首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Telomeres, DNA–protein structures, are important elements of the eukaryotic chromosome. Telomeric regions of the majority of higher plants contain heptanucleotides TTTAGGG arranged into a tandem repeat. However, some taxa have no such repeats. These are some species of Liliaceae and Alliaceae. For example, terminal regions of chromosomes of bunching onion (Allium fistulosum) contain satellite DNA whose unit repeats are 380 bp in length, and the short arm of its chromosome 8 contains rDNA repeats. This study deals with the terminal heterochromatin and organization of the satellite repeat in A. fistulosum. Fluorescent in situ hybridization (FISH) was used to locate the satellite DNA on chromosomes and on extended DNA of A. fistulosum.Nonsatellite DNA was found in the structure of telomeric repeat. Polymerase chain reaction (PCR) and Southern hybridization were used for analysis of terminal heterochromatin. Various rearrangements were found in the satellite repeat. The roles of retrotransposons and microsatellites in the formation of terminal heterochromatin are discussed.  相似文献   

2.
Structural alterations in nuclei and chromosomes of cells derived from callus culture of Allium fistulosum have been studied with fluorescent in situ hybridization (FISH) using 5S ribosomal DNA (rDNA), 45S rDNA, and 375-bp repeat probes. A high frequency of chromosome abnormalities was found to be caused by the loss of telomere-located 375-bp repeats, chromosome fusion, and subsequent breakage-fusion-bridge cycles. Products of chromosome fusions and monocentric and regularly shaped chromosomes showed additional 375-bp repeat and 45S rDNA clusters at unusual sites, suggesting dynamic copy-number changes and transposition of these repeats. Southern hybridization revealed no differences in the 375-bp repeat and 45S rDNA repeat array order or the degree of methylation between DNA isolated from leaves or tissue-culture cells. In addition, protruding, spike-like structures positive for 375-bp repeats were identified on the surface of different-sized nuclei. Transmission electron microscopy analysis revealed the accumulation of densely packed chromatin within spike-like structures. Because root calyptra cells showed similar structures, it is likely that heterochromatic spike-like structures are a feature of nondividing cells at the onset of programmed cell death.  相似文献   

3.
L Barthes  A Ricroch 《Génome》2001,44(5):929-935
Monosomic alien addition lines (MAALs) are useful for assigning linkage groups to chromosomes. We examined whether the chromosomal rearrangements following the introduction of a single onion (Allium cepa) chromosome into the Allium fistulosum genome were produced by homeologous crossing over or by a nonreciprocal conversion event. Among the monosomic lines available, 17 were studied by fluorescent genomic in situ hybridisation, using total A. cepa genomic DNA as the probe and total A. fistulosum genomic DNA as the competitor. In this way, rearrangements such as chromosomal translocations between A. cepa and A. fistulosum were identified as terminal regions consisting of tandem DNA repeats. Homeologous crossing over between the two closely related genomes occurred in 4 of the 17 lines, suggesting that such events are not rare. On the basis of a detailed molecular cytogenetic characterisation, we identified true monosomic alien addition lines for A. cepa chromosomes 3, 4, 5, 7, and 8 that can reliably be used in genetic studies.  相似文献   

4.
Shibata F  Hizume M 《Chromosoma》2002,111(3):184-191
In Allium wakegi, which is an allodiploid species between Allium cepa and Allium fistulosum, each genome can be clearly distinguished using genomic in situ hybridization (GISH). Genomic DNA of A. cepa and A. fistulosum is differentiated both qualitatively and quantitatively. We wanted to isolate nucleotide sequences that give genome-specific signals on A. cepa chromosomes in GISH experiments in A. wakegi. We isolated 23 clones that show GISH-like signal patterns in fluorescence in situ hybridization (FISH) and analyzed their distribution in the A. cepa- and A. fistulosum-derived genomes of A. wakegi. There was considerable variation in the abundance and distribution of these cloned sequences on the chromosomes of the two species. The degree of A. cepa specificity varied among the clones. Twenty-two of the clones showed an even distribution over most chromosome arms with some clustering in the pericentromeric regions, but one clone showed very distinct terminal signals on some chromosomes. Whereas these sequences are not specific for A. cepa, changes in bases in nucleotide sequences and in their amount result in genome-specific characteristics in GISH experiments.  相似文献   

5.
He-T DNA is a complex set of repeated DNA sequences with sharply defined locations in the polytene chromosomes of Drosophila melanogaster. He-T sequences are found only in the chromocenter and in the terminal (telomere) band on each chromosome arm. Both of these regions appear to be heterochromatic and He-T sequences are never detected in the euchromatic arms of the chromosomes (Young et al. 1983). In the study reported here, in situ hybridization to metaphase chromosomes was used to study the association of He-T DNA with heterochromatic regions that are under-replicated in polytene chromosomes. Although the metaphase Y chromosome appears to be uniformly heterochromatic, He-T DNA hybridization is concentrated in the pericentric region of both normal and deleted Y chromosomes. He-T DNA hybridization is also concentrated in the pericentric regions of the autosomes. Much lower levels of He-T sequences were found in pericentric regions of normal X chromosomes; however compound X chromosomes, constructed by exchanges involving Y chromosomes, had large amounts of He-T DNA, presumably residual Y sequences. The apparent co-localization of He-T sequences with satellite DNAs in pericentric heterochromatin of metaphase chromosomes contrasts with the segregation of satellite DNA to alpha heterochromatin while He-T sequences hybridize to beta heterochromatin in polytene nuclei. This comparison suggests that satellite sequences do not exist as a single block within each chromosome but have interspersed regions of other sequences, including He-T DNA. If this is so, we assume that the satellite DNA blocks must associate during polytenization, leaving the interspersed sequences looped out to form beta heterochromatin. DNA from D. melanogaster has many restriction fragments with homology to He-T sequences. Some of these fragments are found only on the Y. Two of the repeated He-T family restriction fragments are found entirely on the short arm of the Y, predominantly in the pericentric region. Under conditions of moderate stringency, a subset of He-T DNA sequences cross-hybridizes with DNA from D. simulans and D. miranda. In each species, a large fraction of the cross-hybridizing sequences is on the Y chromosome.  相似文献   

6.
Centromeres and telomeres of higher eukaryotes generally contain repetitive sequences, which often form pericentric or subtelomeric heterochromatin blocks. C-banding analysis of chromosomes of Azara''s owl monkey, a primate species, showed that the short arms of acrocentric chromosomes consist mostly or solely of constitutive heterochromatin. The purpose of the present study was to determine which category, pericentric, or subtelomeric is most appropriate for this heterochromatin, and to infer its formation processes. We cloned and sequenced its DNA component, finding it to be a tandem repeat sequence comprising 187-bp repeat units, which we named OwlRep. Subsequent hybridization analyses revealed that OwlRep resides in the pericentric regions of a small number of metacentric chromosomes, in addition to the short arms of acrocentric chromosomes. Further, in the pericentric regions of the acrocentric chromosomes, OwlRep was observed on the short-arm side only. This distribution pattern of OwlRep among chromosomes can be simply and sufficiently explained by assuming (i) OwlRep was transferred from chromosome to chromosome by the interaction of pericentric heterochromatin, and (ii) it was amplified there as subtelomeric heterochromatin. OwlRep carries several direct and inverted repeats within its repeat units. This complex structure may lead to a higher frequency of chromosome scission and may thus be a factor in the unique distribution pattern among chromosomes. Neither OwlRep nor similar sequences were found in the genomes of the other New World monkey species we examined, suggesting that OwlRep underwent rapid amplification after the divergence of the owl monkey lineage from lineages of the other species.  相似文献   

7.
Luzula spp, like the rest of the members of the Juncaceae family, have holocentric chromosomes. Using the rice 155-bp centromeric tandem repeat sequence (RCS2) as a probe, we have isolated and characterized a 178-bp tandem sequence repeat (LCS1) from Luzula nivea. The LCS1 sequence is present in all Luzula species tested so far (except L. pilosa) and like other satellite repeats found in heterochromatin, the cytosine residues are methylated within the LCS1 repeats. Using fluorescent in situ hybridization (FISH) experiments we have shown that there are at least 5 large clusters of LCS1 sequences distributed at heterochromatin regions along each of the 12 chromosomes of L. nivea. We have shown that a centromeric antibody Skp1 co-localizes with these heterochromatin regions and with the LCS1 sequences. This suggests that the LCS1 sequences are part of regions which function as centromeres on these holocentric chromosomes. Furthermore, using the BrdU assay to identify replication sites, we have shown that these heterochromatin sites containing LCS1 associate when being replicated in root interphase nuclei. Our results also show premeiotic chromosome association during anther development as indicated by single-copy BAC in situ and the presence of fewer LCS1 containing heterochromatin sites in these cells.  相似文献   

8.
Satellite DNA sequences were isolated from the water buffalo (Bubalus bubalis) after digestion with two restriction endonucleases, BamHI and StuI. These satellite DNAs of the water buffalo were classified into two types by sequence analysis: one had an approximately 1,400 bp tandem repeat unit with 79% similarity to the bovine satellite I DNA; the other had an approximately 700 bp tandem repeat unit with 81% similarity to the bovine satellite II DNA. The chromosomal distribution of the satellite DNAs were examined in the river-type and the swamp-type buffaloes with direct R-banding fluorescence in situ hybridization. Both the buffalo satellite DNAs were localized to the centromeric regions of all chromosomes in the two types of buffaloes. The hybridization signals with the buffalo satellite I DNA on the acrocentric autosomes and X chromosome were much stronger than that on the biarmed autosomes and Y chromosome, which corresponded to the distribution of C-band-positive centromeric heterochromatin. This centromere-specific satellite DNA also existed in the interstitial region of the long arm of chromosome 1 of the swamp-type buffalo, which was the junction of the telomere-centromere tandem fusion that divided the karyotype in the two types of buffaloes. The intensity of the hybridization signals with buffalo satellite II DNA was almost the same over all the chromosomes, including the Y chromosome, and no additional hybridization signal was found in noncentromeric sites.  相似文献   

9.
A satellite DNA sequence of Parodon hilarii (named pPh2004) was isolated, cloned and sequenced. This satellite DNA is composed of 200 bp, 60% AT rich. In situ hybridization (FISH) results revealed that the satellite DNA pPh2004 is located in the terminal regions of several chromosomes, forming highly evident blocks in some and punctual marks in others. The comparison between the FISH and C-banding results showed that the location of this satellite DNA coincides with that of most terminal heterochromatins. However, some regions are only marked by FISH whereas other regions are only marked by C-banding. The possible existence of more than one satellite DNA family could explain these partial differences. The in situ hybridization with the satellite DNA and the G- and C-bandings confirmed the presence of a sex chromosome system of the ZZ/ZW type in P. hilarii, as well as the correct identification of the Z chromosome in the karyotype. This chromosome displays a segment of terminal heterochromatin in the long arm, similar to the segment observed in the short arm of the W chromosome, also showing a G-banding pattern similar to that of the short arm and part of the long arm of the W chromosome. A hypothesis on the origin of the W chromosome from an ancestral chromosome similar to the Z chromosome is presented.  相似文献   

10.
The molecular and cytological organization of the telomeric repeat (TR) and the subtelomeric repeat (TGR1) of tomato were investigated by fluorescence in situ hybridization (FISH) techniques. Hybridization signals on extended DNA fibres, visualized as linear fluorescent arrays representing individual telomeres, unequivocally demonstrated the molecular co-linear arrangement of both repeats. The majority of the telomeres consisted of a TR and a TGR1 region separated by a spacer. Microscopic measurements of the TR and TGR1 signals revealed high variation in length of both repeats, with maximum sizes of 223 and 1330 kb, respectively. A total of 27 different combinations of TR and TGR1 was detected, suggesting that all chromosome ends have their own unique telomere organization. The fluorescent tracks on the extended DNA fibres were subdivided into four classes: (i) TR–spacer–TGR1; (ii) TR–TGR1; (iii) only TR; (iv) only TGR1. FISH to pachytene chromosomes enabled some of the TR/TGR1 groups to be assigned to specific chromosome ends and to interstitial regions. These signals also provided evidence for a reversed order of the TR and TGR1 sites at the native chromosome ends, suggesting a backfolding telomere structure with the TGR1 repeats occupying the most terminal position of the chromosomes. The FISH signals on diakinesis chromosomes revealed that distal euchromatin areas and flanking telomeric heterochromatin remained highly decondensed around the chiasmata in the euchromatic chromosome areas. The rationale for the occurrence and distribution of the TR and TGR1 repeats on the tomato chromosomes are discussed.  相似文献   

11.
Summary The cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes with high specificity to individual chromosomes (chromosomes 3, 11, 17, 18, and X) were in situ hybridized to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms of hybridization intensity with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences provided the evidence for a high resolution power of the in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes has a variable amount of alphasatellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as a new general approach to analysis of chromosome heteromorphisms in man.  相似文献   

12.
William S. Modi 《Chromosoma》1993,102(7):484-490
A novel satellite DNA family (called MSAT-2570) was isolated and characterized from the rodent Microtus chrotorrhinus. With a length of 2,570 bp the repeat unit is among the largest yet reported in mammals and comprises a series of short direct and inverted repeats. These repeat motifs may prevent nucleosome formation or represent an endless source of genetic variation. Restriction enzyme digestion using the two pairs of isoschizomers HpaII/MspI and MboI/Sau3AI demonstrated tissue specific differences in satellite DNA methylation that may reflect variable chromatin conformation or differences in patterns of gene expression. The sex chromosomes of M. chrotorrhinus are unusually large in size among mammals, comprising 15%–20% of the karyotype and containing large blocks of heterochromatin. In situ hybridization of the satellite DNa revealed chromosomal localization predominantly to sex chromosome heterochromatin. A survey of related rodents including three congeneric species also with giant sized sex chromosomes demonstrated that MSAT-2570 is present only in the genome of M. chrotorrhinus. However, another previously reported satellite DNA also isolated from M. chrotorrhinus has been shown to reside on sex chromosome heterochromatin in one of the other three species, indicating that these giant blocks of heterochromatin are complex in structure and comprise multiple, unrelatined satellite DNA families.  相似文献   

13.
Niedermaier J  Moritz KB 《Chromosoma》2000,109(7):439-452
In the nematode genus Ascaris the germline genome contains considerable amounts of extra DNA, which is discarded from the somatic founder blastomeres during early cleavage. In Parascaris univalens the haploid germline genome is contained in one large compound chromosome, which consists of a euchromatic region containing the somatic genome flanked by large blocks of heterochromatin. Fluorescence in situ hybridization of fractions of the germline-limited satellite DNA revealed two highly repeated sequence families establishing the entire heterochromatin (HET blocks). The repeats, a pentanucleotide, TTGCA, and a decanucleotide, TTTGTGCGTG, constitute separate segments of the HET blocks. The blocks are polymorphic in length and, hence, in copy number of the repeats, and the arrangement of the segments. The numerous sequence variants of both repeats display a disperse distribution. The type and rate of base substitutions within both repeat units depend on position. Prior to the elimination process in presomatic cells, termed chromatin diminution, the chromosomes undergo differential mitotic condensation. Interstitial 'chromatin linkers' flanking the prospective numerous somatic chromosomes remain entirely decondensed. The somatic chromosomes are released from the plurivalent chromosomes via excision of the linkers at onset of anaphase, followed by exclusion of the akinetic linker chromatin and HET blocks from the daughter nuclei. In Ascaris suum, the germline-limited satellite, which consists of one 123 bp repeat, is scattered throughout the numerous chromosomes in small heterochromatic knobs of variable sizes, residing at chromosomal ends and/or intercalary positions. The programmed breakage, which appears to proceed in a similar manner to that in P. univalens, results in the loss of all heterochromatic knobs, accompanied by an increase in chromosome number. In both species, all germline chromosomes are capped by tracts of TTAGGC repeats. In P. univalens, such telomeric tracts also occur at the termini of the euchromatic intercalary regions. Upon diminution all telomeric tracts are discarded. De novo telomere addition occurs in all somatic cell lineages of both species. The presented data shed light on the evolutionary history of chromosome aggregation and satellite DNA formation, and putative mechanisms involved in the process of site-directed breakage to reestablish stable somatic chromosomes.  相似文献   

14.
Cloned alpha-satellite DNA sequences were used to evaluate the specificity and possible variability of repetitive DNA in constitutive heterochromatin of human chromosomes. Five probes of high specificity to individual chromosomes (chromosomes 3, 11, 17, 18 and X) were hybridized in situ to metaphase chromosomes of different individuals. The stable position of alpha-satellite DNA sequences in definite heterochromatic regions of particular chromosomes was found. Therefore, the chromosome-specific alpha-satellite DNA sequences may be used as molecular markers for heterochromatic regions of certain human chromosomes. The significant interindividual differences in relative copy number of alpha-satellite DNA have been detected. The homologous chromosomes of many individuals were characterized by cytologically visible heteromorphisms, as shown by intensity of hybridization with chromosome-specific alpha-satellite DNA sequences. A special analysis of hybridization between homologues with morphological differences gives evidence for a high resolution power of in situ hybridization technique for evaluation of chromosome heteromorphisms. The approaches for detection of heteromorphisms in cases without morphological differences between homologues are discussed. The results obtained indicate that constitutive heterochromatin of human chromosomes is variable for amount of alpha-satellite DNA sequences. In situ hybridization of cloned satellite DNA sequences may be used as novel general approach to analysis of chromosome heteromorphisms in man.  相似文献   

15.
Members of three prominent DNA families of Beta procumbens have been isolated as Sau3A repeats. Two families consisting of repeats of about 158 bp and 312 bp are organized as satellite DNAs (Sau3A satellites I and II), whereas the third family with a repeat length of 202 bp is interspersed throughout the genome. Multi-colour fluorescence in situ hybridization was used for physical mapping of the DNA families, and has shown that these tandemly organized families occur in large heterochromatic and DAPI positive blocks. The Sau3A satellite I hybridized exclusively around or near the centromeres of 10, 11 or 12 chromosomes. The Sau3A satellite family I showed high intraspecific variability and high-resolution physical mapping was performed on pachytene chromosomes using differentially labelled repeats. The physical order of satellite subfamily arrays along a chromosome was visualized and provided evidence that large arrays of plant satellite repeats are not contiguous and consist of distinct subfamily domains. Re-hybridization of a heterologous rRNA probe to mitotic metaphase chromosomes revealed that the 18S-5.8S-25S rRNA genes are located at subterminal position on one chromosome pair missing repeat clusters of the Sau3A satellite family I. It is known that arrays of Sau3A satellite I repeats are tightly linked to a nematode (Heterodera schachtii) resistance gene and our results show that the gene might be located close to the centromere. Large arrays of the Sau3A satellite II were found in centromeric regions of 16 chromosomes and, in addition, a considerable interspersion of repeats over all chromosomes was observed. The family of interspersed 202 bp repeats is uniformly distributed over all chromosomes and largely excluded from the rRNA gene cluster but shows local amplification in some regions. Southern hybridization has shown that all three families are specific for genomes of the section Procumbentes of the genus Beta.  相似文献   

16.
The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. The euchromatic regions of chimpanzee (Pan troglodytes) genome share approximately 98% sequence similarity with the human (Homo sapiens), while the heterochromatic regions display considerable divergence. Positive heterochromatic regions revealed by the CBG-technique are confined to pericentromeric areas in humans, while in chimpanzees, these regions are pericentromeric, telomeric, and intercalary. When human chromosomes are digested with restriction endonuclease AluI and stained by Giemsa (AluI/Giemsa), positive heterochromatin is detected only in the pericentromeric regions, while in chimpanzee, telomeric, pericentromeric, and in some chromosomes both telomeric and centromeric, regions are positive. The DA/DAPI technique further revealed extensive cytochemical heterogeneity of heterochromatin in both species. Nevertheless, the fluorescence in situ hybridization technique (FISH) using a centromeric alpha satellite cocktail probe revealed that both primates share similar pericentromeric alpha satellite DNA sequences. Furthermore, cross-hybridization experiments using chromosomes of gorilla (Gorilla gorilla) and orangutan (Pongo pygmaeus) suggest that the alphoid repeats of human and great apes are highly conserved, implying that these repeat families were present in their common ancestor. Nevertheless, the orangutan's chromosome 9 did not cross-hybridize with human probe. © 1995 Wiley-Liss, Inc.  相似文献   

17.
The predominant chromosomal locations of human satellite I DNA were detected using fluorescent in situ hybridization (FISH). Synthetic deoxyoligonucleotides designed from consensus sequences of the simple sequence repeats of satellite 1 were used as probes. The most abundant satellite I repeat, the-A-B-A-B-A-form, is located at the pericentromeric regions of chromosomes 3, 4, 13, 14, 15, 21, and 22. The less abundant-B-B-B-form was not detected on chromosome 4, but was present at all the other locations. A variation of FISH that allows strand-specific hybridization of single-stranded probes (CO-FISH) determined that the human satellite I sequences are predominantly arranged in head-to-tail fashtion along the DNA strand.  相似文献   

18.
19.
The recovery of maize (Zea mays L.) chromosome addition lines of oat (Avena sativa L.) from oat x maize crosses enables us to analyze the structure and composition of individual maize chromosomes via the isolation and characterization of chromosome-specific cosmid clones. Restriction fragment fingerprinting, sequencing, and in situ hybridization were applied to discover a new family of knob associated tandem repeats, the TR1, which are capable of forming fold-back DNA segments, as well as a new family of centromeric tandem repeats, CentC. Analysis of knob and centromeric DNA segments revealed a complex organization in which blocks of tandemly arranged repeating units are interrupted by insertions of other repeated DNA sequences, mostly represented by individual full size copies of retrotransposable elements. There is an obvious preference for the integration/association of certain retrotransposable elements into knobs or centromere regions as well as for integration of retrotransposable elements into certain sites (hot spots) of the 180-bp repeat. DNA hybridization to a blot panel of eight individual maize chromosome addition lines revealed that CentC, TR1, and 180-bp tandem repeats are found in each of these maize chromosomes, but the copy number of each can vary significantly from about 100 to 25,000. In situ hybridization revealed variation among the maize chromosomes in the size of centromeric tandem repeats as well as in the size and composition of knob regions. It was found that knobs may be composed of either 180-bp or TR1, or both repeats, and in addition to large knobs these repeated elements may form micro clusters which are detectable only with the help of in situ hybridization. The association of the fold-back elements with knobs, knob polymorphism and complex structure suggest that maize knob may be consider as megatransposable elements. The discovery of the interspersion of retrotransposable elements among blocks of tandem repeats in maize and some other organisms suggests that this pattern may be basic to heterochromatin organization for eukaryotes.  相似文献   

20.
Transgenic mice carrying bovine satellite DNA IV were obtained. The size of the transgene integrated into the mouse genome was approximately 390 kb (about 100 transgene copies) as determined by a semiquantitative PCR. Restriction analysis with isoschizomeric restrictases HpaII and MspI, showed that the alien DNA was methylated. In the genome of a transgenic founder male, two integration sites for satellite DNA IV were revealed by in situ hybridization and in situ PCR. These sites are situated on two different chromosomes: in pericentromeric heterochromatin and within a chromosomal arm. In transgenic mice, de novo formation of heterochromatin regions (C-block and the CMA3 disk within the centromeric heterochromatin of another chromosome) was revealed by C-banding and staining with chromomycin A3. This formation is not characteristic of mice, because their chromosomes normally contain no interstitial C-blocks or sequences intensely stained by chromomycin A3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号