首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Habitat selection is a shared process among animals where individuals choose areas that differ in biotic and abiotic characteristics to maximize individual fitness. We used manipulative laboratory mesocosm choice experiments to examine hierarchical and interactive relationships influencing this habitat selection process of estuarine fishes. We assessed selection among substrate, dissolved oxygen (DO) concentration, food availability, and predation risk using two common juvenile estuarine fish species, pinfish (Lagodon rhomboides) and Atlantic croaker (Micropogonias undulatus). For both species oxygen concentration greatly influenced selection patterns; fishes strongly avoided low DO conditions, while in higher levels of DO factors such as substrate or food influenced selection patterns. However, both species strongly avoided predators even when alternative habitat was severely oxygen limited. These results suggest that predation risk may be the greatest determinant of habitat selection of the factors considered. Expansion of low DO areas in the world’s oceans is a major anthropogenic disturbance and is rapidly increasing. Assessing impacts of hypoxia on habitat usage of mobile organisms is critical as changes in environmental metrics including predator distribution and DO levels may alter habitat selection patterns disrupting critical ecosystem processes and trophic interactions. Our results indicate that juvenile fishes may forgo emigration from hypoxia due to predation risk. If similar patterns occur for juvenile fishes in estuaries they may potentially suffer from reduced growth, reproductive output, and survivorship.  相似文献   

2.
Although a great deal is known about the cellular function of molecular chaperones in general, very little is known about the effect of temperature selection on the function of molecular chaperones in nonmodel organisms. One major unanswered question is whether orthologous variants of a molecular chaperone from differential thermally adapted species vary in their thermal responses. To address this issue, we utilized a comparative approach to examine the temperature interactions of a major cytosolic molecular chaperone, Hsc70, from differently thermally adapted notothenioids. Using in vitro assays, we measured the ability of Hsc70 to prevent thermal aggregation of lactate dehydrogenase (LDH). We further compared the capacity of Hsc70 to refold chemically denatured LDH over the temperature range of -2 to +45 degrees C. Hsc70 purified from the temperate species exhibited greater ability to prevent the thermal denaturation of LDH at 55 degrees C compared with Hsc70 from the cold-adapted species. Furthermore, Hsc70 from the Antarctic species lost the ability to competently refold chemically denatured LDH at a lower temperature compared with Hsc70 from the temperate species. These data indicate the function of Hsc70 in notothenioid fishes maps onto their thermal history and that temperature selection has acted on these molecular chaperones.  相似文献   

3.
Alternatives to species-level identification have been advocated as one solution to the problem of selecting marine reserves with limited information on the distribution of marine biodiversity.This study evaluated the effects on selection of candidate sites for marine reserves from using the higher-taxon approach as a surrogate for species-level identification of intertidal molluscs and rocky reef fishes. These effects were evaluated by determining the percentage of species included in candidate reserves identified from genus-, family- and order-level data by a complementarity-based reserve selection algorithm, and by testing for correlations between the irreplaceability values of locations. Candidate reserves identified from genus- and family-level data of intertidal molluscs included a similar percentage of all species as the reserves identified from species-level data. Candidate reserves selected from genus- and family-level data of rocky reef fishes included, respectively, 3–7% and 14–23% fewer species than reserves selected from species-level data. When the reserve identification process was constrained by a practical planning limit (a maximum of 20% locations able to be reserved) the reserves selected from genus- and family-level data of intertidal molluscs, and genus-level data of rocky reef fishes, included a similar percentage of species as the reserves identified from species-level data. Irreplaceability values of locations for species, genera and families of intertidal molluscs were highly correlated, and irreplaceability values of locations for species and genera of rocky reef fishes were highly correlated. This study suggests that genus- and family-level data for intertidal molluscs, and genus-level data for rocky reef fishes, are suitable surrogates for species in the identification of candidate sites for marine reserves.  相似文献   

4.
Southern South America has a rather low fish species diversity. Gymnocharacinus bergi, the southernmost characid fish of the world, is the only member of Characoidei in the Argentine Patagonia. The isolation of this species in an endorheic stream has been linked to the thermal conditions of its habitat, the head-waters of the Valcheta Stream, which is the only site where this species occurs. We provide information on the distribution and thermal habitat of this species and other fishes in the Valcheta Stream. The responses of G. bergi to high and low temperatures were assessed in the laboratory under different temperatures and heating and cooling rates. Our results suggest that G. bergi is unable to extend its distribution to the colder waters nearby, as well as to waters with greater temperature fluctuations. We discuss the implications of our experimental data, the habitat of G. bergi, and the known responses of a few other paranensean fishes to temperature, within the framework of the thermal ecology of freshwater fishes.  相似文献   

5.
Predicting the effects of global climate change on species interactions has remained difficult because there is a spatiotemporal mismatch between regional climate models and microclimates experienced by organisms. We evaluated resource selection in a predominant ectothermic predator using a modeling approach that permitted us to assess the importance of habitat structure and local real‐time air temperatures within the same modeling framework. We radio‐tracked 53 western ratsnakes (Pantherophis obsoletus) from 2010 to 2013 in central Missouri, USA, at study sites where this species has previously been linked to prey population demographics. We used Bayesian discrete choice models within an information theoretic framework to evaluate the seasonal effects of fine‐scale vegetation structure and thermal conditions on ratsnake resource selection. Ratsnake resource selection was influenced most by canopy cover, canopy cover heterogeneity, understory cover, and air temperature heterogeneity. Ratsnakes generally preferred habitats with greater canopy heterogeneity early in the active season, and greater temperature heterogeneity later in the season. This seasonal shift potentially reflects differences in resource requirements and thermoregulation behavior. Predicted patterns of space use indicate that ratsnakes preferentially selected open habitats in spring and early summer and forest–field edges throughout the active season. Our results show that downscaled temperature models can be used to enhance our understanding of animal resource selection at scales that can be addressed by managers. We suggest that conservation of snakes or their prey in a changing climate will require consideration of fine‐scale interactions between local air temperatures and habitat structure.  相似文献   

6.
Currently there is much interest in the potential for sexual selection or conflict to drive speciation. Theory proposes that speciation will be accelerated where sexual conflict is strong, particularly if females are ahead because mate choice will accentuate divergence by limiting gene flow. The Goodeinae are a monophyletic group of endemic Mexican fishes with an origin at least as old as the Miocene. Sexual selection is important in the Goodeinae and there is substantial interspecific variability in body morphology, which influences mate choice, allowing inference of the importance of female mate choice. We therefore used this group to test the relationship between sexual dimorphism and speciation rate. We quantified interspecific variation in sexual dimorphism amongst 25 species using a multivariate measure of total morphological differentiation between the sexes that accurately reflects sexual dimorphism driven by female mate choice and also used a mtDNA-based phylogeny to examine speciation rates. Comparative analyses failed to support a significant association between sexual dimorphism and speciation rate. In addition, variation in the time course of speciation throughout the whole clade was also examined using a similar tree containing 34 extant species. A constant rates model for the growth of this clade was rejected, but analyses instead indicated a decline in the rate of speciation over time. These results support the hypothesis of an early expansion of the group, perhaps due to an early radiation influenced by the key innovation of live bearing, or the prevalence of Miocene volcanism. In general, support for the role of sexual selection in generating patterns of speciation is proving equivocal and we argue that vicariance biogeography and adaptive radiations remain the most likely determinants of major patterns of diversification of continental organisms.  相似文献   

7.
Traditionally lower and upper temperature tolerances of fishes have been quantified in the laboratory via three different experimental approaches: the Fry or incipient lethal temperature (ILT), critical thermal (CTM) and chronic lethal (CLM) methodologies. Although these three experimental laboratory approaches generate endpoints which are quantitatively expressed as a temperature, are determined experimentally with random samples of fish acclimated to specific temperatures, and involve both time and temperature as major test variables, they do not quantify the same response. All three approaches generate valuable, albeit different, information concerning the temperature tolerance of a species. In this review we have summarized published research concerning the tolerance of North American freshwater fishes to dynamic changes in temperature, i.e., tolerance is tested by methods that gradually change temperatures until biological stress is observed. We found more than 450 individual temperature tolerances listed in 80 publications which present original dynamic temperature tolerance data for 116 species, 7 subspecies and 7 hybrids from 19 families of North American freshwater fishes. This total represents about 1/3 of the families and 1/6 of the known North American freshwater species. Temperature tolerance data were partitioned by experimental approach, i.e., critical thermal method (CTM) and chronic lethal method (CLM), and direction of temperature change. Although both CTM and CLM expose fish to dynamic changes in water temperature, these two methods differ in temperature change rates and test endpoints, and hence measure different aspects of thermal stress. A majority of the 80 studies employed CTM to assess temperature tolerance, in particular determination of CTmaxima. One or more CTmaxima has been reported for 108 fishes. Twenty-two fishes have reported highest CTmaxima of 40°C or higher. Several species in the family Cyprinodontidae have generated some of the highest CTmaxima reported for any ectothermic vertebrate. For a variety of reasons, data concerning tolerance of low temperatures are less plentiful. Low temperature tolerance quantified as either CTminima or CLminima were found for a total of 37 fishes. Acclimation temperature exerts a major effect on the temperature tolerance of most North American fish species and it is usually strongly linearly related to both CTmaxima and CTminima. Although we uncovered dynamic temperature tolerance data for 130 fishes, only a single dynamic, temperature tolerance polygon has been published, that for the sheepshead minnow, Cyprinodon variegatus.  相似文献   

8.
Understanding the thermal physiology of tropical marine organisms has become an issue of major interest due to the potential impact of current global changes in temperature. In this study we report the effect of body size on the thermal tolerance (as critical thermal maximum (CTMax) and minimum (CTMin)) of seven reef fish species from Gorgona Island (tropical eastern Pacific Ocean). Within the studied species we found little variation in CTMax and CTMin among fishes ranging from juveniles to adults. This suggests that thermal tolerance of small tropical reef fishes is not significantly affected by differences in body size. The reduced intra-specific variation in thermal tolerance found in these species also suggests a limited capability to adapt to extreme thermal conditions and raises concerns regarding current global changes in temperature.  相似文献   

9.
The traits involved in sexual selection, such as male secondary sexual characteristics and female mate choice, often co-evolve which can promote population differentiation. However, the genetic architecture of these phenotypes can influence their evolvability and thereby affect the divergence of species. The extraordinary diversity of East African cichlid fishes is often attributed to strong sexual selection and thus this system provides an excellent model to test predictions regarding the genetic architecture of sexually selected traits that contribute to reproductive isolation. In particular, theory predicts that rapid speciation is facilitated when male sexual traits and female mating preferences are controlled by a limited number of linked genes. However, few studies have examined the genetic basis of male secondary sexual traits and female mating preferences in cichlids and none have investigated the genetic architecture of both jointly. In this study, we artificially hybridized a pair of behaviorally isolated cichlid fishes from Lake Malawi and quantified both melanistic color pattern and female mate choice. We investigated the genetic architecture of both phenotypes using quantitative genetic analyses. Our results suggest that 1) many non-additively acting genetic factors influence melanistic color patterns, 2) female mate choice may be controlled by a minimum of 1–2 non-additive genetic factors, and 3) F2 female mate choice is not influenced by male courting effort. Furthermore, a joint analysis of color pattern and female mate choice indicates that the genes underlying these two traits are unlikely to be physically linked. These results suggest that reproductive isolation may evolve rapidly owing to the few genetic factors underlying female mate choice. Hence, female mate choice likely played an important role in the unparalleled speciation of East African cichlid fish.  相似文献   

10.
Currently, there are few mechanistic fitness-based habitat selection models for stream fishes and most models used by management agencies focus on physical habitat alone. In this review, I describe the historical development and the status of mechanistic, fitness-based, habitat selection models for both water column (i.e., drift-feeding) and benthic stream fishes focusing on North America. Although the majority of drift feeders are not salmonids, most mechanistic habitat selection models have been developed and tested only in this group of fishes, likely due to their substantial economic importance. I review the fitness-based microhabitat selection model of Grossman et al. (Ecol Fresh Fish 11:2–10, 2002), which has been tested in both a salmonid and multiple cyprinid species. The model predicts optimal focal point velocities for drift feeders based on prey capture success–velocity relationships and does not include physiological costs, which are logistically difficult to quantify. In addition, I discuss mechanistic, fitness-based models used to predict microhabitat (i.e., patch) selection in benthic fishes. For both basic scientific and management/conservation perspectives, it is important to quantify habitat choice in fishes using mechanistic, fitness-based criteria.  相似文献   

11.
Algal and invertebrate species are less abundant towards higher zones of the intertidal, where the greatest variations in physical environmental conditions occur. Mobile predators such as fishes that inhabit high intertidal rockpools are thus exposed to wide variations in physical conditions and to a low abundance and quality of food. We used an aquarium with a temperature gradient in the laboratory to assesed whether dietary quality differences modify temperature preferences of Girella laevifrons, one of the most abundant transitory fishes inhabiting rocky shores along the coast of Chile. Our results indicate that food quality clearly modifies temperature preferences in this species. Animals fed on high quality bivalves selected intermediate temperatures (16–18°C) while those fed on lower quality algae selected lower temperatures (10–12°C). Control fish not subjected to the temperature gradient did not select portions of the aquarium differentially. The thermal selectivity of G. laevifrons in relation to the optimization of digestive processes and mechanisms of energy conservation are discussed.  相似文献   

12.
《Animal behaviour》1986,34(2):545-550
Selection generally favours male competition for females, and female mate choice of males. If, however, females vary in quality, and if males are limited in the maximum number of females with which they can mate, then selection should also favour male mate choice. We report on male mate choice in two species of fishes with different mating systems: the threespine stickleback, which has male parental care, and the coho salmon, which has female parental care. In both species, males allocated their mating effort in direct proportion to female quality.  相似文献   

13.
为了研究不同驯化温度对尖头鰂(Rhynchocypris oxycephalus)热耐受特征的影响, 本研究设置4组水温(14℃、19℃、24℃和29℃), 对尖头鰂驯化两周, 采用临界温度法观察尖头鰂的耐受温度。结果显示: 尖头鰂的热耐受性受到温度驯化的影响, 表现为高温驯化可以升高最大临界温度(CTmax), 4个驯化组的平均CTmax分别为32.29℃、33.23℃、33.40℃和35.71℃; 低温驯化可以降低最小临界温度(CTmin), 平均CTmin分别为0.00、0.10℃、2.10℃和5.27℃; 在适中的温度(19℃)驯化条件下具有最高的温度耐受范围(33.13℃)。在高温条件下的温度驯化具有较高的驯化反应率, 最大值出现在24—29℃内(0.46); 低温驯化反应率最大值出现在29—24℃内, 为0.63。尖头鰂在本研究的驯化区间(14—29℃)内的热耐受区域面积为478.98℃2, 与温水性鱼类的温度耐受性相当, 说明尖头鰂具有较强的温度适应能力。  相似文献   

14.
Fishes as models in studies of sexual selection and parental care   总被引:2,自引:0,他引:2  
Fishes are by far the most diverse group of vertebrates. This fact is in no way, however, reflected in their use as model organisms for understanding sexual selection or parental care. Why is this so? Is it because fishes are actually poor models? The usefulness of fishes as models for sexual selection and parental care is discussed by emphasizing some problems inherent in fish studies, along with a number of reasons why fishes are indeed excellently suited. The pros and cons of fishes as models are discussed mainly by comparison with birds, the most popular model organisms in animal behaviour. Difficulties include a lack of background knowledge for many species, and the problems of marking and observing fishes in their natural environment. Positive attributes include the diversity of lifestyles among fishes, and the ease with which they can be studied experimentally in the laboratory. How useful fish models can be is briefly illustrated by the impressive and broadly relevant advances derived from studies of guppies Poecilia reticulata and three‐spined sticklebacks Gasterosteus aculeatus . A selection of topics is highlighted where fish studies have either advanced or could greatly enhance, the understanding of processes fundamental to animal reproductive dynamics. Such topics include sex role dynamics, the evolution of female ornamentation and mate choice copying. Finally, a number of potential pitfalls in the future use of fish as models for sexual selection and parental care are discussed. Researchers interested in these issues are recommended to make much more extensive use of fish models, but also to adopt a wider range of models among fishes.  相似文献   

15.
The ubiquitous coenzyme Q (CoQ) is a powerful antioxidant defence against cellular oxidative damage. In fishes, differences in the isoprenoid length of CoQ and its associated antioxidant efficacy have been proposed as an adaptation to different thermal environments. Here, we examine this broad contention by a comparison of the CoQ composition and its redox status in a range of coral reef fishes. Contrary to expectations, most species possessed CoQ8 and their hepatic redox balance was mostly found in the reduced form. These elevated concentrations of the ubiquinol antioxidant are indicative of a high level of protection required against oxidative stress. We propose that, in contrast to the current paradigm, CoQ variation in coral reef fishes is not a generalized adaptation to thermal conditions, but reflects species-specific ecological habits and physiological constraints associated with oxygen demand.  相似文献   

16.
Evolutionary theory predicts that sexual selection may increase taxonomic diversity when emergent mating preferences result in reproductive isolation and therefore speciation. This theory has been invoked to explain patterns of diversity in ray-finned fishes (most notably in the cichlids), but the theory has not been tested comparatively in fish. Additionally, several other unrelated factors have been identified as promoters of cladogenesis, so it is unclear how important sexual selection might be in diversification. Using sister-clade analysis, I tested the relationship between the presence of sexually selected traits and taxonomic diversification in actinopterygiian fishes, a large clade that shows substantial diversity in mating preferences and related sexually selected traits. In all identified sister-families that differed with regard to the proportion of species manifesting sexually selected traits, sexual selection was correlated with increased diversification, and this association was significant across all sister clades (P=0.02). This suggests that sexual selection, when present, is a substantial driver of diversification in the ray-finned fishes, and lends further empirical support to the theoretical link between mating preferences and accelerated cladogenesis.  相似文献   

17.
Ranges of preferred and avoidance temperatures in Cyclops strenuus Fischer, 1851 were determined based on the results of its experimental testing in the thermal gradient device. It is established that the process of temperature selection occurs with an overshoot. It is noted that copepods started to select the final preferred temperatures on the 8th day (temperatures above 26°C were avoided; the avoidance of low temperatures was not recorded). The average value of the critical thermal maximum for the season was determined. It is found that optimal, pessimal, and tolerant temperatures can be calculated on the scale of the species tolerance according to values of preferred and avoidance temperatures as well as according to values of the temperature range of regulation of the critical thermal maximum.  相似文献   

18.
Although fishes are ectotherms they are nevertheless able to thermoregulate behaviorally by selecting appropriate water temperatures (1). In a temperature gradient fish will congregate to a species-specific range of preferred temperature (“final thermal referendum”) which is unaffected by previous thermal history of the individual (2,3). Several aquatic (and terrestrial) ectothermic vertebrates have been found to exhibit “behavioral fever” which is manifested as an increase in preferred temperature above the final thermal preferendum (4). Fever can be elicited by pyrogens: whole bacteria (alive or killed), components of bacterial cellwall (endotoxins), endogenous pyrogens, prostaglandins or from several other sources (5). Since the results with fever induction in fish using whole bacteria or endotoxins are very scarce the aim of the present work was to compare possible thermoregulatory effects of endotoxins and prostaglandins in the same species (Lepomis gibbosus, L.) by means of identical methods.  相似文献   

19.
Under temperature sex determination (TSD), sex is determined by temperature during embryonic development. Depending on ecological and physiological traits and plasticity, TSD species may face demographic collapse due to climate change. In this context, asymmetry in bilateral organisms can be used as a proxy for developmental instability and, therefore, deviations from optimal incubation conditions. Using Tarentola mauritanica gecko as a model, this study aimed first to confirm TSD, its pattern and pivotal temperature, and second to assess the local adaptation of TSD and variation of asymmetry patterns across four populations under different thermal regimes. Eggs were incubated at different temperatures, and hatchlings were sexed and measured. The number of lamellae was counted in adults and hatchlings. Results were compatible with a TSD pattern with males generated at low and females at high incubation temperatures. Estimated pivotal temperature coincided with the temperature producing lower embryonic mortality, evidencing selection towards balanced sex ratios. The temperature of oviposition was conservatively selected by gravid females. Asymmetry patterns found were likely related to nest temperature fluctuations. Overall, the rigidity of TSD may compromise reproductive success, and demographic stability in this species in case thermal nest choice becomes constrained by climate change.  相似文献   

20.
Genetic differentiation arises due to the interaction between natural and sexual selection, migration and genetic drift. A potential role of sexual selection in speciation has received much interest, although comparative studies are inconsistent in finding supporting evidence. A poorly tested prediction is that species subject to a higher intensity of sexual selection should show greater genetic differentiation amongst populations because females from these populations should be more choosy in mate choice. The Goodeinae is a group of endemic Mexican fishes in which female choice has driven some species to be morphologically sexually dimorphic, whereas others are relatively monomorphic. Here, we measured population divergence, using microsatellite loci, within four goodeid species which show contrasting levels of sexual dimorphism. We found higher levels of differentiation between populations of the more dimorphic species, implying less gene flow between populations. We also found evidence of higher levels of genetic differences between the sexes within populations of the dimorphic species, consistent with greater dispersal in males. Adjusted for geographic distance, the mean F(ST) for the dimorphic species is 0.25 compared with 0.16 for the less dimorphic species. We conclude that population differentiation is accelerated in more sexually dimorphic species, and that comparative phylogeography may provide a more powerful approach to detecting processes, such as an influence of sexual selection on differentiation, than broad-scale comparative studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号