首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nitrate uptake by heterotrophic bacteria plays an important role in marine N cycling. However, few studies have investigated the diversity of environmental nitrate assimilating bacteria (NAB). In this study, the diversity and biogeographical distribution of NAB in several global oceans and particularly in the western Pacific marginal seas were investigated using both cultivation and culture-independent molecular approaches. Phylogenetic analyses based on 16S rRNA and nasA (encoding the large subunit of the assimilatory nitrate reductase) gene sequences indicated that the cultivable NAB in South China Sea belonged to the α-Proteobacteria, γ-Proteobacteria and CFB (Cytophaga-Flavobacteria-Bacteroides) bacterial groups. In all the environmental samples of the present study, α-Proteobacteria, γ-Proteobacteria and Bacteroidetes were found to be the dominant nasA-harboring bacteria. Almost all of the α-Proteobacteria OTUs were classified into three Roseobacter-like groups (I to III). Clone library analysis revealed previously underestimated nasA diversity; e.g. the nasA gene sequences affiliated with β-Proteobacteria, ε-Proteobacteria and Lentisphaerae were observed in the field investigation for the first time, to the best of our knowledge. The geographical and vertical distributions of seawater nasA-harboring bacteria indicated that NAB were highly diverse and ubiquitously distributed in the studied marginal seas and world oceans. Niche adaptation and separation and/or limited dispersal might mediate the NAB composition and community structure in different water bodies. In the shallow-water Kueishantao hydrothermal vent environment, chemolithoautotrophic sulfur-oxidizing bacteria were the primary NAB, indicating a unique nitrate-assimilating community in this extreme environment. In the coastal water of the East China Sea, the relative abundance of Alteromonas and Roseobacter-like nasA gene sequences responded closely to algal blooms, indicating that NAB may be active participants contributing to the bloom dynamics. Our statistical results suggested that salinity, temperature and nitrate may be some of the key environmental factors controlling the composition and dynamics of the marine NAB communities.  相似文献   

2.
Meromictic lakes located in landlocked steppes of central Asia (~2500 km inland) have unique geophysiochemical characteristics compared to other meromictic lakes. To characterize their bacteria and elucidate relationships between those bacteria and surrounding environments, water samples were collected from three saline meromictic lakes (Lakes Shira, Shunet and Oigon) in the border between Siberia and the West Mongolia, near the center of Asia. Based on in-depth tag pyrosequencing, bacterial communities were highly variable and dissimilar among lakes and between oxic and anoxic layers within individual lakes. Proteobacteria, Bacteroidetes, Cyanobacteria, Actinobacteria and Firmicutes were the most abundant phyla, whereas three genera of purple sulfur bacteria (a novel genus, Thiocapsa and Halochromatium) were predominant bacterial components in the anoxic layer of Lake Shira (~20.6% of relative abundance), Lake Shunet (~27.1%) and Lake Oigon (~9.25%), respectively. However, few known green sulfur bacteria were detected. Notably, 3.94% of all sequencing reads were classified into 19 candidate divisions, which was especially high (23.12%) in the anoxic layer of Lake Shunet. Furthermore, several hydro-parameters (temperature, pH, dissolved oxygen, H2S and salinity) were associated (P< 0.05) with variations in dominant bacterial groups. In conclusion, based on highly variable bacterial composition in water layers or lakes, we inferred that the meromictic ecosystem was characterized by high diversity and heterogenous niches.  相似文献   

3.
Previous studies have shown that the soil enzyme activity and microbial respiration intensities varied in two different types of tidal wetland in Chongming Dongtan, the first a sandy soil in a scouring bank with Phragmites australis and the second a saline-alkali clay soil in silting bank with P. australis/Spartina alterniflora/Scirpus mariqueter, resulting in different organic carbon reservation capabilities; however, their microbial biomass did not differ significantly. To clarify the microbial mechanism that explains the variability of soil respiration among different wetland areas, the community structure and abundance of soil microorganisms in different types of wetland were investigated using denaturing gradient gel electrophoresis (DGGE) plus real-time quantitative polymerase chain reaction (PCR) technologies, and the relationship between soil environmental factors and the microbial community structure and the soil respiration intensity was elucidated. The results revealed that the soil microbial diversity and community structure differed between the two typical wetland areas. The common population was uncultured bacterium in both areas, and the most abundant community was α-, β-, γ-Proteobacteria, which play an important role in the cycling of carbon in soil. However, the abundance of α-Proteobacteria in Area A was 18.2% of that in Area B (P <0.05), while the β-Proteobacteria in Area A was 3.23 times higher than that in Area B (P <0.05). In addition, one cellulose-degrading bacteria, uncultured Bacilli, was detected in Area A. PCA (Principal component analysis) revealed that γ-Proteobacteria and β-Proteobacteria had the greatest impact on soil respiration intensity. Both soil water content and salinity depressed the propagation of β-Proteobacteria. Considering the similar microbial biomass and abundance of γ-Proteobacteria between the two areas, the lower level of β-Proteobacteria, uncultured Bacilli bacterium in Area B might be important factors involved in the lower soil respiration, and hence the higher soil organic carbon reservation capability in Area B.  相似文献   

4.
Understanding of the colonization process of epithelial bacteria attached to the rumen tissue during rumen development is very limited. Ruminal epithelial bacterial colonization is of great significance for the relationship between the microbiota and the host and can influence the early development and health of the host. MiSeq sequencing of 16S rRNA genes and quantitative real-time PCR (qPCR) were applied to characterize ruminal epithelial bacterial diversity during rumen development in this study. Seventeen goat kids were selected to reflect the no-rumination (0 and 7 days), transition (28 and 42 days), and rumination (70 days) phases of animal development. Alpha diversity indices (operational taxonomic unit [OTU] numbers, Chao estimate, and Shannon index) increased (P < 0.01) with age, and principal coordinate analysis (PCoA) revealed that the samples clustered together according to age group. Phylogenetic analysis revealed that Proteobacteria, Firmicutes, and Bacteroidetes were detected as the dominant phyla regardless of the age group, and the abundance of Proteobacteria declined quadratically with age (P < 0.001), while the abundances of Bacteroidetes (P = 0.088) and Firmicutes (P = 0.009) increased with age. At the genus level, Escherichia (80.79%) dominated at day zero, while Prevotella, Butyrivibrio, and Campylobacter surged (linearly; P < 0.01) in abundance at 42 and 70 days. qPCR showed that the total copy number of epithelial bacteria increased linearly (P = 0.013) with age. In addition, the abundances of the genera Butyrivibrio, Campylobacter, and Desulfobulbus were positively correlated with rumen weight, rumen papilla length, ruminal ammonia and total volatile fatty acid concentrations, and activities of carboxymethylcellulase (CMCase) and xylanase. Taking the data together, colonization by ruminal epithelial bacteria is age related (achieved at 2 months) and might participate in the anatomic and functional development of the rumen.  相似文献   

5.
To investigate the effects of photosynthetic bacteria as additives on water quality, microbial community structure and diversity, a photosynthetic purple non-sulfur bacteria, Rhodopseudamonas palustris, was isolated and used to remove nitrogen in the aquaculture water. The results of water quality showed that the levels of ammonia nitrogen, nitrite nitrogen, total inorganic nitrogen and total nitrogen in the treatment group were significantly lower (p < 0.05) than the nitrogen levels of the controls in an extended range. A 454-pyrosequencing analysis revealed that at the level of phylum, Proteobacteria and Firmicutes were dominant in the control group respectively, compared to the dominance of the phyla Proteobacteria, Bacteroidetes and Actinobacteria in the treatment group. The relative abundance of phyla Bacteroidetes and Actinobacteria in treatment witnessed an increase than that in the control. The results also indicated that the treatment group enjoyed a higher microbial diversity than that of the control group. Based on the oxygen requirement and metabolism, the authors observed that the water supplementation with photosynthetic bacteria could significantly decrease (p < 0.05) the number of nitrite reducer and anaerobic bacteria. Therefore, the results suggested that adding photosynthetic bacteria to water improves the water quality as it changes the microbial community structure.  相似文献   

6.
微生物多样性对于生物土壤结皮在沙漠生态系统中改善局部环境以及提升生态功能具有重要作用。本研究对腾格里沙漠东南缘沙坡头地区藻结皮、藓结皮及其下层的四季样品进行了16S rDNA高通量测序, 以期阐明细菌多样性及其在生物土壤结皮演替过程中的季节变化规律。结果表明4种类型样品的细菌丰富度在夏季显著低于其他3个季节。4种类型样品中主要的细菌类群为变形菌门、放线菌门、绿弯菌门、酸杆菌门、蓝细菌门等, 其中变形菌门和放线菌门为优势类群, 夏季时变形菌门的相对多度显著高于春季、秋季、冬季, 且在结皮层中相对多度显著高于结皮下层。放线菌门的相对多度在春季、夏季显著高于秋季、冬季, 且结皮下层相对多度高于结皮层。生物土壤结皮演替过程中细菌多样性及其相对多度季节动态变化表明其对沙漠土壤局部环境的变化作出了响应, 这为深入理解生物土壤结皮在沙漠生态系统中的生态功能提供了微生物多样性数据。  相似文献   

7.
Phylogenetic analysis of the nucleotide sequences of 16S rRNA genes in the metagenomic community of Lubomirskia baicalensis has revealed taxonomic diversity of bacteria associated with the endemic freshwater sponge. Fifty-four operational taxonomic units (OTUs) belonging to six bacterial phyla (Actinobacteria, Proteobacteria (class ??-Proteobacteria and ??-Proteobacteria) Verrucomicrobia, Bacteroidetes, Cyanobacteria, and Nitrospira) have been identified. Actinobacteria, whose representatives are known as antibiotic producers, is the dominant phylum of the community (37%, 20 OTUs). All sequences detected shared the maximal homology with unculturable microorganisms from freshwater habitats. The wide diversity of bacteria closely coexisting with the Baikal sponge indicate the complex ecological relationships in the community formed under the unique conditions of Lake Baikal.  相似文献   

8.
Carbon monoxide-oxidizing (COX) bacteria play an important role in controlling the flux of carbon monoxide among natural reservoirs, and thus studying their diversity in natural environments is of great significance to understanding the carbon cycle. In this study, the COX bacterial diversity was investigated in five lakes (Erhai Lake, Gahai Lake1, Gahai Lake2, Xiaochaidan Lake, Lake Chaka) on the Qinghai-Tibet Plateau and its correlation with environmental variables of the lakes was explored. Phylogenetic analyses showed that the CO-oxidizers were dominated by Proteobacteria and Actinobacteria in the Qinghai-Tibet Plateau lakes, and their relative abundance varied with salinity: in the freshwater Erhai Lake, the COX bacteria in the water were dominated by the Betaproteobacteria, in contrast to the Actinobacteridae dominance in the sediment; in the saline and hypersaline lakes of Gahai Lake1, Gahai Lake2 and Xiaochaidan Lake, alphaproteobacterial COX bacteria were dominant in the water, whereas Actinobacteridae and alphaproteobacterial COX bacteria were dominant in the sediment. In the hypersaline Lake Chaka, an unknown COX bacterial clade and alphaproteobacterial COX bacteria were dominant in the water and sediment, respectively. Statistical analyses showed that salinity, pH, and major ions (e.g., K+, Na+, Ca2+, Mg2+, SO4 2-, and Cl-) were important factors affecting the COX bacterial community compositions in the investigated lakes. Overall, our results provided insights into the COX bacterial diversity in Qinghai-Tibetan lakes.  相似文献   

9.
The abundance of aerobic anoxygenic phototrophic bacteria (AAPB), a new functional group that plays important roles in marine carbon cycling, is determined frequently by infrared epifluorescence microscopic analysis (IREM) or high-performance liquid chromatography (HPLC) based on detecting BChl a (bacteriochlorophyll a) fluorescence signal at 880 nm. Unfortunately, the fluorescence signal is often influenced by environmental variables and physiological state of cell. Here we developed a real-time quantitative PCR (qPCR) assay based on pufM gene to specifically quantify AAPB in marine environments. High specificity and sensitivity for estimation of AAPB abundance were revealed by analysis of amplification products, melting curves and target sequences. The phylogenetic tree indicated that this primer set is suitable for a wide genetic diversity of AAPB, including α-3, α-4 Proteobacteria and clones of unclear taxonomic position. In contrast, no amplicon was obtained from green non-sulphur bacteria and oxygenic phototrophic bacteria such as Cyanobacterial genomic DNA. The melting behavior could indicate predominant phenotypes in AAPB community in addition to validating the products of qPCR. The AAPB was estimated to range from 1.3 × 104 cell/ml to 3.4 × 105 cell/ml in our 10 tested water samples by this qPCR assay. Further investigations on the abundance distribution of AAPB in marine environments using the qPCR assay may provide new insight into their ecological functions.  相似文献   

10.
The rhizosphere microbiome plays a significant role in the life of plants in promoting plant survival under adverse conditions. However, limited information is available about microbial diversity in saline environments. In the current study, we compared the composition of the rhizosphere microbiomes of the halophytes Urochloa, Kochia, Salsola, and Atriplex living in moderate and high salinity environments (Khewra salt mines; Pakistan) with that of the non-halophyte Triticum. Soil microbiomes analysis using pyrosequencing of 16S rRNA gene indicated that Actinobacteria were dominant in saline soil samples whereas Proteobacteria predominated in non-saline soil samples. Firmicutes, Acidobacteria, Bacteriodetes and Thaumarchaeota were predominant phyla in saline and non-saline soils, whereas Cyanobacteria, Verrucomicrobia, Gemmatimonadetes and the unclassified WPS-2 were less abundant. Sequences from Euryarchaeota, Ignavibacteriae, and Nanohaloarchaeota were identified only from the rhizosphere of halophytes. Dominant halophilic bacteria and archaea identified in this study included Agrococcus, Armatimonadetes gp4, Halalkalicoccus, Haloferula and Halobacterium. Our analysis showed that increases in soil salinity correlated with significant differences in the alpha and beta diversity of the microbial communities across saline and non-saline soil samples. Having a complete inventory of the soil bacteria from different saline environments in Pakistan will help in the discovery of potential inoculants for crops growing on salt-affected land.  相似文献   

11.
Soda lakes are naturally occurring highly alkaline and saline environments. Although the sulfur cycle is one of the most active element cycles in these lakes, little is known about the sulfate-reducing bacteria (SRB). In this study we investigated the diversity, activity, and abundance of SRB in sediment samples and enrichment cultures from a range of (hyper)saline soda lakes of the Kulunda Steppe in southeastern Siberia in Russia. For this purpose, a polyphasic approach was used, including denaturing gradient gel electrophoresis of dsr gene fragments, sulfate reduction rate measurements, serial dilutions, and quantitative real-time PCR (qPCR). Comparative sequence analysis revealed the presence of several novel clusters of SRB, mostly affiliated with members of the order Desulfovibrionales and family Desulfobacteraceae. We detected sulfate reducers and observed substantial sulfate reducing rates (between 12 and 423 μmol/dm3 day−1) for most lakes, even at a salinity of 475 g/liter. Enrichments were obtained at salt saturating conditions (4 M Na+), using H2 or volatile fatty acids as electron donors, and an extremely halophilic SRB, strain ASO3-1, was isolated. Furthermore, a high dsr gene copy number of 108 cells per ml was detected in a hypersaline lake by qPCR. Our results indicate the presence of diverse and active SRB communities in these extreme ecosystems.  相似文献   

12.
Biological soil crusts (BSCs) are key components of ecosystem productivity in arid lands and they cover a substantial fraction of the terrestrial surface. In particular, BSC N2-fixation contributes significantly to the nitrogen (N) budget of arid land ecosystems. In mature crusts, N2-fixation is largely attributed to heterocystous cyanobacteria; however, early successional crusts possess few N2-fixing cyanobacteria and this suggests that microorganisms other than cyanobacteria mediate N2-fixation during the critical early stages of BSC development. DNA stable isotope probing with 15N2 revealed that Clostridiaceae and Proteobacteria are the most common microorganisms that assimilate 15N2 in early successional crusts. The Clostridiaceae identified are divergent from previously characterized isolates, though N2-fixation has previously been observed in this family. The Proteobacteria identified share >98.5% small subunit rRNA gene sequence identity with isolates from genera known to possess diazotrophs (for example, Pseudomonas, Klebsiella, Shigella and Ideonella). The low abundance of these heterotrophic diazotrophs in BSCs may explain why they have not been characterized previously. Diazotrophs have a critical role in BSC formation and characterization of these organisms represents a crucial step towards understanding how anthropogenic change will affect the formation and ecological function of BSCs in arid ecosystems.  相似文献   

13.
Poly- and perfluoroalkyl compounds (PFASs) are ubiquitous in the environment, but their influences on microbial community remain poorly known. The present study investigated the depth-related changes of archaeal and bacterial communities in PFAS-contaminated soils. The abundance and structure of microbial community were characterized using quantitative PCR and high-throughput sequencing, respectively. Microbial abundance changed considerably with soil depth. The richness and diversity of both bacterial and archaeal communities increased with soil depth. At each depth, bacterial community was more abundant and had higher richness and diversity than archaeal community. The structure of either bacterial or archaeal community displayed distinct vertical variations. Moreover, a higher content of perfluorooctane sulfonate (PFOS) could have a negative impact on bacterial richness and diversity. The rise of soil organic carbon content could increase bacterial abundance but lower the richness and diversity of both bacterial and archaeal communities. In addition, Proteobacteria, Actinobacteria, Chloroflexi, Cyanobacteria, and Acidobacteria were the major bacterial groups, while Thaumarchaeota, Euryarchaeota, and unclassified Archaea dominated in soil archaeal communities. PFASs could influence soil microbial community.  相似文献   

14.
【目的】探究不同生境巨菌草内生固氮菌群落组成多样性及其分异规律。【方法】采用高通量测序固氮酶nif H标靶基因方法,研究了我国6个典型地区的巨菌草内生固氮菌群,包括福建闽侯县、新疆墨玉县、内蒙古阿拉善左旗、青海贵德县、甘肃安定区、海南那大镇,结合地理气候因子统计,分析了固氮菌多样性的环境驱动机制。【结果】共获得64122条nif H基因的有效序列,640个OTUs,归属于6个门、10个纲、17个目、24个科、33个属和39个种。不同地区巨菌草中优势内生固氮菌群的种类和丰度存在较大的差异。在门水平上,福州闽侯县、甘肃安定区、新疆墨玉县、内蒙古阿拉善左旗和青海贵德县5个地区的优势菌门均为变形菌门,海南那大镇的优势菌门为变形菌门和蓝藻菌门;属水平上,不同地区巨菌草最优势内生固氮菌类群分别为:福州闽侯县(变形菌门中未定属,80.56%);新疆墨玉县(变形菌门中未定属,33.14%);内蒙古阿拉善左旗(变形菌门中未定属,76.23%);甘肃安定区(α-变形菌纲中的未定属,53.78%);海南那大镇(变形菌门中未定属,38.37%);青海贵德县(变形菌门中未定属,46.12%)。Alpha多样性和Beta多样性分析表明,不同地区巨菌草内生固氮菌群落的多样性存在较大的差异,海南那大镇样本中巨菌草各类内生固氮菌群的多样性及丰富度最高,福建闽侯县样本中巨菌草各类内生固氮菌群的多样性及丰富度最低。典范对应分析(CCA)结果表明,年均降雨量和年均气温是影响巨菌草内生固氮菌群变化的主要因素,其次是土壤有机质、土壤全氮和土壤p H。【结论】不同地区巨菌草内生固氮菌群落的组成及丰度存在着较大的差异,海南那大镇巨菌草内生固氮菌群的种类及相对丰度较高,本研究可为巨菌草内生固氮菌群的资源开发及其固氮微生物肥料的菌种选育和生产应用提供理论支持。  相似文献   

15.
Microbial diversity in the sediments of the Kara Sea shelf and the southern Yenisei Bay, differing in pore water mineralization, was studied using massive parallel pyrosequencing according to the 454 (Roche) technology. Members of the same phyla (Cyanobacteria, Verrucomicrobia, Actinobacteria, Proteobacteria, and Bacteroidetes) predominated in bacterial communities of the sediments, while their ratio and taxonomic composition varied within the phyla and depended on pore water mineralization. Increasing salinity gradient was found to coincide with increased share of the γ-Proteobacteria and decreased abundance of α- and β-Proteobacteria, as well as of the phyla Verrucomicrobia, Chloroflexi, Chlorobi, and Acidobacteria. Archaeal diversity was lower, with Thaumarchaeota predominant in the sediments with high and low mineralization, while Crenarchaeota predominated in moderately mineralized sediments. Microbial communities of the Kara Sea shelf and Yenisei Bay sediments were found to contain the organisms capable of utilization of a broad spectrum of carbon sources, including gaseous and petroleum hydrocarbons.  相似文献   

16.
In contrast to conventional wastewater treatment plants and saline environments, little is known regarding the microbial diversity of hypersaline wastewater. In this study, the microbial communities of a hypersaline tannery effluent, and those of three treatment systems operating with the tannery effluent, were investigated using 16S rDNA phylogenetic markers. The comparative analysis of 377 bacterial sequences revealed the high diversity of this type of hypersaline environment, clustering within 193 phylotypes (≥ 97% similarity) and covering 14 of the 52 divisions of the bacterial domain, i.e. Proteobacteria, Bacteroidetes, Firmicutes, Actinobacteria, Chlorobi, Planctomycetes, Spirochaetes, Synergistes, Chloroflexi, Thermotogae, Verrucomicrobia, OP3, OP11 and TM7. Most of the phylotypes were related to halophilic and pollutant-degrading bacteria. Using statistical analysis, the diversity of this type of environment was compared to that of other environmental samples selected on the basis of their salinity, oxygen content and organic load.  相似文献   

17.
Although mangroves represent ecosystems of global importance, the genetic diversity and abundance of functional genes that are key to their functioning scarcely have been explored. Here, we present a survey based on the nifH gene across transects of sediments of two mangrove systems located along the coast line of São Paulo state (Brazil) which differed by degree of disturbance, i.e., an oil-spill-affected and an unaffected mangrove. The diazotrophic communities were assessed by denaturing gradient gel electrophoresis (DGGE), quantitative PCR (qPCR), and clone libraries. The nifH gene abundance was similar across the two mangrove sediment systems, as evidenced by qPCR. However, the nifH-based PCR-DGGE profiles revealed clear differences between the mangroves. Moreover, shifts in the nifH gene diversities were noted along the land-sea transect within the previously oiled mangrove. The nifH gene diversity depicted the presence of nitrogen-fixing bacteria affiliated with a wide range of taxa, encompassing members of the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Firmicutes, and also a group of anaerobic sulfate-reducing bacteria. We also detected a unique mangrove-specific cluster of sequences denoted Mgv-nifH. Our results indicate that nitrogen-fixing bacterial guilds can be partially endemic to mangroves, and these communities are modulated by oil contamination, which has important implications for conservation strategies.  相似文献   

18.
周婷婷  胡文革  钟镇涛  王月娥  陈婷  张雪 《生态学报》2022,42(13):5314-5327
旨在了解艾比湖湿地盐生植物盐角草根际与非根际中不同类型反硝化细菌的分布及其随季节变化情况,为温带干旱地区荒漠盐化生态系统的代表-艾比湖湿地在生态植被恢复过程中,由微生物推动的土壤氮素循环过程提供数据支撑。采集了艾比湖湿地夏、秋、春三个季节的盐角草根际和非根际土壤样本,通过高通量测序技术,比较分析了nirS-型和nirK-型两种类型的反硝化细菌的多样性和群落结构特点;利用RDA (redundancy analysis)探究了土壤理化因素对反硝化细菌多样性及群落结构的影响。艾比湖湿地盐角草根际与非根际中,nirS-型和nirK-型反硝化细菌多样性最高的为秋季根际土壤样本;各土壤样本中的反硝化细菌多样性均呈现根际>非根际。盐角草各土壤样本中的nirS-型反硝化细菌在门分类水平上隶属于变形菌门(Proteobacteria),厚壁菌门(Firmicutes)和放线菌门(Actinobacteria),而nirK-型反硝化细菌在门水平上分类仅包括了ProteobacteriaFirmicutesProteobacteria在各土壤样本中的占比均较高;其中Gamma-Proteobacteria的盐单胞菌属(Halomonas)和假单胞菌属(Pseudomonas)是各土壤样本所共有的nirS-型反硝化菌的优势菌属,但它们在每个土壤样本中的相对丰度各有差异。Alpha-Proteobacteria的根瘤菌属(Rhizobium)是盐角草各土壤样本中较为广泛存在的nirK-型反硝化细菌。艾比湖湿地盐角草各土壤样本中的反硝化细菌群落结构存在着一定的差异。RDA结果显示含水量、有机质、全氮和铵态氮等对各土壤样本中的nirS-型反硝化细菌的多样性影响较大,含水量、有机质、全氮、碱解氮等是nirK-型反硝化细菌多样性的主要影响因素。土壤电导率、全磷、全钾、全氮和碱解氮协同影响nirS-型反硝化细菌的群落结构,有机质、速效钾、速效磷、pH和硝态氮是nirK-型反硝化细菌群落结构组成的主要影响因素。艾比湖湿地反硝化细菌呈现季节性变化,nirS-型和nirK-型反硝化细菌以不同的主要菌属,共同推进湿地反硝化作用。而对于湿地生态系统的保护,则需要进行长期而广泛的土壤状态评估和土壤反硝化微生物菌群的动态监测。  相似文献   

19.
This study investigated the culturable aerobic phototrophic bacteria present in soil samples collected in the proximity of the Belgian Princess Elisabeth Station in the Sør Rondane Mountains, East Antarctica. Until recently, only oxygenic phototrophic bacteria (Cyanobacteria) were well known from Antarctic soils. However, more recent non-cultivation-based studies have demonstrated the presence of anoxygenic phototrophs and, particularly, aerobic anoxygenic phototrophic bacteria in these areas. Approximately 1000 isolates obtained after prolonged incubation under different growth conditions were studied and characterized by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Representative strains were identified by sequence analysis of 16S rRNA genes. More than half of the isolates grouped among known aerobic anoxygenic phototrophic taxa, particularly with Sphingomonadaceae, Methylobacterium and Brevundimonas. In addition, a total of 330 isolates were tested for the presence of key phototrophy genes. While rhodopsin genes were not detected, multiple isolates possessed key genes of the bacteriochlorophyll synthesis pathway. The majority of these potential aerobic anoxygenic phototrophic strains grouped with Alphaproteobacteria (Sphingomonas, Methylobacterium, Brevundimonas and Polymorphobacter).  相似文献   

20.
Population indices of bacteria and archaea were investigated from saline–alkaline soil and a possible microbe–environment pattern was established using gene targeted metagenomics. Clone libraries were constructed using 16S rRNA and functional gene(s) involved in carbon fixation (cbbL), nitrogen fixation (nifH), ammonia oxidation (amoA) and sulfur metabolism (apsA). Molecular phylogeny revealed the dominance of Actinobacteria, Firmicutes and Proteobacteria along with archaeal members of Halobacteraceae. The library consisted of novel bacterial (20%) and archaeal (38%) genera showing ≤95% similarity to previously retrieved sequences. Phylogenetic analysis indicated ability of inhabitant to survive in stress condition. The 16S rRNA gene libraries contained novel gene sequences and were distantly homologous with cultured bacteria. Functional gene libraries were found unique and most of the clones were distantly related to Proteobacteria, while clones of nifH gene library also showed homology with Cyanobacteria and Firmicutes. Quantitative real-time PCR exhibited that bacterial abundance was two orders of magnitude higher than archaeal. The gene(s) quantification indicated the size of the functional guilds harboring relevant key genes. The study provides insights on microbial ecology and different metabolic interactions occurring in saline–alkaline soil, possessing phylogenetically diverse groups of bacteria and archaea, which may be explored further for gene cataloging and metabolic profiling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号