首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The RecQ family helicases catalyze the DNA unwinding reaction in an ATP hydrolysis-dependent manner. We investigated the mechanism of DNA unwinding by the Escherichia coli RecQ helicase using a new sensitive helicase assay based on fluorescence cross-correlation spectroscopy (FCCS) with two-photon excitation. The FCCS-based assay can be used to measure the unwinding activity under both single and multiple turnover conditions with no limitation related to the size of the DNA strands constituting the DNA substrate. We found that the monomeric helicase was sufficient to perform the unwinding of short DNA substrates. However, a significant increase in the activity was observed using longer DNA substrates, under single turnover conditions, originating from the simultaneous binding of multiple helicase monomers to the same DNA molecule. This functional cooperativity was strongly dependent on several factors, including DNA substrate length, the number and size of single-stranded 3′-tails, and the temperature. Regarding the latter parameter, a strong cooperativity was observed at 37 °C, whereas only modest or no cooperativity was observed at 25 °C regardless of the nature of the DNA substrate. Consistently, the functional cooperativity was found to be tightly associated with a cooperative DNA binding mode. We also showed that the cooperative binding of helicase to the DNA substrate indirectly accounts for the sigmoidal dependence of unwinding activity on ATP concentration, which also occurs only at 37 °C but not at 25 °C. Finally, we further examined the influences of spontaneous DNA rehybridization (after helicase translocation) and the single-stranded DNA binding property of helicase on the unwinding activity as detected in the FCCS assay.  相似文献   

2.
Replication protein A (RP-A) is a heterotrimeric single-stranded DNA binding protein with important functions in DNA replication, DNA repair and DNA recombination. We have found that RP-A from calf thymus can unwind DNA in the absence of ATP and MgCl2, two essential cofactors for bona fide DNA helicases (Georgaki, A., Strack, B., Podust, V. and Hübscher, U. FEBS Lett. 308, 240-244, 1992). DNA unwinding by RP-A was found to be sensitive to MgCl2, ATP, heating and freezing/thawing. Escherichia coli single stranded DNA binding protein at concentrations that coat the single stranded regions had no influence on DNA unwinding by RP-A suggesting that RP-A binds fast and tightly to single-stranded DNA. DNA unwinding by RP-A did not show directionality. Experiments with monoclonal antibodies strongly suggested that the 70kDa subunit is responsible for DNA unwinding. Phosphorylation of the 32kDa subunit of RP-A by chicken cdc2 kinase facilitated DNA unwinding indicating that this posttranslational modification might be important for modulating this activity of RP-A. Finally, DNA unwinding of a primer recognition complex for DNA polymerase delta which is composed of proliferating cell nuclear antigen, replication factor C and ATP bound to a singly-primed M13DNA slightly inhibited DNA unwinding. An important role for DNA unwinding by RP-A in processes such as initiation of DNA replication, fork propagation, DNA repair and DNA recombination is discussed.  相似文献   

3.
4.
A new method for helicase-catalyzed DNA unwinding is described. This assay takes advantage of the substantial change in fluorescence polarization (FP) upon helicase binding and DNA unwinding. The low anisotropy value, due to the fast tumbling of the free oligonucleotide in solution, increases abruptly upon binding of helicase to the fluorescein-labeled oligonucleotide. The high anisotropy of the helicase– DNA complex decreases as the fluorescein-labeled oligonucleotide is released from the complex through helicase-catalyzed DNA unwinding. This FP signal can be measured in real time by fluorescent spectroscopy. This assay can simultaneously monitor DNA binding and helicase-catalyzed DNA unwinding. It can also be used to determine the polarity in DNA unwinding mediated by helicase. This FP assay should facilitate the study of the mechanism by which helicase unwinds duplex DNA, and also aid in screening for helicase inhibitors, which are of growing interest as potential anticancer agents.  相似文献   

5.
Saccharomyces cerevisiae Pif1, an SF1B helicase, has been implicated in both mitochondrial and nuclear functions. Here we have characterized the preference of Pif1 for RNA:DNA heteroduplexes in vitro by investigating several kinetic parameters associated with unwinding. We show that the preferential unwinding of RNA:DNA hybrids is due to neither specific binding nor differences in the rate of strand separation. Instead, Pif1 is capable of unwinding RNA:DNA heteroduplexes with moderately greater processivity compared with its duplex DNA:DNA counterparts. This higher processivity of Pif1 is attributed to slower dissociation from RNA:DNA hybrids. Biologically, this preferential role of the helicase may contribute to its functions at both telomeric and nontelomeric sites.  相似文献   

6.
Donmez I  Patel SS 《The EMBO journal》2008,27(12):1718-1726
The ring-shaped T7 helicase uses the energy of dTTP hydrolysis to perform the mechanical work of translocation and base pair (bp) separation. We have shown that the unwinding rate of T7 helicase decreases with increasing DNA stability. Here, we show that the dTTPase rate also decreases with increasing DNA stability, which indicates close linkage between chemical transition steps and translocation steps of unwinding. We find that the force-producing step during unwinding is not associated with dTTP binding, but dTTP hydrolysis or P(i) release. We determine that T7 helicase extracts approximately 3.7 kcal/mol energy from dTTPase to carry out the work of strand separation. Using this energy, T7 helicase unwinds approximately 4 bp of AT-rich DNA or 1-2 bp of GC-rich DNA. T7 helicase therefore adjusts both its speed and coupling ratio (bp/dTTP) to match the work of DNA unwinding. We discuss the mechanistic implications of the variable bp/dTTP that indicates T7 helicase either undergoes backward movements/futile hydrolysis or unwinds DNA with a variable bp-step size; 'long and fast' steps on AT-rich and 'short and slow' steps on GC-rich DNA.  相似文献   

7.
Human single-stranded DNA binding protein (human SSB) is a multisubunit protein containing polypeptides of 70, 34, and 11 kDa that is required for SV40 DNA replication in vitro. In this report we identify the functions of the SSB and its individual subunits in SV40 DNA replication. The 70 kDa subunit was found to bind to single-stranded DNA, whereas the other subunits did not. Four monoclonal antibodies against human SSB were isolated which inhibited SV40 DNA replication in vitro. The antibodies have been designated alpha SSB70A, alpha SSB70B, alpha SSB70C, and alpha SSB34A to indicate which subunits are recognized. Immunolocalization experiments indicated that human SSB is a nuclear protein. Human SSB is required for the SV40 large tumor antigen-catalyzed unwinding of SV40 DNA and stimulates DNA polymerases (pol) alpha and delta. The DNA unwinding reaction and stimulation of pol delta were blocked by alpha SSB70C, whereas the stimulation of pol alpha by human SSB was unaffected by this antibody. Conversely, alpha SSB70A, -70B, and -34A inhibited the stimulation of pol alpha, but they had no effect on DNA unwinding and pol delta stimulation. None of the antibodies inhibited the binding of SSB to single-stranded DNA. These results suggest that DNA unwinding and stimulation of pol alpha and pol delta are required functions of human SSB in SV40 DNA replication. The human SSB 70-kDa subunit appears to be required for DNA unwinding and pol delta stimulation, whereas both the 70- and 34-kDa subunits may be involved in the stimulation of pol alpha.  相似文献   

8.
Pif-1 proteins are 5′→3′ superfamily 1 (SF1) helicases that in yeast have roles in the maintenance of mitochondrial and nuclear genome stability. The functions and activities of the human enzyme (hPif1) are unclear, but here we describe its DNA binding and DNA remodeling activities. We demonstrate that hPif1 specifically recognizes and unwinds DNA structures resembling putative stalled replication forks. Notably, the enzyme requires both arms of the replication fork-like structure to initiate efficient unwinding of the putative leading replication strand of such substrates. This DNA structure-specific mode of initiation of unwinding is intrinsic to the conserved core helicase domain (hPifHD) that also possesses a strand annealing activity as has been demonstrated for the RecQ family of helicases. The result of hPif1 helicase action at stalled DNA replication forks would generate free 3′ ends and ssDNA that could potentially be used to assist replication restart in conjunction with its strand annealing activity.  相似文献   

9.
As a means of gaining additional information on the topoisomerase-mediated cytotoxicity induced by a variety of antibacterial and antitumor compounds we have examined the interaction of the quinolone anti-bacterial agent, norfloxacin, with the bacterial topoisomerase, DNA gyrase. Membrane filtration and spin-column techniques were used to study the binding of [3H]norfloxacin to purified plasmid DNA, DNA gyrase, and complexes formed by adding gyrase to different forms of plasmid DNA. Consistent with previous results (Shen, L. L., and Pernet, A. G. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 301-311) little [3H]norfloxacin binds to reconstituted gyrase, but significant levels of drug bind nonspecifically to relaxed DNA. However, when DNA and gyrase are incubated together additional norfloxacin binding sites are detectable. These complex-dependent sites are distinguishable from those sites involved in nonspecific DNA binding in that the complex-dependent sites are saturable and they retain bound norfloxacin after centrifuging the complex through a spin column. In addition, extent of binding is influenced by the topological state of DNA used to form the complex. The complex-dependent norfloxacin binding sites are likely involved in the inhibition of the enzyme since saturation of these sites occurs in the same norfloxacin concentration range as the inhibition of DNA supercoiling activity. Moreover, there is a close correlation of norfloxacin-induced DNA breakage with levels of norfloxacin bound to complexes of gyrase and relaxed DNA. These findings provide the first direct correlation of quinolone binding with inhibition of enzyme activity and induction of DNA breakage, and they suggest that the inhibition of DNA gyrase by norfloxacin occurs as a result of binding to a site which appears after the formation of a gyrase-DNA complex.  相似文献   

10.
RecQ helicases are key genome maintenance enzymes that function in DNA replication, recombination, and repair. In contrast to nearly every other identified RecQ family member, the RecQ helicase from the radioresistant bacterium Deinococcus radiodurans encodes three "Helicase and RNase D C-terminal" (HRDC) domains at its C terminus. HRDC domains have been implicated in structure-specific nucleic acid binding with roles in targeting RecQ proteins to particular DNA structures; however, only RecQ proteins with single HRDC domains have been examined to date. We demonstrate that the HRDC domains can be proteolytically removed from the D. radiodurans RecQ (DrRecQ) C terminus, consistent with each forming a structural domain. Using this observation as a guide, we produced a panel of recombinant DrRecQ variants lacking combinations of its HRDC domains to investigate their biochemical functions. The N-terminal-most HRDC domain is shown to be critical for high affinity DNA binding and for efficient unwinding of DNA in some contexts. In contrast, the more C-terminal HRDC domains attenuate the DNA binding affinity and DNA-dependent ATP hydrolysis rate of the enzyme and play more complex roles in structure-specific DNA unwinding. Our results indicate that the multiple DrRecQ HRDC domains have evolved to encode DNA binding and regulatory functions in the enzyme.  相似文献   

11.
Eukaryotic DNA replication is initiated through stepwise assembly of evolutionarily conserved replication proteins onto replication origins, but how the origin DNA is unwound during the assembly process remains elusive. Here, we established a site-specific origin on a plasmid DNA, using in vitro replication systems derived from Xenopus egg extracts. We found that the pre-replicative complex (pre-RC) was preferentially assembled in the vicinity of GAL4 DNA-binding sites of the plasmid, depending on the binding of Cdc6 fused with a GAL4 DNA-binding domain in Cdc6-depleted extracts. Subsequent addition of nucleoplasmic S-phase extracts to the GAL4-dependent pre-RC promoted initiation of DNA replication from the origin, and components of the pre-initiation complex (pre-IC) and the replisome were recruited to the origin concomitant with origin unwinding. In this replication system, RecQ4 is dispensable for both recruitment of Cdc45 onto the origin and stable binding of Cdc45 and GINS to the pre-RC assembled plasmid. However, both origin binding of DNA polymerase α and unwinding of DNA were diminished upon depletion of RecQ4 from the extracts. These results suggest that RecQ4 plays an important role in the conversion of pre-ICs into active replisomes requiring the unwinding of origin DNA in vertebrates.  相似文献   

12.
Helicase from hepatitis C virus,energetics of DNA binding   总被引:9,自引:0,他引:9  
The ability of a helicase to bind single-stranded nucleic acid is critical for nucleic acid unwinding. The helicase from the hepatitis C virus, NS3 protein, binds to the 3'-DNA or the RNA strand during unwinding. As a step to understand the mechanism of unwinding, DNA binding properties of the helicase domain of NS3 (NS3h) were investigated by fluorimetric binding equilibrium titrations. The global analysis of the binding data by a combinatorial approach was done using MATLAB. NS3h interactions with single-stranded DNA (ssDNA) are 300-1000-fold tighter relative to duplex DNA. The NS3h protein binds to ssDNA less than 15 nt in length with a stoichiometry of one protein per DNA. The minimal ssDNA binding site of NS3h helicase was determined to be 8 nucleotides with the microscopic K(d) of 2-4 nm or an observed free energy of -50 kJ/mol. These NS3h-DNA interactions are highly sensitive to salt, and the K(d) increases 4 times when the NaCl concentration is doubled. Multiple HCV helicase proteins bind to ssDNA >15 nucleotides in length, with an apparent occluded site of 8-11 nucleotides. The DNA binding data indicate that the interactions of multiple NS3h protein molecules with long ssDNA are both noncooperative and sequence-independent. We discuss the DNA binding properties of HCV helicase in relation to other superfamily 1 and 2 helicases. These studies provide the basis to investigate the DNA binding interactions with the unwinding substrate and their modulation by the ATPase activity of HCV helicase.  相似文献   

13.
Lao Y  Lee CG  Wold MS 《Biochemistry》1999,38(13):3974-3984
Human replication protein A (RPA) is a heterotrimeric single-stranded DNA-binding protein that is composed of subunits of 70, 32, and 14 kDa. RPA is required for multiple processes in cellular DNA metabolism. RPA has been reported to (1) bind with high affinity to single-stranded DNA (ssDNA), (2) bind specifically to certain double-stranded DNA (dsDNA) sequences, and (3) have DNA helix-destabilizing ("unwinding") activity. We have characterized both dsDNA binding and helix destabilization. The affinity of RPA for dsDNA was lower than that of ssDNA and precisely correlated with the melting temperature of the DNA fragment. The rates of helix destabilization and dsDNA binding were similar, and both were slow relative to the rate of binding ssDNA. We have previously mapped the regions required for ssDNA binding [Walther et al. (1999) Biochemistry 38, 3963-3973]. Here, we show that both helix-destabilization and dsDNA-binding activities map to the central DNA-binding domain of the 70-kDa subunit and that other domains of RPA are needed for optimal activity. We conclude that all types of RPA binding are manifestations of RPA ssDNA-binding activity and that dsDNA binding occurs when RPA destabilizes a region of dsDNA and binds to the resulting ssDNA. The 70-kDa subunit of all RPA homologues contains a highly conserved putative (C-X2-C-X13-C-X2-C) zinc finger. This motif directly interacts with DNA and contributes to dsDNA-binding/unwinding activity. Evidence is presented that a metal ion is required for the function of the zinc-finger motif.  相似文献   

14.
Escherichia coli MutL loads DNA helicase II onto DNA   总被引:4,自引:0,他引:4  
Previous studies have shown that MutL physically interacts with UvrD (DNA helicase II) (Hall, M. C., Jordan, J. R., and Matson, S. W. (1998) EMBO J. 17, 1535-1541) and dramatically stimulates the unwinding reaction catalyzed by UvrD in the presence and absence of the other protein components of the methyl-directed mismatch repair pathway (Yamaguchi, M., Dao, V., and Modrich, P. (1998) J. Biol. Chem. 273, 9197-9201). The mechanism of this stimulation was investigated using DNA binding assays, single-turnover helicase assays, and unwinding assays involving long duplex DNA substrates. The results indicate that MutL binds DNA and loads UvrD onto the DNA substrate. The interaction between MutL and DNA and that between MutL and UvrD are both important for stimulation of UvrD-catalyzed unwinding. MutL does not clamp UvrD onto the substrate; and therefore, the processivity of unwinding is not increased in the presence of MutL. The implications of these results are discussed, and models are presented for the mechanism of MutL stimulation as well as for the role of MutL as a master coordinator in the methyl-directed mismatch repair pathway.  相似文献   

15.
E. coli Rep protein is a 3' to 5' SF1 superfamily DNA helicase which is monomeric in the absence of DNA, but can dimerize upon binding either single-stranded or duplex DNA. A variety of biochemical studies have led to proposals that Rep dimerization is important for its helicase activity; however, recent structural studies of Bacillus stearothermophilus PcrA have led to suggestions that SF1 helicases, such as E. coli Rep and E. coli UvrD, function as monomeric helicases. We have examined the question of whether Rep oligomerization is important for its DNA helicase activity using pre-steady state stopped-flow and chemical quenched-flow kinetic studies of Rep-catalyzed DNA unwinding. The results from four independent experiments demonstrate that Rep oligomerization is required for initiation of DNA helicase activity in vitro. No DNA unwinding is observed when only a Rep monomer is bound to the DNA substrate, even when fluorescent DNA substrates are used that can detect partial unwinding of the first few base-pairs at the ss-ds-DNA junction. In fact, under these conditions, ATP hydrolysis causes dissociation of the Rep monomer from the DNA, rather than DNA unwinding. These studies demonstrate that wild-type Rep monomers are unable to initiate DNA unwinding in vitro, and that oligomerization is required.  相似文献   

16.
All cellular single-stranded (ss) DNA is rapidly bound and stabilized by single stranded DNA-binding proteins (SSBs). Replication protein A, the main eukaryotic SSB, is able to unwind double-stranded (ds) DNA by binding and stabilizing transiently forming bubbles of ssDNA. Here, we study the dynamics of human RPA (hRPA) activity on topologically constrained dsDNA with single-molecule magnetic tweezers. We find that the hRPA unwinding rate is exponentially dependent on torsion present in the DNA. The unwinding reaction is self-limiting, ultimately removing the driving torsional stress. The process can easily be reverted: release of tension or the application of a rewinding torque leads to protein dissociation and helix rewinding. Based on the force and salt dependence of the in vitro kinetics we anticipate that the unwinding reaction occurs frequently in vivo. We propose that the hRPA unwinding reaction serves to protect and stabilize the dsDNA when it is structurally destabilized by mechanical stresses.  相似文献   

17.
Studies of the interaction of RecA protein with DNA   总被引:1,自引:0,他引:1       下载免费PDF全文
Ethidium fluorescence assays were adapted for the rapid and sensitive detection of precA; in addition, fluorescence measurements on binding precA to linear, OC and CCC PM2 DNAs have enabled the stoichiometry of precA binding as well as the precA-induced unwinding angle of DNA to be determined. The stoichiometry of binding was independently confirmed by sedimentation analysis to be one precA molecule per 3 bp. The unwinding angle was also independently confirmed by measurements of fluorescence changes induced by the binding of precA to CCC DNA which was relaxed by topoisomerase to give a precA-induced unwinding angle of 51 degrees. Electron microscopy of OC DNA molecules which bound nonsaturating amounts of precA revealed that the length increase in DNA due to precA was approximately 55%. Finally, examination of negatively stained precA complexes with a variety of linear DNAs showed that the minor groove is the primary site of interaction for this protein.  相似文献   

18.
Copper(II) facilitates bleomycin-mediated unwinding of plasmid DNA   总被引:1,自引:0,他引:1  
M J Levy  S M Hecht 《Biochemistry》1988,27(8):2647-2650
The unwinding of plasmid DNA by bleomycin A2 (BLM A2) was investigated by use of two-dimensional gel electrophoresis. It was found that Cu2+ ions greatly facilitated the unwinding of topoisomers of plasmid DNA by BLM A2 at concentrations where cupric ions alone had no effect on DNA supercoiling. The concentration of BLM A2 required for observable unwinding was reduced at least 100-fold in the presence of equimolar Cu2+. A plot of [Cu2+] vs extent of DNA unwinding in the presence of 10(-4) M BLM A2 gave a curve consistent with the action of cupric ions on BLM in an allosteric fashion, possibly rearranging the drug into a conformation that facilitates DNA unwinding. The participation of the metal center in enhancing DNA unwinding via direct ionic interaction with one or more negatively charged groups on the DNA duplex also seems possible. Further analysis of the structural factors required for BLM-mediated DNA unwinding was carried out with Cu2+ + BLM demethyl A2, the latter of which differs from BLM A2 only in that it lacks a methyl group, and associated positive charge, at the C-terminus. Cu(II).BLM demethyl A2 was found to be much less effective than Cu(II).BLM A2 as a DNA unwinding agent, emphasizing the strong dependence of this process on the presence of positively charged groups within the BLM molecule. These findings constitute the first direct evidence that the metal center of BLM can participate in DNA interaction, as well as in the previously recognized role of oxygen binding and activation.  相似文献   

19.
Pif1p is the prototypical member of the PIF1 family of DNA helicases, a subfamily of SFI helicases conserved from yeast to humans. Baker's yeast Pif1p is involved in the maintenance of mitochondrial, ribosomal and telomeric DNA and may also have a general role in chromosomal replication by affecting Okazaki fragment maturation. Here we investigate the substrate preferences for Pif1p. The enzyme was preferentially active on RNA–DNA hybrids, as seen by faster unwinding rates on RNA–DNA hybrids compared to DNA–DNA hybrids. When using forked substrates, which have been shown previously to stimulate the enzyme, Pif1p demonstrated a preference for RNA–DNA hybrids. This preferential unwinding could not be correlated to preferential binding of Pif1p to the substrates that were the most readily unwound. Although the addition of the single-strand DNA-binding protein replication protein A (RPA) stimulated the helicase reaction on all substrates, it did not diminish the preference of Pif1p for RNA–DNA substrates. Thus, forked RNA–DNA substrates are the favored substrates for Pif1p in vitro. We discuss these findings in terms of the known biological roles of the enzyme.  相似文献   

20.
Lo YH  Liu SW  Sun YJ  Li HW  Hsiao CD 《PloS one》2011,6(12):e29016
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号