首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Accuracy in quantitative real-time polymerase chain reaction (qPCR) requires the use of stable endogenous controls. Normalization with multiple reference genes is the gold standard, but their identification is a laborious task, especially in species with limited sequence information. Coffee (Coffea ssp.) is an important agricultural commodity and, due to its economic relevance, is the subject of increasing research in genetics and biotechnology, in which gene expression analysis is one of the most important fields. Notwithstanding, relatively few works have focused on the analysis of gene expression in coffee. Moreover, most of these works have used less accurate techniques such as northern blot assays instead of more accurate techniques (e.g., qPCR) that have already been extensively used in other plant species. Aiming to boost the use of qPCR in studies of gene expression in coffee, we uncovered reference genes to be used in a number of different experimental conditions. Using two distinct algorithms implemented by geNorm and Norm Finder, we evaluated a total of eight candidate reference genes (psaB, PP2A, AP47, S24, GAPDH, rpl39, UBQ10, and UBI9) in four different experimental sets (control versus drought-stressed leaves, control versus drought-stressed roots, leaves of three different coffee cultivars, and four different coffee organs). The most suitable combination of reference genes was indicated in each experimental set for use as internal control for reliable qPCR data normalization. This study also provides useful guidelines for reference gene selection for researchers working with coffee plant samples under conditions other than those tested here. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
3.
4.
5.
6.

Background  

Real-time RT-PCR is the recommended method for quantitative gene expression analysis. A compulsory step is the selection of good reference genes for normalization. A few genes often referred to as HouseKeeping Genes (HSK), such as ACT1, RDN18 or PDA1 are among the most commonly used, as their expression is assumed to remain unchanged over a wide range of conditions. Since this assumption is very unlikely, a geometric averaging of multiple, carefully selected internal control genes is now strongly recommended for normalization to avoid this problem of expression variation of single reference genes. The aim of this work was to search for a set of reference genes for reliable gene expression analysis in Saccharomyces cerevisiae.  相似文献   

7.
Processing of gene expression data generated by quantitative real-time RT-PCR   总被引:37,自引:0,他引:37  
Muller PY  Janovjak H  Miserez AR  Dobbie Z 《BioTechniques》2002,32(6):1372-4, 1376, 1378-9
Quantitative real-time PCR represents a highly sensitive and powerful technique for the quantitation of nucleic acids. It has a tremendous potential for the high-throughput analysis of gene expression in research and routine diagnostics. However, the major hurdle is not the practical performance of the experiments themselves but rather the efficient evaluation and the mathematical and statistical analysis of the enormous amount of data gained by this technology, as these functions are not included in the software provided by the manufacturers of the detection systems. In this work, we focus on the mathematical evaluation and analysis of the data generated by quantitative real-time PCR, the calculation of the final results, the propagation of experimental variation of the measured values to the final results, and the statistical analysis. We developed a Microsoft Excel-based software application coded in Visual Basic for Applications, called Q-Gene, which addresses these points. Q-Gene manages and expedites the planning, performance, and evaluation of quantitative real-time PCR experiments, as well as the mathematical and statistical analysis, storage, and graphical presentation of the data. The Q-Gene software application is a tool to cope with complex quantitative real-time PCR experiments at a high-throughput scale and considerably expedites and rationalizes the experimental setup, data analysis, and data management while ensuring highest reproducibility.  相似文献   

8.
9.
10.
11.
The potency of UVA radiation, representing 90% of solar UV light reaching the earth׳s surface, to induce human skin cancer is the subject of continuing controversy. This study was undertaken to investigate the role of reactive oxygen species in DNA damage produced by the exposure of human cells to UVA radiation. This knowledge is important for better understanding of UV-induced carcinogenesis. We measured DNA single-strand breaks and alkali-labile sites in human lymphocytes exposed ex vivo to various doses of 365-nm UV photons compared to X-rays and hydrogen peroxide using the comet assay. We demonstrated that the UVA-induced DNA damage increased in a linear dose-dependent manner. The rate of DNA single-strand breaks and alkali-labile sites after exposure to 1 J/cm2 was similar to the rate induced by exposure to 1 Gy of X-rays or 25 μM hydrogen peroxide. The presence of either the hydroxyl radical scavenger dimethyl sulfoxide or the singlet oxygen quencher sodium azide resulted in a significant reduction in the UVA-induced DNA damage, suggesting a role for these reactive oxygen species in mediating UVA-induced DNA single-strand breaks and alkali-labile sites. We also showed that chromatin relaxation due to hypertonic conditions resulted in increased damage in both untreated and UVA-treated cells. The effect was the most significant in the presence of 0.5 M Na+, implying a role for histone H1. Our data suggest that the majority of DNA single-strand breaks and alkali-labile sites after exposure of human lymphocytes to UVA are produced by reactive oxygen species (the hydroxyl radical and singlet oxygen) and that the state of chromatin may substantially contribute to the outcome of such exposures.  相似文献   

12.
目的应用SYBR荧光实时定量RT-PCR法检测骨髓间充质干细胞(BMSCs)对大鼠肝星状细胞(HSCs)的死亡受体5(DR5)mRNA表达的影响,探讨BMSCs诱导HSCs凋亡及其机制。方法采用贴壁筛选法培养、纯化SD大鼠BMSCs,传至第4代使用;大鼠原代HSCs细胞及肝纤维原细胞系冻融后传代使用。应用6孔塑料培养板,建立上下双层细胞共培养体系,常规培养。实验分为3组:(1)实验组:BMSCs与HSCs共培养;(2)空白对照组:HSCs单独培养;(3)阴性对照组:大鼠肝纤维原细胞与HSCs共培养。以上培养体系动态观察24、48、72h,应用流式细胞仪检测HSCs细胞凋亡率,采用SYBRGreenI荧光实时定量RT-PCR法检测,以β-actin基因作为内参,计算各组DR5mRNA的相对表达量。结果在共培养组中,BMSCs促进了HSCs凋亡,与其他两组比较差异有显著统计学意义(P〈O.01),空白对照组与阴性对照组比较无统计学意义(P〉0.05)。实验组BMSCs能明显上调HSCs中DR5mRNA的表达,与空白对照组和阴性对照组比较差异有显著统计学意义(P〈O.01);空白对照组与阴性对照组DR5mRNA的表达比较无统计学意义(P〉O.05)。结论利用SYBR荧光实时定量RT-PCR法检测BMSCs诱导大鼠肝星状细胞中DR5mRNA表达,为进一步研究BMSCs通过死亡受体途径调控HSCs凋亡以及为BMSCs用于治疗肝纤维化的机制研究提供了理论基础。  相似文献   

13.
14.
15.
Due to the relative small number of bacterial pathogens present in an infected host, exploration of pathogen gene expression in vivo is challenging. This study reports the development of a protocol for quantifying bacterial gene expression in vivo in Actinobacillus pleuropneumoniae using laser capture microdissection and real-time quantitative RT-PCR.  相似文献   

16.
17.
18.

Background  

Reference genes are commonly used as the endogenous normalisation measure for the relative quantification of target genes. The appropriate application of quantitative real-time PCR (RT-qPCR), however, requires the use of reference genes whose level of expression is not affected by the test, by general physiological conditions or by inter-individual variability. For this purpose, seven reference genes were investigated in tissues of the most important cereals (wheat, barley and oats). Titre of Barley yellow dwarf virus (BYDV) was determined in oats using relative quantification with different reference genes and absolute quantification, and the results were compared.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号