首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Animal models for radiation injury, protection and therapy   总被引:1,自引:0,他引:1  
Current events throughout the world underscore the growing threat of different forms of terrorism, including radiological or nuclear attack. Pharmaceutical products and other approaches are needed to protect the civilian population from radiation and to treat those with radiation-induced injuries. In the event of an attack, radiation exposures will be heterogeneous in terms of both dose and quality, depending on the type of device used and each victim's location relative to the radiation source. Therefore, methods are needed to protect against and treat a wide range of early and slowly developing radiation-induced injuries. Equally important is the development of rapid and accurate biodosimetry methods for estimating radiation doses to individuals and guiding clinical treatment decisions. Acute effects of high-dose radiation include hematopoietic cell loss, immune suppression, mucosal damage (gastrointestinal and oral), and potential injury to other sites such as the lung, kidney and central nervous system (CNS). Long-term effects, as a result of both high- and low-dose radiation, include dysfunction or fibrosis in a wide range of organs and tissues and cancer. The availability of appropriate types of animal models, as well as adequate numbers of animals, is likely to be a major bottleneck in the development of new or improved radioprotectors, mitigators and therapeutic agents to prevent or treat radiation injuries and of biodosimetry methods to measure radiation doses to individuals.  相似文献   

2.
Respiratory muscle injury may result from excessive loading due to a decrease in respiratory muscle strength, an increase in the work of breathing, or an increase in the rate of ventilation. Other conditions such as hypoxemia, hypercapnia, aging, decreased nutrition, and immobilization may potentiate respiratory muscle injury. Respiratory muscle injury has been shown in animal models using direct muscle or phrenic nerve stimulation, acute inspiratory resistive loading, tracheal banding, corticosteroids, phrenic nerve section, and the mdx mouse. Although numerous examples of diaphragm injury have been shown in animal models, evidence in humans is sparse. Potential mechanisms which may contribute to respiratory muscle injury include high levels of intracellular calcium-activated degradative enzymes, non-uniformity of stresses and strains, plasma membrane disruptions, and activation of the inflammatory process.  相似文献   

3.
Normally, tissue alterations in small animal models for osteoarthritis (OA) are assessed by time-consuming and destructive histology or biochemical assays. Some high resolution imaging modalities are used for longitudinal monitoring of the OA disease process in vivo. microCT is one of these imaging modalities, which is known for superb high-resolution imaging of bone architecture alterations. A major drawback of microCT is that it has low soft-tissue contrast, which makes direct imaging of cartilage impossible. The use of microCT in combination with negatively charged radiopaque contrast agents enables imaging of cartilage degeneration. We demonstrate the possibility of microCT to image cartilage degeneration as a consequence of experimental OA, by the use contrast enhanced microCT in vivo in a rat model for OA. Furthermore, for the assessment of alterations in molecular processes involved in OA we used the recently developed technique of multi pinhole SPECT. This enables us to assess molecular processes involved in experimental OA in a rat at sub-millimeter level. Here we show quantification of subchondral bone turnover in an OA rat knee. These new techniques demonstrate the possibilities of quantitative experimental OA assessment in small animal models such as mice and rats and might enable substitution of the conventional destructive methods.  相似文献   

4.
5.
One of the most important issues in orthopaedic surgery is the loss of bone resulting from trauma, infections, tumours or congenital deficiency. In view of the hypothetical future application of mesenchymal stem cells isolated from human adipose tissue in regenerative medicine, we have analysed and characterized adipose-derived stem cells (ASCs) isolated from adipose tissue of rat, rabbit and pig. We have compared their in vitro osteogenic differentiation abilities for exploitation in the repair of critical osteochondral defects in autologous pre-clinical models. The number of pluripotent cells per millilitre of adipose tissue is variable and the yield of rabbit ASCs is lower than that in rat and pig. However, all ASCs populations show both a stable doubling time during culture and a marked clonogenic ability. After exposure to osteogenic stimuli, ASCs from rat, rabbit and pig exhibit a significant increase in the expression of osteogenic markers such as alkaline phosphatase, extracellular calcium deposition, osteocalcin and osteonectin. However, differences have been observed depending on the animal species and/or differentiation period. Rabbit and porcine ASCs have been differentiated on granules of clinical grade hydroxyapatite (HA) towards osteoblast-like cells. These cells grow and adhere to the scaffold, with no inhibitory effect of HA during osteo-differentiation. Such in vitro studies are necessary in order to select suitable pre-clinical models to validate the use of autologous ASCs, alone or in association with proper biomaterials, for the repair of critical bone defects.  相似文献   

6.
7.
Cytokines in radioprotection and therapy of radiation injury   总被引:1,自引:0,他引:1  
R Neta 《Biotherapy》1988,1(1):41-45
  相似文献   

8.
9.
In vivo imaging of molecular events in small animals has great potential to impact basic science and drug development. For this reason, several imaging technologies have been adapted to small animal research, including X-ray, magnetic resonance, and radioisotope imaging. Despite this plethora of visualization techniques, fluorescence imaging is emerging as an important alternative because of its operational simplicity, safety, and cost-effectiveness. Fluorescence imaging has recently become particularly interesting because of advances in fluorescent probe technology, including targeted fluorochromes as well as fluorescent "switches" sensitive to specific biochemical events. While past biological investigations using fluorescence have focused on microscopic examination of ex vivo, in vitro, or intravital specimens, techniques for macroscopic fluorescence imaging are now emerging for in vivo molecular imaging applications. This review illuminates fluorescence imaging technologies that hold promise for small animal imaging. In particular we focus on planar illumination techniques, also known as Fluorescence Reflectance Imaging (FRI), and discuss its performance and current use. We then discuss fluorescence molecular tomography (FMT), an evolving technique for quantitative three-dimensional imaging of fluorescence in vivo. This technique offers the promise of non-invasively quantifying and visualizing specific molecular activity in living subjects in three dimensions.  相似文献   

10.
The protective effects of ciprofloxacin and rufloxacin were compared to those of rifampicin againstMycobacterium tuberculosis infections in mice and in guinea pigs. Rifampicin was very protective in both models. In tubercular infections produced in mice, ciprofloxacin (30 mg/kg) showed slight protection but none was observed in guinea pigs. Rufloxacin, was weakly active in guinea pigs but inactive in mice.  相似文献   

11.
12.
For the development of vaccines and treatments against tuberculosis, animal models are needed. In this review, the pathogenesis and immune responses during human and bovine tuberculosis will be compared. Special attention will be paid to latency, because this feature has recently become the basis of specialized vaccines against latency antigens.  相似文献   

13.
Three-dimensional micro computed tomography (microCT) offers the opportunity to capture images liver structures and lesions in mice with a high spatial resolution. Non-invasive microCT allows for accurate calculation of vessel tortuosity and density, as well as liver lesion volume and distribution. Longitudinal monitoring of liver lesions is also possible. However, distinguishing liver lesions from variations within a normal liver is impossible by microCT without the use of liver- or tumor-specific contrast-enhancing agents. The combination of microCT for morphologic imaging with functional imaging, such as positron emission tomography (PET) or single photon emission tomography (SPECT), offers the opportunity for better abdominal imaging and assessment of structure discrepancies visible by functional imaging.This paper describes methods of current microCT imaging options for imaging of liver lesions compared to other imaging techniques in small animals.  相似文献   

14.
IntroductionRadiation therapy for the management of intrahepatic malignancies can adversely affect liver function. Liver damage has been associated with increased levels of inflammatory cytokines, including tumor necrosis factor alpha (TNFα). We hypothesized that an inflammatory state, characterized by increased soluble TNFα receptor (sTNFR1), mediates sensitivity of the liver to radiation.Materials/MethodsPlasma samples collected during 3 trials of liver radiation for liver malignancies were assayed for sTNFR1 level via enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression and longitudinal models were used to characterize associations between liver toxicity (defined as a ≥2-point increase in Child-Pugh [CP] score within 6 months of radiation treatment) and sTNFR1 levels, ALBI score, biocorrected mean liver dose (MLD), age, and baseline laboratory values.ResultsSamples from 78 patients given liver stereotactic body radiation therapy [SBRT] (92%) or hypofractionated radiation were examined. There was a significant association between liver toxicity and sTNFR1 levels, and higher values were associated with increased toxicity over a range of mean liver doses. When ALBI score and biocorrected dose were included in the model with sTNFR1, baseline ALBI score and change in ALBI (ΔALBI) were significantly associated with toxicity, but sTNFR1 was not. Baseline aminotransferase levels also predicted toxicity but not independently of ALBI score.ConclusionsElevated plasma sTNFR1 levels are associated with liver injury after liver radiation, suggesting that elevated inflammatory cytokine activity is a predictor of radiation-induced liver dysfunction. Future studies should determine whether administration of agents that decrease inflammation prior to treatment is warranted.  相似文献   

15.
We have reviewed the existing data on the efficacy of anidulafungin, which is the most recent echinocandin in the experimental treatment of fungal infections. The scarce published data practically only refers to disseminated and pulmonary aspergillosis and to disseminated candidiasis. Anidulafungin shows fungistatic activity against Aspergillus fumigatus, and fungicidal activity against Candida albicans and Candida glabrata.  相似文献   

16.
The main advances in immunology have been forged or underpinned by animal experiments. However, animal research now focuses excessively on one laboratory species, and there is too much redundant repetition and too few transfers from basic discovery to successful clinical application. These features can be improved markedly by placing more emphasis on biological relevance when evaluating animal models and by taking greater advantage of the unique experimental opportunities that are offered by large animals.  相似文献   

17.
18.
The discovery of the phenomenon of RNA interference (RNAi) and its existence in mammals quickly suggested a great potential for use in disease therapy. Rapid advances have been made in the development of RNAi-based technologies and promising results have been obtained from studies on mammalian cell culture systems and animal in vivo models. However, the progress in our understanding of the RNAi pathway and the related function of microRNAs (miRNAs) have also raised concerns regarding various types of side effects that may restrict the use of this technology in human therapy. At the same time, our new knowledge about the functional roles of miRNAs as regulators of many cellular processes, including proliferation, differentiation, development, and neuronal function, is revolutionizing cell biology and will have a major impact on medical research. In this review, we focus on the discoveries that have been made in animal models and how this insight can be translated to human medicine and disease therapy. In this connection, we will particularly discuss the challenges associated with the efforts to develop RNAi-based therapeutics.  相似文献   

19.
The concept of animal models is well honored, and amphibians have played a prominent part in the success of using key species to discover new information about all animals. As animal models, amphibians offer several advantages that include a well-understood basic physiology, a taxonomic diversity well suited to comparative studies, tolerance to temperature and oxygen variation, and a greater similarity to humans than many other currently popular animal models. Amphibians now account for approximately 1/4 to 1/3 of lower vertebrate and invertebrate research, and this proportion is especially true in physiological research, as evident from the high profile of amphibians as animal models in Nobel Prize research. Currently, amphibians play prominent roles in research in the physiology of musculoskeletal, cardiovascular, renal, respiratory, reproductive, and sensory systems. Amphibians are also used extensively in physiological studies aimed at generating new insights in evolutionary biology, especially in the investigation of the evolution of air breathing and terrestriality. Environmental physiology also utilizes amphibians, ranging from studies of cryoprotectants for tissue preservation to physiological reactions to hypergravity and space exploration. Amphibians are also playing a key role in studies of environmental endocrine disruptors that are having disproportionately large effects on amphibian populations and where specific species can serve as sentinel species for environmental pollution. Finally, amphibian genera such as Xenopus, a genus relatively well understood metabolically and physiologically, will continue to contribute increasingly in this new era of systems biology and "X-omics."  相似文献   

20.
目前,心血管疾病(cardiovascular disease,CVD)是最常见的导致人类死亡原因,但其发病机制和防治仍需要进一步研究。异丙肾上腺素(isoproterenol,ISO)是一种β-肾上腺素能受体激动剂,能够通过炎症反应、氧化应激、内质网应激、自噬和凋亡等直接和间接地作用于心肌组织,可以引起轻度心肌损伤、心肌梗死、心肌肥厚,甚至心力衰竭等。因此,本文从形态与功能学特征、发病机理等方面阐述ISO所致的动物心肌损伤模型的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号