首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Smith VP  Alcami A 《Journal of virology》2000,74(18):8460-8471
The production of secreted proteins that bind cytokines and block their activity has been well characterized as an immune evasion strategy of the orthopoxviruses vaccinia virus (VV) and cowpox virus (CPV). However, very limited information is available on the expression of similar cytokine inhibitors by ectromelia virus (EV), a virulent natural mouse pathogen that causes mousepox. We have characterized the expression and binding properties of three major secreted immunomodulatory activities in 12 EV strains and isolates. Eleven of the 12 EVs expressed a soluble, secreted 35-kDa viral chemokine binding protein with properties similar to those of homologous proteins from VV and CPV. All of the EVs expressed soluble, secreted receptors that bound to mouse, human, and rat tumor necrosis factor alpha. We also detected the expression of a soluble, secreted interleukin-1beta (IL-1beta) receptor (vIL-1betaR) by all of the EVs. EV differed from VV and CPV in that binding of human (125)I-IL-1beta to the EV vIL-1betaR could not be detected. Nevertheless, the EV vIL-1betaR prevented the interaction of human and mouse IL-1beta with cellular receptors. There are significant differences in amino acid sequence between the EV vIL-1betaR and its VV and CPV homologs which may account for the results of the binding studies. The conservation of these activities in EV suggests evolutionary pressure to maintain them in a natural poxvirus infection. Mousepox represents a useful model for the study of poxvirus pathogenesis and immune evasion. These findings will facilitate future study of the role of EV immunomodulatory factors in the pathogenesis of mousepox.  相似文献   

2.
Poxviruses encode a number of secreted virulence factors that function to mitigate or modulate the host immune response. M-T1 is a secreted 43-kDa glycoprotein produced by the myxoma virus, a poxvirus pathogen of rabbits, that binds CC-chemokines with high affinity, blocks binding to their cognate G-protein coupled receptors, and thereby inhibits chemokine-induced leukocyte chemotaxis. The present study indicates that M-T1, but not the related vaccinia virus 35-kDa CC-chemokine-binding protein, can localize to cell surfaces through an interaction with glycosaminoglycan molecules. In addition to biochemically characterizing the nature of this interaction, we demonstrate that M-T1 can also simultaneously interact with CC-chemokines while bound to heparin, suggesting that the binding sites on M-T1 for chemokines and heparin are distinct. Furthermore, using recombinant baculovirus-expressed M-T1 truncation and internal deletion mutants, we localize the heparin-binding region of M-T1 to the C terminus of the protein, a region that contains a high abundance of basic residues and includes two clusters of basic amino acid residues that resemble Cardin and Weintraub heparin-binding consensus sequences. The ability of M-T1 to simultaneously interact with chemokines and glycosaminoglycans may enable M-T1 to tether to endothelial surfaces or extracellular matrix and capture host chemokines that are expressed close to sites of virus infection.  相似文献   

3.
The vaccinia virus (VACV) A41L gene encodes a secreted 30 kDa glycoprotein that is nonessential for virus replication but affects the host response to infection. The A41 protein shares sequence similarity with another VACV protein that binds CC chemokines (called vCKBP, or viral CC chemokine inhibitor, vCCI), and strains of VACV lacking the A41L gene induced stronger CD8+ T-cell responses than control viruses expressing A41. Using surface plasmon resonance, we screened 39 human and murine chemokines and identified CCL21, CCL25, CCL26 and CCL28 as A41 ligands, with Kds of between 8 nM and 118 nM. Nonetheless, A41 was ineffective at inhibiting chemotaxis induced by these chemokines, indicating it did not block the interaction of these chemokines with their receptors. However the interaction of A41 and chemokines was inhibited in a dose-dependent manner by heparin, suggesting that A41 and heparin bind to overlapping sites on these chemokines. To better understand the mechanism of action of A41 its crystal structure was solved to 1.9 A resolution. The protein has a globular beta sandwich structure similar to that of the poxvirus vCCI family of proteins, but there are notable structural differences, particularly in surface loops and electrostatic charge distribution. Structural modelling suggests that the binding paradigm as defined for the vCCI-chemokine interaction is likely to be conserved between A41 and its chemokine partners. Additionally, sequence analysis of chemokines binding to A41 identified a signature for A41 binding. The biological and structural data suggest that A41 functions by forming moderately strong (nM) interactions with certain chemokines, sufficient to interfere with chemokine-glycosaminoglycan interactions at the cell surface (microM-nM) and thereby to destroy the chemokine concentration gradient, but not strong enough to disrupt the (pM) chemokine-chemokine receptor interactions.  相似文献   

4.
Cytokines and chemokines play a critical role in both the innate and acquired immune responses and constitute prime targets for pathogen sabotage. Molecular mimicry of cytokines and cytokine receptors is a mechanism encoded by large DNA viruses to modulate the host immune response. Three tumor necrosis factor receptors (TNFRs) have been identified in the poxvirus cowpox virus. Here we report the identification and characterization of a fourth distinct soluble TNFR, named cytokine response modifier E (CrmE), encoded by cowpox virus. The crmE gene has been sequenced in strains of the orthopoxviruses cowpox virus, ectromelia virus, and camelpox virus, and was found to be active in cowpox virus. crmE is expressed as a secreted 18-kDa protein with TNF binding activity. CrmE was produced in the baculovirus and vaccinia virus expression systems and was shown to bind human, mouse, and rat TNF, but not human lymphotoxin alpha, conjugates of lymphotoxins alpha and beta, or seven other ligands of the TNF superfamily. However, CrmE protects cells only from the cytolytic activity of human TNF. CrmE is a new member of the TNFR superfamily which is expressed as a soluble molecule that blocks the binding of TNF to high-affinity TNFRs on the cell surface. The remarkable finding of a fourth poxvirus-encoded TNFR suggests that modulation of TNF activity is complex and represents a novel viral immune evasion mechanism.  相似文献   

5.
Many poxviruses express a secreted protein that binds CC chemokines with high affinity and has been called viral CC chemokine inhibitor (vCCI). This protein is unrelated to any known cellular protein, yet can compete with host cellular CC chemokine receptors to modulate host inflammatory and immune responses. Although several strains of vaccinia virus (VV) express a vCCI, the best characterized VV strains Western Reserve and Copenhagen do not. In this study, we have expressed the vCCI from VV strain Lister in a recombinant Western Reserve virus (v Delta B8R-35K) and characterized its binding properties in vitro and its effect on virulence in vivo relative to wild-type virus (v Delta B8R) or a revertant virus (v Delta B8R-R) where Lister 35-kDa had been removed. Cells infected with v Delta B8R-35K secreted a 35-kDa protein that bound the CC chemokine macrophage-inflammatory protein 1 alpha. Expression of vCCI attenuated the virus in a murine intranasal model, characterized by reduced mortality and weight loss, decreased virus replication and spread, and a reduced recruitment of inflammatory cells into the lungs of VV-infected mice. The CC chemokines macrophage-inflammatory protein 1 alpha, eotaxin, and macrophage chemotactic protein 1 were detected in bronchoalveolar lavage fluids from v Delta B8R-infected mice; however, bronchoalveolar lavage fluids from v Delta B8R-35K-infected mice had lower levels of chemokines and a reduced chemotactic activity for murine leukocytes in vitro. These observations suggest that vCCI plays an important role in regulating leukocyte trafficking to the lungs during VV infection by binding to CC chemokines and blocking their chemotactic activities.  相似文献   

6.
Chemokines and their receptors play a key role in immune homeostasis regulating leukocyte migration, differentiation, and function. Viruses have acquired and optimized molecules that interact with the chemokine system. These virus-encoded molecules promote cell entry, facilitate dissemination of infected cells, and enable the virus to evade the immune response. One such molecule in the murine gammaherpesvirus 68 genome is the M3 gene, which encodes a secreted 44-kDa protein that binds with high affinity to certain murine and human chemokines and blocks chemokine signaling in vitro. To test the hypothesis that M3 directly interferes with diverse chemokines in vivo, we examined the interaction of M3 with CCL2 and CXCL13 expressed in the pancreas of transgenic mice. CCL2 expression in the pancreas promoted recruitment of monocytes and dendritic cells; CXCL13 promoted recruitment of B and T lymphocytes. Coexpression of M3 in the pancreas blocked cellular recruitment induced by both CCL2 and CXCL13. These results define M3 as multichemokine blocker and demonstrate its use as a powerful tool to analyze chemokine biology.  相似文献   

7.
8.
R L Roper  L G Payne    B Moss 《Journal of virology》1996,70(6):3753-3762
With the aid of three monoclonal antibodies (MAbs), a glycoprotein specifically localized to the outer envelope of vaccinia virus was shown to be encoded by the A33R gene. These MAbs reacted with a glycosylated protein that migrated as 23- to 28-kDa and 55-kDa species under reducing and nonreducing conditions, respectively. The protein recognized by the three MAbs was synthesized by all 11 orthopoxviruses tested: eight strains of vaccinia virus (including modified vaccinia virus Ankara) and one strain each of cowpox, rabbitpox, and ectromelia viruses. The observation that the protein synthesized by ectromelia virus-infected cells reacted with only one of the three MAbs provided a means of mapping the gene encoding the glycoprotein. By transfecting vaccinia virus DNA into cells infected with ectromelia virus and assaying for MAb reactivity, we mapped the glycoprotein to the A33R open reading frame. The amino acid sequence and hydrophilicity plot predicted that the A33R gene product is a type II membrane protein with two asparagine-linked glycosylation sites. Triton X-114 partitioning experiments indicated that the A33R gene product is an integral membrane protein. The ectromelia virus homolog of the vaccinia virus A33R gene was sequenced, revealing 90% predicted amino acid identity. The vaccinia and variola virus homolog sequences predict 94% identical amino acids, the latter having one fewer internal amino acid. Electron microscopy revealed that the A33R gene product is expressed on the surface of extracellular enveloped virions but not on the intracellular mature form of virus. The conservation of this protein and its specific incorporation into viral envelopes suggest that it is important for virus dissemination.  相似文献   

9.
10.
IL-18 induces IFN-gamma and NK cell cytotoxicity, making it a logical target for viral antagonism of host defense. We demonstrate that the ectromelia poxvirus p13 protein, bearing homology to the mammalian IL-18 binding protein, binds IL-18, and inhibits its activity in vitro. Binding of IL-18 to the viral p13 protein was compared with binding to the cellular IL-18R. The dissociation constant of p13 for murine IL-18 is 5 nM, compared with 0.2 nM for the cellular receptor heterodimer. Mice infected with a p13 deletion mutant of ectromelia virus had elevated cytotoxicity for YAC-1 tumor cell targets compared with control animals. Additionally, the p13 deletion mutant virus exhibited decreased levels of infectivity. Our data suggest that inactivation of IL-18, and subsequent impairment of NK cell cytotoxicity, may be one mechanism by which ectromelia evades the host immune response.  相似文献   

11.
There are few examples of host signals that are beneficial to bacteria during infection. Here we found that 31 out of 42 host immunoregulatory chemokines were able to induce release of the virulence factor protein A (SPA) from a strain of community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA). Detailed study of chemokine CXCL9 revealed that SPA release occurred through a post-translational mechanism and was inversely proportional to bacterial density. CXCL9 bound specifically to the cell membrane of CA-MRSA, and the related SPA-releasing chemokine CXCL10 bound to both cell wall and cell membrane. Clinical samples from patients infected with S. aureus and samples from a mouse model of CA-MRSA skin abscess all contained extracellular SPA. Further, SPA-releasing chemokines were present in mouse skin lesions infected with CA-MRSA. Our data identify a potential new mode of immune evasion, in which the pathogen exploits a host defense factor to release a virulence factor; moreover, chemokine binding may serve a scavenging function in immune evasion by S. aureus.  相似文献   

12.
The genetic variability of nine genes in 12 isolates and strains of ectromelia virus, which causes a smallpox-like disease (mousepox) in mice, was determined and allows for classification of ectromelia viruses. The low genetic variability suggests that evolutionary pressure maintains the activity of immunomodulatory genes in natural poxvirus infections.  相似文献   

13.
Chemokines are involved in recruitment and activation of hematopoietic cells at sites of infection and inflammation. The M3 gene of gammaHV68, a gamma-2 herpesvirus that infects and establishes a lifelong latent infection and chronic vasculitis in mice, encodes an abundant secreted protein during productive infection. The M3 gene is located in a region of the genome that is transcribed during latency. We report here that the M3 protein is a high-affinity broad-spectrum chemokine scavenger. The M3 protein bound the CC chemokines human regulated upon activation of normal T-cell expressed and secreted (RANTES), murine macrophage inflammatory protein 1alpha (MIP-1alpha), and murine monocyte chemoattractant protein 1 (MCP-1), as well as the human CXC chemokine interleukin-8, the murine C chemokine lymphotactin, and the murine CX(3)C chemokine fractalkine with high affinity (K(d) = 1. 6 to 18.7 nM). M3 protein chemokine binding was selective, since the protein did not bind seven other CXC chemokines (K(d) > 1 microM). Furthermore, the M3 protein abolished calcium signaling in response to murine MIP-1alpha and murine MCP-1 and not to murine KC or human stromal cell-derived factor 1 (SDF-1), consistent with the binding data. The M3 protein was also capable of blocking the function of human CC and CXC chemokines, indicating the potential for therapeutic applications. Since the M3 protein lacks homology to known chemokines, chemokine receptors, or chemokine binding proteins, these studies suggest a novel herpesvirus mechanism of immune evasion.  相似文献   

14.
The EVM1 protein encoded by Ectromelia virus is a member of a highly conserved family of poxvirus chemokine binding proteins that interfere with host immune surveillance processes. EVM1 is abundantly expressed early during mousepox infection and is able to selectively bind CC chemokines and inhibit their interactions with host receptors. Here, we characterize the interaction between EVM1 and the human and murine chemokines CCL3 (MIP-1alpha), CCL2 (MCP-1), and CCL5 (RANTES). Each of these CC chemokines binds EVM1 with 1:1 stoichiometry and equilibrium dissociation constants ranging from 29 pM to 20 nM. The interactions are characterized by rapid-association kinetics between acidic EVM1 and generally basic chemokines with half-lives enduring up to 30 min. The 2.6-A crystal structure of EVM1 reveals a globular beta sandwich with a large, sequence-conserved surface patch encircled by acidic residues on one face of the protein. To determine whether this conserved cluster of residues is involved in chemokine engagement, a structure-based mutational analysis of EVM1 was employed. Mapping of the mutational results onto the surface of EVM1 reveals that a cluster of five residues (I173, S171, S134, N136, and Y69) emanating from one beta sheet is critical for CCL2 and CCL3 sequestration. Additionally, we find that the extended beta2-beta4 loop flanking this conserved cluster is also essential for high-affinity, lasting interactions with chemokines. This analysis provides insight into the mechanism of CC-chemokine inhibition employed by the poxvirus family of chemokine decoy receptors.  相似文献   

15.
The innate immune system is critical in the response to infection by pathogens and it is activated by pattern recognition receptors (PRRs) binding to pathogen associated molecular patterns (PAMPs). During viral infection, the direct recognition of the viral nucleic acids, such as the genomes of DNA viruses, is very important for activation of innate immunity. Recently, DNA-dependent protein kinase (DNA-PK), a heterotrimeric complex consisting of the Ku70/Ku80 heterodimer and the catalytic subunit DNA-PKcs was identified as a cytoplasmic PRR for DNA that is important for the innate immune response to intracellular DNA and DNA virus infection. Here we show that vaccinia virus (VACV) has evolved to inhibit this function of DNA-PK by expression of a highly conserved protein called C16, which was known to contribute to virulence but by an unknown mechanism. Data presented show that C16 binds directly to the Ku heterodimer and thereby inhibits the innate immune response to DNA in fibroblasts, characterised by the decreased production of cytokines and chemokines. Mechanistically, C16 acts by blocking DNA-PK binding to DNA, which correlates with reduced DNA-PK-dependent DNA sensing. The C-terminal region of C16 is sufficient for binding Ku and this activity is conserved in the variola virus (VARV) orthologue of C16. In contrast, deletion of 5 amino acids in this domain is enough to knockout this function from the attenuated vaccine strain modified vaccinia virus Ankara (MVA). In vivo a VACV mutant lacking C16 induced higher levels of cytokines and chemokines early after infection compared to control viruses, confirming the role of this virulence factor in attenuating the innate immune response. Overall this study describes the inhibition of DNA-PK-dependent DNA sensing by a poxvirus protein, adding to the evidence that DNA-PK is a critical component of innate immunity to DNA viruses.  相似文献   

16.
Dengue virus is an arthropod-borne flavivirus that causes a mild febrile illness, dengue fever, or a potentially fatal syndrome, dengue hemorrhagic fever/dengue shock syndrome. Chemokines primarily orchestrate leukocyte recruitment to the areas of viral infection, which makes them critical mediators of immune and inflammatory responses. In the present study, we investigated the induction and function of chemokines in mice early after infection with dengue virus in vivo. We found that CXCL10/IFN-gamma-inducible protein 10 (IP-10) expression was rapidly and transiently induced in liver following infection. The expressed CXCL10/IP-10 likely mediates the recruitment of activated NK cells, given that anti-CXCL10/IP-10-treated mice showed diminished NK cell infiltration and reduced hepatic expression of effector molecules in activated NK cells after dengue virus infection. Of particular interest, we found that CXCL10/IP-10 also was able to inhibit viral binding to target cells in vitro. Further investigation revealed that various CXCL10/IP-10 mutants, in which the residues that mediate the interaction between the chemokine and heparan sulfate were substituted, failed to exert the inhibitory effect on dengue binding, which suggests that CXCL10/IP-10 competes with dengue virus for binding to heparan sulfate on the cell surface. Moreover, subsequent plaque assays showed that this inhibition of dengue binding blocked viral uptake and replication. The inhibitory effect of CXCL10/IP-10 on the binding of dengue virus to cells may represent a novel contribution of this chemokine to the host defense against viral infection.  相似文献   

17.
J S Maa  M Esteban 《Journal of virology》1987,61(12):3910-3919
Little is known about the nature of poxvirus proteins involved in the host immune response. Screening a lambda gt11 expression library of genomic rabbit poxvirus DNA with hyperimmune rabbit anti-vaccinia virus serum and selection of monospecific antibodies identified a highly antigenic viral protein of about 39,000 molecular weight (39K protein). The same-size protein of vaccinia virus was also identified with a monoclonal antibody (MAb B6) obtained from hybridomas generated after fusion of hyperimmunized mouse spleen cells with mouse myeloma cells. Structural analysis revealed that the 39K protein is an acidic polypeptide, that it can exist in two molecular forms because of intramolecular disulfide linkages, and that it is part of the virus core. This protein shares antigenic determinants with a cytoplasmic component(s) from uninfected cells. Functional studies revealed that the 39K protein is synthesized at late times postinfection and appears to be required for virus assembly. This protein is highly conserved in members of the Orthopoxvirus group, but in cowpox virus, a 41K virion protein was specifically recognized by antibodies that reacted against the vaccinia virus 39K protein. Significantly, during long-term passages of Friend erythroleukemia cells persistently infected with vaccinia virus, some virus mutants were found to increase or decrease by about 2 kilodaltons the size of the 39K protein. Mapping analysis localized sequences encoding the 39K protein in a rifampin-sensitive gene cluster between the two major core-associated viral polypeptides, 4a and 4b. The fact that the 39K core protein of vaccinia virus elicits strong humoral immune response, induces antibodies that react against a host component(s), and is subjected to genetic variability suggests that this protein has important biological functions.  相似文献   

18.
The chemokine CXCL14/BRAK participates in immune surveillance by recruiting dendritic cells. CXCL14 gene expression is altered in a number of cancers, but protein expression levels have not been investigated. Here we report that CXCL14 protein can be expressed in primary epithelial cells; however, in several immortalized and cancer cell lines this protein is targeted for polyubiquitylation and proteasomal degradation. We determined the NMR structure of CXCL14 to identify motifs controlling its expression. CXCL14 adopts the canonical chemokine tertiary fold but contains a unique five amino acid insertion (41VSRYR45) relative to other CXC chemokines. Deletion or substitution of key residues within this insertion prevented proteasomal degradation. Furthermore, we defined a 15 amino acid fragment of CXCL14 that is sufficient to induce proteasomal degradation. This study elucidates a post-translational mechanism for the loss of CXCL14 in cancer and a novel mode of chemokine regulation.  相似文献   

19.
The poxvirus p28 virulence factor is an E3 ubiquitin ligase   总被引:1,自引:0,他引:1  
A majority of the orthopoxviruses, including the variola virus that causes the dreaded smallpox disease, encode a highly conserved 28-kDa protein with a classic RING finger sequence motif (C(3)HC(4)) at their carboxyl-terminal domains. The RING domain of p28 has been shown to be a critical determinant of viral virulence for the ectromelia virus (mousepox virus) in a murine infection model (Senkevich, T. G., Koonin, E. V., and Buller, R. M. (1994) Virology 198, 118-128). Here, we demonstrate that the p28 proteins encoded by the ectromelia virus and the variola virus possess E3 ubiquitin ligase activity in biochemical assays as well as in cultured mammalian cells. Point mutations disrupting the RING finger domain of p28 completely abolish its E3 ligase activity. In addition, p28 functions cooperatively with Ubc4 and UbcH5c, the E2 conjugating enzymes involved in 26 S proteasome degradation of protein targets. Moreover, p28 catalyzes the formation of Lys-63-linked polyubiquitin chains in the presence of Ubc13/Uev1A, a heterodimeric E2 conjugating enzyme, indicating that p28 may regulate the biological activity of its cognate viral and/or host cell target(s) by Lys-63-linked ubiquitin multimers. We thus conclude that the poxvirus p28 virulence factor is a new member of the RING finger E3 ubiquitin ligase family and has a unique polyubiquitylation activity. We propose that the E3 ligase activity of the p28 virulence factor may be targeted for therapeutic intervention against infections by the variola virus and other poxviruses.  相似文献   

20.
The mechanism of poxvirus attachment to cells is poorly understood. We have identified a 32-kDa envelope protein of vaccinia virus which binds to the surface of cultured cells. This binding is specific and selective (J.-S. Maa, J. F. Rodriguez, and M. Esteban, J. Biol. Chem. 265:22174-22180, 1990; C. Lai, S. Gong, and M. Esteban, J. Virol. 65:499-504, 1991). In this investigation, we studied the effect of inactivating the 32-kDa gene (32K gene) on the biology of vaccinia virus. We show that inactivation of the 32K gene decreases by 80% the mortality of mice infected with 32K- vaccinia virus. This reduction in mortality correlates with diminished viral gene expression in target tissues. In highly polarized epithelial cells, viral gene expression of 32K- virus was reduced (50 to 60%) at both the apical and basolateral surfaces in comparison with a 32K+ virus. Restriction of virus gene expression in polarized cell surfaces occurs for both intracellular and extracellular forms of infectious 32K- vaccinia virus. The two infectious forms of vaccinia virus 32K+ infect polarized cells preferentially by the basolateral surface. Our findings provide evidence of the importance of the 32-kDa protein in viral pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号