首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The expression of bovine follicle-stimulating hormone (FSH)-suppressing protein (FSP) mRNA was investigated in different ovarian tissues of cows. Northern blot analysis, using a cDNA probe to bovine FSP, demonstrated that the FSP gene in the bovine ovary is highly expressed in a pool of isolated granulosa cells. Two bands (2.8 and 1.8 kb) were observed in all tissues expressing the mRNA. FSP mRNA was low in small antral follicles and increased in growing follicles to reach a maximum in preovulatory follicles. Low amounts of mRNA of steady state FSP were observed in all stages of the corpus luteum as well as in the corpus luteum of pregnant cows, in the corpus albicans and theca tissue, whereas this mRNA could not be detected in the liver. These results are consistent with the hypothesis that, in cows, FSP functions as an autocrine regulator in developing follicles to facilitate luteinization of granulosa cells.  相似文献   

2.
3.
在哺乳动物中,卵巢黄体(corpus luteum,CL)是由破裂排卵后的卵泡所形成的,也是血管增生比较激烈的地方。尤其是在卵巢黄体早期发育阶段,这种快速形成的致密毛细血管网可以确保产生激素的细胞获得氧气、营养和合成激素等所必要的前体,同时释放大量的激素用于早期妊娠的建立和维持。目前的研究已经表明,血管内皮生长因子(vascular endothel ial growth factor,VEGF)作为重要的促血管生成因子,在卵巢黄体发育过程中对血管增生具有至关重要的调节作用,而VEGF作为转录因子HIF-1的下游靶基因,受缺氧诱导因子HIF-1信号通路的调控。该文一方面对卵巢黄体发育过程中VEGF依赖性血管增生的调控机制进行概述,另一方面就转录因子H1F-1对VEGF的转录激活调控机制进行系统阐述,从而揭示HIF-1对卵巢黄体发育过程dgVEGF依赖性血管新生的调控作用,为进一步研究哺乳动物卵巢黄体发育过程中血管增生的分子调控机制提供坚实的理论基础。  相似文献   

4.
In the female reproductive system, as in a few adult tissues, angiogenesis occurs as a normal process and is essential for normal tissue growth and development. In the ovary, new blood vessel formation facilitates oxygen, nutrients, and hormone substrate delivery, and also secures transfer of different hormones to targeted cells. Ovarian follicle and the corpus luteum (CL) have been shown to produce several angiogenic factors, however, vascular endothelial growth factor (VEGF) is thought to play a paramount role in the regulation of normal and abnormal angiogenesis in the ovary. Expression of VEGF in ovarian follicles depends on follicular size. Inhibition of VEGF expression results in decreased follicle angiogenesis and the lack of the development of mature antral follicles. The permeabilizing activity of VEGF is thought to be involved in follicle antrum formation and in the ovulatory process. In the CL, VEGF expression corresponds to different patterns of angiogenesis during its lifespan. In most the species, higher VEGF expression in the early luteal phase is essential for the development of a high-density capillary network in the CL. However, high VEGF expression may be still maintained in the mid-luteal phase to increase vascular permeability that results in enhancement of luteal function. During gestation, VEGF is thought to be important for the persistence of the CL function for a longer than in the nonfertile cycle period of time. Further elucidation of specific roles of VEGF in ovarian physiology may help to understand the phenomenon of luteal insufficiency and reveal novel strategies of ovarian angiogenesis manipulation to alleviate infertility or to control fertility.  相似文献   

5.
Basigin is a highly glycosylated transmembrane protein belonging to the immunoglobulin superfamily. Basigin-deficient male mice are azoospermic. The majority of basigin null embryos die around the time of implantation. However, basigin expression and regulation in mouse ovary is still unknown. The aim of this study was to investigate basigin expression in mouse ovary during sexual maturation, gonadotropin treatment, and luteal development by in situ hybridization and immunohistochemistry. Both basigin mRNA and immunostaining were not detected in the granulosa cells of preantral follicles until day 20 after birth. On day 30 after birth, basigin immunostaining dropped to a basal level, while basigin mRNA was still at a high level. Basigin expression was strongly induced by equine chorionic gonadotropin (eCG) treatment at 4 and 8 hr post-eCG injection. Both basigin immunostaining and mRNA signals were strongly observed in the corpus luteum on days 2 and 3 post-hCG injection. However, no basigin expression was detected from days 6 to 15 post-hCG injection. In conclusion, our data suggest that basigin may play a role during the mouse follicle development and corpus luteum formation.  相似文献   

6.
7.
Previous studies demonstrated that waves of follicular activity develop approximately every 9 d in cattle during the estrous cycle and early pregnancy. A dominant follicle develops from each wave and the remaining follicles (subordinates) begin to regress after a few days. In this study, intraovarian luteal and follicular interrelationships were examined during the follicular waves of the estrous cycle and pregnancy using data obtained by ultrasonography. During the estrous cycle, no intraovarian relationships were found between the ovary containing the corpus luteum and the ovary containing the dominant follicle (n = 165), or between the location of the corpus luteum and the characteristics of the dominant follicle. During pregnancy, however, the frequency distribution for the number of follicular waves with the dominant follicle and corpus luteum on the same or opposite ovaries differed (P<0.05) among Waves 1 to 10. The two structures (dominant follicle and corpus luteum) were more often in opposite ovaries during Waves 3 to 10 (combined frequency, 75%) than during Waves 1 and 2. During pregnancy, dominant follicles of consecutive waves differed (P<0.05) among Waves 1 to 8 in the frequency with which they appeared in the same versus the opposite ovary. The difference seemed primarily due to an increased frequency of consecutive follicles on the same ovary for Waves 4 to 8 (combined frequency, 80%). During both the estrous cycle and pregnancy, there was no significant intraovarian effect of the dominant follicle on the day of detection of the next dominant follicle, on the growth rate of the largest subordinate follicle, or on the length of the interval from wave origin to cessation of growth of the largest subordinate; these results indicate that previously postulated suppressive effects between follicles are exerted through systemic channels.  相似文献   

8.
Ovarian follicles ≥2 mm were studied in 22 Holstein heifers by daily ultrasound examinations. Data were partitioned by right vs. left ovary and corpus luteum bearing ovary vs. the contralateral ovary. There were significantly more (P < 0.03) follicles 4–6 mm, > 13mm and total ≥2 mm in the right ovary, regardless of the presence of a corpus luteum. Significantly more (P < 0.05) follicles 2–3 mm, > 13 mm and total ≥2 mm were observed in the ovary bearing the corpus luteum. Interactions between day and corpus luteum appeared to be due to a greater number of follicles in the ovary bearing the corpus luteum during the first part of the interovulatory interval. There was also a day by right side vs. left side interaction for the number of follicles > 13 mm. Interpretation of the interactions was that the presence of a corpus luteum was conducive to the development of more anovulatory diestrous follicles > 12 mm. However, as regression of the corpus luteum progressed, there was an apparent proclivity for preovulatory follicular development in the right ovary. There was no apparent pattern of alternating sides of ovulation or of alternating sides of development of anovulatory diestrous follicles and preovulatory follicles in heifers observed for more than one interovulatory interval. There was not a significant difference in the maximum diameter attained by the anovulatory diestrous follicle or preovulatory follicle between ovaries ipsilateral or contralateral to the corpus luteum; however, the maximum diameter attained by the preovulatory follicle was greater (P < 0.05) than that attained by the anovulatory diestrous follicle.  相似文献   

9.
10.
11.
The cyclic nature of the capillary bed in the corpus luteum offers a unique experimental model to examine the life cycle of endothelial cells, involving discrete physiologically regulated steps of angiogenesis, blood vessel maturation and blood vessel regression. The granulosa cells and theca cells of the developing antral follicle and the steroidogenic cells of the corpus luteum produce and respond to angiogenic factors and vasoactive peptides. Following ovulation the neovascularization during the early stages of corpus luteum development has been compared to the rapid angiogenesis observed during tumor formation. On the other end of the spectrum, the microvascular endothelial cells are the first cells to undergo apoptosis at the onset of corpus luteum regression. Important insights on the morphology and function of luteal endothelial cells have been gained from a combination of in vitro and in vivo studies on endothelial cells. Endothelial cells communicate with cells comprising the functional unit of the corpus luteum, i.e., other vascular cells, steroidogenic cells, and immune cells. This review is designed to provide an overview of the types of endothelial cells present in the corpus luteum and their involvement in corpus luteum development and regression. Available evidence indicates that microvascular endothelial cells of the corpus luteum are not alike, and may differ during the process of angiogenesis and angioregression. The contributions of vasoactive peptides generated by the luteal endothelin-1 and the renin-angiotensin systems are discussed in context with the function of endothelial cells during corpus luteum formation and regression. The ability of two cytokines, tumor necrosis factor alpha and interferon gamma, are evaluated as paracrine mediators of endothelial cell function during angioregression. Finally, chemokines are discussed as a vital endothelial cell secretory products that contribute to the recruitment of eosinophils and macrophages. The review highlights areas for future investigation of ovarian microvascular endothelial cells. The potential clinical applications of research directed on corpus luteum endothelial cells are intriguing considering reproductive processes in which vascular dysfunctions may play a role such as ovarian failure, polycystic ovary syndrome (PCOS), and ovarian hyperstimulation syndrome (OHSS).  相似文献   

12.
Adiponectin is one of the most important, recently discovered adipocytokines that acts at various levels to control male and female fertility through central effects on the hypothalamus-pituitary axis or through peripheral effects on the ovary, uterus, and embryo. We studied simultaneous changes in the gene expression pattern of adiponectin and adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2) in granulosa and theca cells, cumulus-oocyte complex, and in corpus luteum in healthy bovine (Bos tarus) follicles at different stages of development. The expression levels of adiponectin, AdipoR1, and AdipoR2 mRNA were lower (P < 0.05) in granulosa and cumulus cells in comparison with that in theca cells and oocyte. In contrast with the oocyte, AdipoR1 in granulosa, theca, and luteal cells was expressed (P < 0.05) more than AdipoR2. Adiponectin expression increased (P < 0.05) in granulosa cells and in cumulus-oocyte complex during follicular development from small to large follicles. Opposite results were observed in theca cells. Expression of adiponectin was highest in the late stages of corpus luteum (CL) regression, whereas lower expression was recorded in active CL (P < 0.05). AdipoR1 and AdipoR2 expression increased during the terminal follicular growth in granulosa and theca cells (P < 0.05) and during the luteal phase progress in CL. There was positive correlation between adiponectin mRNA level in granulosa cells from large follicles and follicular fluid estradiol concentration (r = 0.48, P < 0.05) and negative correlation between adiponectin mRNA abundance in theca cells and follicular fluid progesterone concentration (r = -0.44, P < 0.05). In conclusion, we found that the physiologic status of the ovary has significant effects on the natural expression patterns of adiponectin and its receptors in follicular and luteal cells of bovine ovary.  相似文献   

13.
Previous studies have implicated insulin-like growth factors I and II (IGF-I and -II), in the regulation of ovarian function. The present study investigated the localization of mRNA encoding IGF-I and -II and the type 1 IGF receptor using in situ hybridization to determine further the roles of the IGFs within the bovine corpus luteum at precise stages of the oestrous cycle. Luteal expression of mRNA encoding IGF-I and -II and the type 1 IGF receptor was detected throughout the oestrous cycle. The expression of IGF-I mRNAvaried significantly during the oestrous cycle. IGF-I mRNA concentrations were significantly higher on day 15 than on day 10, and IGF-I mRNA in the regressing corpus luteum at 48 h after administration of exogenous prostaglandin was significantly greater than in the early or mid-luteal phase (days 5 and 10). In contrast, there was no significant effect of day of the oestrous cycle on expression of mRNA for IGF-II and the type 1 IGF receptor in the corpus luteum. Expression of IGF-II mRNA was localized to a subset of steroidogenic luteal cells and was also associated with cells of the luteal vasculature. mRNA encoding the type 1 IGF receptor was widely expressed in a pattern indicative of expression in large and small luteal cells. These data demonstrate that the bovine corpus luteum is a site of IGF production and reception throughout the luteal phase. Furthermore, this study highlights the potential of IGF-II in addition to IGF-I in the autocrine and paracrine regulation of luteal function.  相似文献   

14.
Apolipoprotein E (apo E) is a 35-kDa protein found in association with various lipoproteins. It is synthesized by a wide variety of tissues, including the ovary. It can serve several functions, such as 1) transport of excess cholesterol from peripheral tissue to the liver; 2) directed movement of cholesterol from areas of high to low cholesterol concentration within tissue or organs; and 3) inhibition of the conversion of theca progesterone to androgen, thus acting as an autocrine or paracrine factor within the ovary. To better understand the physiological role of ovarian apo E, we employed the technique of in situ hybridization utilizing 35S-labeled apo E riboprobes to identify cells containing E mRNA. We studied ovaries of hypophysectomized immature rats administered various regimens of gonadotropins because of the uniform, predictable stimulation of follicular granulosa and theca development, ovulation, and corpus luteum formation. Apo E mRNA was localized predominantly in the theca, with an increase associated with theca hypertrophy. Apo E mRNA increased in granulosa cells with the development of preovulatory Graafian follicles, but decreased to baseline following ovulation and corpus luteum formation. These data are consistent with two roles for apo E in the ovary: 1) directing cholesterol to cells needing cholesterol as substrate for cell proliferation and steroidogenesis, and 2) acting as an autocrine regulatory factor to reduce theca androgen substrate for follicle estrogen production.  相似文献   

15.
The gross anatomy and histology of the gonads and accessory sex organs are described for male and female Presbytis e. entellus. The langur differs from other catarrhine monkeys in certain specialised characters. The “sexual skin” is not comparable to the true sexual skin of the Cercopithecinae which exhibits cyclical change during the various phases of reproduction; it is nevertheless fully developed in the adult male and serves as one of the secondary sexual characters. Certain aspects of the reproductive system strikingly resemble those of man. The combined testicular weight (0.07% body weight) is similar to the human (0.08%), and the male has ampullary glands. The cervical canal is straight like that of a baboon or man. The corpus luteum (except in the lactating female) is a hollow glandular structure. Extensive hemorrhage which always accompanies ovulation in the langur, does not appear to be a common phenomenon in any other catarrhine for which ovulation and the development of corpus luteum have been studied. The hemorrhagic remains are retained for a long time in the ovulated follicle. The ovary is characteristically large and averages 0.74 gm without corpus luteum and 1.57 gm with corpus luteum, a feature never reported in any other catarrhine monkeys. The pre-ovulatory follicle may attain a size of 14 × 14 mm.  相似文献   

16.
As prerequisite for development and maintenance of many diseases angiogenesis is of particular interest in medicine. Pathologic angiogenesis takes place in chronic arthritis, collagen diseases, arteriosclerosis, retinopathy associated with diabetes, and particularly in cancers. However, angiogenesis as a physiological process regularly occurs in the ovary. After ovulation the corpus luteum is formed by rapid vascularization of initially avascular granulosa lutein cell tissue. This process is regulated by gonadotropic hormones. In order to gain further insights in the regulatory mechanisms of angiogenesis in the ovary, we investigated these mechanisms in cell culture of human granulosa lutein cells. In particular, we determined the expression and production of several angiogenic factors including tissue inhibitor of matrix metalloproteinases-1 (TIMP-1), Leptin, connective tissue growth factor (CTGF), meningioma-associated complimentary DNA (Mac25), basic fibroblast growth factor (bFGF), and Midkine. In addition, we showed that human chorionic gonadotropin (hCG) has distinct effects on their expression and production. hCG enhances the expression and production of TIMP-1, whereas it downregulates the expression of CTGF and Mac25. Furthermore it decreases the expression of Leptin. Our results provide evidence that hCG determines growth and development of the corpus luteum by mediating angiogenic pathways in human granulosa lutein cells. Hence we describe a further approach to understand the regulation of angiogenesis in the ovary.  相似文献   

17.
18.
19.
Laparoscopic observations of morphological changes of the ovary during the ovarian cycle in conjunction with radioimmunoassay of serum progesterone and estradiol-17β was investigated as a method of monitoring the ovarian cycle in the common marmoset. In the common marmoset, plural follicles first appeared in each ovary five days prior to ovulation. At three to four days prior to ovulation one or two follicles developed into translucent blisters on the surface of the ovary. As the follicles filled with follicular fluid, they became larger and clearer until one to two days prior to ovulation, at which time they formed well defined, transparent bubbles protruding from the surface of the ovary. After ovulation, the ovulation point could be detected at the center of the follicle, sometimes surrounded by a corpus of engorged blood vessels. Ovulations of the plural follicles were not simultaneous, and due to the time lag ovulations took at least 12 to 20 hrs in four out of seven animals examined. After two to five days of ovulation the corpus hemorragicum, a bright red protrusion made of tissue and blood disrupted by ovulation, was found. Subsequently, the color of the formatted corpus luteum changed from dark-red to yellow then to yellow white. While the corpus luteum remained reddish in color serum progesterone was maintained at as high levels as in the luteal phase. There was no mature follicle or corpus luteum in subordinate female ovaries.  相似文献   

20.
Platelet-derived growth factors (PDGFs) and their receptors (PDGFRs) play a vital role in regulating cell growth and angiogenesis. In this study, the expression of the family of PDGFs and PDGFRs in the ovarian corpus luteum were identified and characterized, and an effect of their activity on development of the corpus luteum revealed. Gonadotropin-stimulated immature rats were utilized as a model of induced ovulation, luteogenesis, and pseudopregnancy. Levels of ovarian mRNA for Pdgfb and Pdgfd, and their receptor, Pdgfrb, increased significantly as early as 4 h after human chorionic gonadotropin (hCG) injection in immature rats primed with equine chorionic gonadotropin (eCG). Gonadotropin regulation of Pdgfb expression was confirmed by in vitro promoter-reporter assays, which showed a 2- to 3-fold increase in Pdgfb promoter activity in response to luteinizing hormone (LH). Inhibition studies implicated protein kinase A, phosphatidylinositol 3-kinase and mitogen activated protein kinase signaling pathways in the LH-induced upregulation. In the corpus luteum, PDGFA, PDGFB, PDGFC, and PDGFRA were localized to a population of luteal parenchymal/steroidogenic cells. PDGFRB was expressed primarily in what appeared to be cells of the luteal microvasculature. Intraovarian injection of an inhibitor of PDGF receptor activity, the tyrphostin AG1295, prior to injection of hCG in eCG-primed immature rats resulted in a significant 21.86%+/-11.15% decrease in corpora lutea per treated ovary in comparison to the contralateral vehicle-injected control ovary. In addition, the treated ovary of 3 of 16 rats showed widespread hemorrhage throughout the entire ovary, indicating a possible role for PDGF receptor activity in maintenance of the ovarian vasculature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号