to N2O generated from NO3 reduction. These results have implications with regard to improved management to minimize agricultural N2O emissions and improved emissions assessments.  相似文献   

20.
Schaaf  W. 《Plant and Soil》1995,(1):505-511
Main objective of this study was to test the effects of Mg(OH)2-fertilization in a Norway spruce ecosystem showing severe symptoms of Mg-deficiency.The site is characterized by high atmospheric inputs with deposition rates of 1.25 kg H, 42 kg S, and 32 kg N per ha and year. The typic Dystrochrept derived from granite is acidified down to greater depths. The pH-values in soil solution of the organic surface layer and the upper mineral soil are around 3.5. Concentrations of Al, SO4 2-, and especially NO3 - and DOC are very high. The element balance indicates a significant influence of N-inputs and processes of N-turnover on the chemical status of the soil and probably on tree nutrition. Nitrification in the upper mineral soil leads to a transformation of a major part of NH4 + into NO3 -, which is quantitatively leached, resulting in an ecosystem-internal H+-production of 1.8 keq ha-1yr-1. NO3 - and SO4 2- govern the seepage output from the ecosystem.Mg(OH)2 fertilization resulted in manifold increased Mg2+ concentrations in soil solution down to 70 cm soil depth and to a significant increase of pH down to 25 cm mineral soil depth. Nitrate concentrations were elevated after fertilization, but decreased within 15 months below the level of the control plot. As a mean over the whole experimental period, N-output was not increased by fertilization. Despite an elevated internal proton production due to nitrification, acid buffering in the soil was clearly increased, but enhanced Al-mobilization was not observed. Mg/Al- and Ca/H-ratios in soil solution indicate much more favourable conditions for fine root growth. Fertilization also increased the amount of exchangeable Mg down to 40cm mineral soil depth. Mg contents in current-year needles increased after three vegetation periods. Thirty months after application, only 10% and 4% of the fertilized Mg had left the organic surface layer and the mineral soil with seepage water output, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号