首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bioelectricity and epimorphic regeneration   总被引:2,自引:0,他引:2  
All cells have electric potentials across their membranes, but is there really compelling evidence to think that such potentials are used as instructional cues in developmental biology? Numerous reports indicate that, in fact, steady, weak bioelectric fields are observed throughout biology and function during diverse biological processes, including development. Bioelectric fields, generated upon amputation, are also likely to play a key role during vertebrate regeneration by providing the instructive cues needed to direct migrating cells to form a wound epithelium, a structure unique to regenerating animals. However, mechanistic insight is still sorely lacking in the field. What are the genes required for bioelectric‐dependent cell migration during regeneration? The power of genetics combined with the use of zebrafish offers the best opportunity for unbiased identification of the molecular players in bioelectricity. BioEssays 29:1133–1137, 2007. © 2007 Wiley Periodicals, Inc.  相似文献   

2.
Fish has been the subject of various research fields, ranging from ecology, evolution, physiology and toxicology to aquaculture. In the past decades fish has attracted considerable attention for functional genomics, cancer biology and developmental genetics, in particular nuclear transfer for understanding of cytoplasmic-nuclear relationship. This special issue reports on recent progress made in fish stem cells and nuclear transfer.  相似文献   

3.
Steady direct current (dc) electric fields exist in many biological systems over many hours. At these times cells are dividing, differentiating, moving to final locations and extending motile processes. Each of these events may be influenced by physiological electric fields in tissue culture and when electric fields are disrupted in vivo, major developmental abnormalities arise. The likelihood of physiological electric fields playing a role in cell behaviours and some potential mechanisms are outlined.  相似文献   

4.
Gradient fields and homeobox genes.   总被引:5,自引:0,他引:5  
We review here old experiments that defined the existence of morphogenetic gradient fields in vertebrate embryos. The rather abstract idea of cell fields of organ-forming potential has become less popular among modern developmental and molecular biologists. Results obtained with antibodies directed against homeodomain proteins suggest that gradient fields may indeed be visualized at the level of individual regulatory molecules in vertebrate embryos.  相似文献   

5.
Cell and developmental biology are distinct disciplines with clear differences in emphasis and domains of interest, yet they also share a common historic origin and benefit from an increasingly productive exchange of insights and influences. Our goal in this commentary is to examine the common origin of cell and developmental biology, to explore ways in which they currently interact, and to consider the connections and differences that exist between these two fields.  相似文献   

6.
7.
胚胎干细胞诱导分化的研究进展   总被引:3,自引:0,他引:3  
赵明  任彩萍 《生命科学》2005,17(1):19-24
胚胎干细胞(embryonic stem cell,ESC)因其具有自我更新能力和发育的多能性,成为当前医学研究的热点。ESC不但可以自发分化,而且在诱导因素作用下可以定向分化为某一种特定的成熟细胞。因此,ESC在移植医学、发育生物学等领域有着广阔的应用前景。本文对几种定向诱导ESC分化的策略进行了综述。  相似文献   

8.
In part I of this article a correlation based model for the developmental process of spatiotemporal receptive fields has been introduced. In this model the development is described as an activity-dependent competition between four types of input from the lateral geniculate nucleus onto a cortical cell, viz. non-lagged ON and OFF and lagged ON and OFF inputs. In the present paper simulation results and a first analysis are presented for this model. We study the developmental process both before and after eye-opening and compare the results with experimental data from reverse correlation measurements. The outcome of the developmental process is determined mainly by the spatial and the temporal correlations between the different inputs. In particular, if the mean correlation between non-lagged and lagged inputs is weak, receptive fields with a widely varying degree of direction selectivity emerge. However, spatiotemporal receptive fields may show rotation of their preferred orientation as a function of response delay. Even if the mean correlation between two types of temporal input is not weak, direction-selective receptive fields may emerge because of an intracortical interaction between different cortical maps. In an environment of moving lines or gratings, direction-selective receptive fields develop only if the distribution of the directions of motion presented during development shows some anisotropy. In this case, a continuous map of preferred direction is also shown to develop. Received: 18 June 1997 / Accepted: 16 September 1997  相似文献   

9.
Several reports have shown that weak, extremely-low-frequency (ELF), pulsed magnetic fields (PMFs) can adversely affect the early embryonic development of the chick. In this study, freshly fertilized chicken eggs were exposed during the first 48 h of postlaying incubation to PMFs with 100 Hz repetition rate, 1.0 μT peak-to-peak amplitude, and 500 μs pulse duration. Two different pulse waveforms were used, having rise and fall times of 85 μs (PMF-A) or 2.1 μs (PMF-B). It has been reported that, with 2 day exposure, these fields significantly increase the proportion of developmental abnormalities. In the present study, following exposure, the eggs were allowed to incubate for an additional 9 days in the absence of the PMFs. The embryos were taken out of the eggs and studied blind. Each of the two PMF-exposed groups showed an excess in the percentage of developmental anomalies compared with the respective sham-exposed samples. This excess of anomalies was not significant for the PMF-A-treated embryos (P = 0.173), whereas it was significant for the PMF-B-exposed group (P = 0.007), which showed a particularly high rate of early embryonic death. These results reveal that PMFs can induce irreversible developmental alterations and confirm that the pulse waveform can be a determinant factor in the embryonic response to ELF magnetic fields. The data also validate previous work based on the study of PMFs' effects at day 2 of embryonic development under field exposure. © 1994 Wiley-Liss, Inc.  相似文献   

10.
Plant growth responds rapidly to developmental and environmental signals, but the underlying changes in cell division activity are poorly understood. A labile cyclin-GUS reporter was developed to facilitate the spatio-temporal analysis of cell division patterns. The chimeric reporter protein is turned over every cell cycle and hence its histochemical activity accurately reports individual mitotic cells. Using Arabidopsis plants transformed with cyclin-GUS, we visualized patterns of mitotic activity in wounded leaves which suggest a role for cell division in structural reinforcement.  相似文献   

11.
Recent information from several laboratories suggest that power frequency fields may stimulate cell differentiation in a number of model systems. In this way, they may be similar to pulsed electromagnetic fields, which have been used therapeutically. However, the effects of power frequency fields on phenotypic or genotypic expression have not been explained. This study describes the ability of power frequency fields to accelerate cell differentiation in vivo and describes dose relationships in terms of both amplitude and exposure duration. No change in proliferation or cell content were observed. A clear dose relationship, in terms of both amplitude and duration of exposure, was determined with the maximal biological response occurring at 0.1 mT and 7-9 h/day. Because this study was designed to explore biological activity at environmental exposure levels, this exposure range does not necessarily define optimal dosing conditions from the therapeutic point of view. This study reports the stimulation by power frequency fields of transforming growth factor-beta, an important signalling cytokine known to regulate cell differentiation. The hypothesis is raised that the stimulation of regulatory cytokines by electromagnetic fields may be an intermediary mechanism by which these fields have their biological activity.  相似文献   

12.
Genetic and biochemical studies have defined the Hippo pathway as a central mediator of developmental and pathogenic signals. By directing intracellular signaling events, the Hippo pathway fine-tunes cell proliferation, cell death, and cell-fate decisions, and coordinates these cues to specify animal organ size. Recent studies have revealed that Hippo pathway-mediated processes are interconnected with those of other key signaling cascades, such as those mediated by TGF-β and Wnt growth factors. Moreover, several reports have described a role for cell contact-mediated polarity proteins in Hippo pathway regulation. Emerging details suggest that crosstalk between these signals drives fundamental developmental processes, and deregulated intercellular communication influences disease progression, such as cancer. We review recent data with a focus on how the Hippo pathway integrates its activity with other signaling pathways.  相似文献   

13.
At the beginning of the 21st century, developmental biologists together with medical researchers in a wide range of fields are witnessing rapid progress in molecular developmental biology. For example, conditional gene knockout systems are being designed to tackle questions about organogenesis and body plan formation in experimental mouse models and experimental designs include several compound mutant analyses and genome modification strategies. On the other hand, several fields remain relatively unexplored. Molecular mechanisms of sex differentiation are one of the unexplored huge area. Unanswered questions include the molecular genetic cascade of gonad formation, reproductive organ formation, uterus, external genitalia and mammary gland formation, and also the molecular mechanisms of signal transduction, and gene regulation by nuclear hormone receptors. This special thematic review series entitled, "Reproductive/urogenital organ development and molecular genetic cascades: glamorous developmental processes of bodies," covers such a wide range of topics. For this special issue, I have asked active researchers to contribute reviews of these topics which I believe will be useful not only for molecular developmental biologists, but also for researchers in biochemistry and cell biology. It will be my great pleasure if this special thematic issue encourages scientists to study this exciting research field.  相似文献   

14.
15.
Histochemistry represents an integrative discipline aiming at the in situ detection, localization and functional characterization of cellular and extracellular components in single cells and complex organs. Therefore, the development of new methods and improvement of existing ones continues to be important. This, however, is with the declared intent for their application in the various fields of developmental and cell biology as well as pathology in order to contribute to the solution of open problems. This review summarizes recent advancements in these fields. Accepted: 8 November 1999  相似文献   

16.
Cell differentiation, morphology, migration, polarity, intercellular communication and adhesion are all cellular processes that control embryo morphogenesis and lie at the interface of cell and developmental biology. The interface between these two fields is best illustrated, however, in studies of axiation and cytoskeletal remodeling during development. Recent advances reveal novel mechanisms for axiation, including the role of RNA and protein degradation in regulating the timely expression of morphogenetic signals. Significant progress has also been made in identifying components of the cytoskeleton and the extracellular matrix that mediate embryonic cell migration and polarity. Cellular processes at the interface of cell and developmental biology are overseen by the Wnt signaling cascade that coordinates both axiation and cytoskeletal remodeling during development.  相似文献   

17.
Over the past few years, scientists have realized that many cellular and developmental processes, including pancreatic beta-cell growth and differentiation, stem cell and progenitor cell proliferation and cancer cell metastasis, occur in what are known as 'vascular niches'. Despite increasing numbers of reports on these niches, few common mechanisms have been identified to explain their various effects. Here, we define the term 'vascular niche' and suggest that a common and conserved feature of this niche is to provide a basement membrane to cells that are unable to form their own. We further propose that these cells require a vascular niche when they retain a high degree of plasticity.  相似文献   

18.
19.
Understanding how developmental systems evolve over time is a key question in stem cell and developmental biology research. However, due to hurdles of existing experimental techniques, our understanding of these systems as a whole remains partial and coarse. In recent years, we have been constructing in-silico models that synthesize experimental knowledge using software engineering tools. Our approach integrates known isolated mechanisms with simplified assumptions where the knowledge is limited. This has proven to be a powerful, yet underutilized, tool to analyze the developmental process. The models provide a means to study development in-silico by altering the model’s specifications, and thereby predict unforeseen phenomena to guide future experimental trials. To date, three organs from diverse evolutionary organisms have been modeled: the mouse pancreas, the C. elegans gonad, and partial rodent brain development. Analysis and execution of the models recapitulated the development of the organs, anticipated known experimental results and gave rise to novel testable predictions. Some of these results had already been validated experimentally. In this paper, I review our efforts in realistic in-silico modeling of stem cell research and developmental biology and discuss achievements and challenges. I envision that in the future, in-silico models as presented in this paper would become a common and useful technique for research in developmental biology and related research fields, particularly regenerative medicine, tissue engineering and cancer therapeutics.  相似文献   

20.
At refrigeration temperature, mouse embryos can retain their developmental ability for a couple of days. Previous research reports have focused on the effect of cool temperature on the development of 2-cell stage embryos, morulae or blastocysts and determined that the embryo still has the ability to produce offspring after about 48 h storage at refrigeration temperature. Here we examined whether refrigeration temperature affects the development of the eight-cell stage and if the stored eight-cell stage embryo can still be used as a host embryo for ES cell injection. Our results show that eight-cell stage embryos can develop into blastocysts and yield pups after cold storage for 24 and 48 h. After ES cell injection, stored eight-cell stage embryos can support ES cells developing to F0 pups. In summary, cool storage can preserve the developmental ability of eight-cell stage embryos for at least 48 h, allowing transportation of the embryos at refrigeration temperature between different labs and their subsequent use as host embryos for ES cell injection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号