首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: The release of preloaded [14C]neuroactive amino acids (glutamic acid, proline, γ-aminobutyric acid) from rat brain synaptosomes can occur via a time-dependent, Ca2+ -independent process. This Ca2+-independent efflux is increased by compounds that activate Na+ channels (veratridine, scorpion venoms), by the ionophore gramicidin D, and by low concentrations of unsaturated fatty acids (oleic acid and arachidonic acid). Saturated fatty acids have no effect on the efflux process. Neither saturated nor unsaturated fatty acids have an effect on the release of [14C]leucine, an amino acid not known to possess neurotransmitter properties. The increase in the efflux of neuroactive amino acids by oleic and arachidonic acids can also be demonstrated using synaptosomal membrane vesicles. Under conditions in which unsaturated free fatty acids enhance amino acid efflux, no effect on 22Na+ permeability is observed. Since Na+ permeability is not altered by fatty acids, the synaptosomes are not depolarized in their presence and, thus, the Na+ gradient can be assumed to be undisturbed. We conclude that unsaturated fatty acids represent a potentially important class of endogenous modulators of neuroactive amino acid transport in nerve endings and further postulate that their action is the result of an uncoupling of amino acid transport from the synaptosomal Na+ gradient.  相似文献   

2.
These studies were undertaken to test the hypothesis that alterations in phosphatidylinositol metabolism can modulate neurotransmitter release in the central nervous system. The effects of 1,2-diacylglycerols (DAGs) on dopamine release in the rat central nervous system were determined by measuring dopamine release from rat striatal synaptosomes in response to two DAGs (sn-1,2-dioctanoylglycerol and 1-oleoyl-2-acetylglycerol) that can activate protein kinase C and one DAG (deoxydioctanoylglycerol) that does not activate this kinase. Dioctanoylglycerol and 1-oleoyl-2-acetylglycerol, at a concentration of 50 micrograms/ml, stimulated the release of labeled dopamine from striatal synaptosomes by 35-50 and 17%, respectively. Dioctanoylglycerol-induced release was also demonstrated for endogenous dopamine. In contrast, deoxydioctanoylglycerol (50 micrograms/ml) did not stimulate dopamine release. Dioctanoylglycerol-induced dopamine release was independent of external calcium concentration, indicating a utilization of internal calcium stores. Dioctanoylglycerol (50 micrograms/ml) also produced a 38% increase in labeled serotonin release from striatal synaptosomes. The addition of dioctanoylglycerol to the striatal supernatant fraction increased protein kinase C activity. These results are consistent with the concept that an increase in phosphatidylinositol metabolism can stimulate neurotransmitter release in the central nervous system via an increase in DAG concentration. The data suggest an involvement of protein kinase C in the DAG-induced release, but other sites for DAG action are also possible.  相似文献   

3.
Delayed Phospholipid Degradation in Rat Brain After Traumatic Brain Injury   总被引:5,自引:2,他引:3  
Abstract: Lipid second messengers such as arachidonic acid and its metabolites and diacylglycerols (DAGs) are affected in brain injury. Therefore, changes in the pool size and the fatty acid composition of free fatty acids (FFAs) and DAGs were analyzed in different rat brain areas 4 and 35 days after traumatic injury. Cortical impact injury of low-grade severity was applied in the right frontal somatosensory cortex. Four days after injury, FFAs and DAGs were increased by three- and twofold, respectively, in the injured cortex and to a lesser extent in the contralateral cortex compared with sham-operated animals. Docosahexaenoic acid followed by stearic acid, and arachidonic acid, displayed the greatest changes in both FFAs and DAGs. By day 35, free stearic, oleic, and arachidonic acids remained elevated in the damaged cortex (1.5-fold each). DAGs showed the greatest change, reaching values 2.7-fold higher than sham in all frontal and occipital cortical areas, including brainstem. Oleoyl- and arachidonoyl-DAGs (four- and threefold increase, respectively) followed by docosahexaenoyl-DAGs (twofold) contributed to the DAG accumulation. These results reveal that traumatic brain injury triggers a sustained and time-dependent activation of phospholipase-mediated signaling pathways leading to membrane phospholipid degradation and targeting, early on, docosahexaenoyl phospholipid-enriched excitable membranes.  相似文献   

4.
Rat Brain Synaptosomes Prepared by Phase Partition   总被引:1,自引:1,他引:1  
Synaptosomes from rat forebrain can easily be isolated by combining centrifugation with partition in an aqueous two-phase system composed of dextran T500 and polyethylene glycol 4000 in which synaptosomes have an extreme affinity for the upper phase. The fraction thus obtained has been characterized by electron microscopy and biochemical markers for synaptosomes and some other cell components. The contamination by microsomes, free mitochondria, and myelin was 4.4, 3.2, and 0.1%, respectively. The morphometric analysis of the electron micrographs shows that greater than 60% of the structures are synaptosomes. This preparation of the isolation procedure is remarkably short (less than 1 h), formance as assayed by their respiratory activities and ATP level in the absence and presence of depolarizing agents. Synaptosomes prepared by phase partition release the neurotransmitter glutamate in a Ca2(+)-dependent manner. The duration of the isolation procedure is remarkably short (less than 1 h), no ultracentrifuge is required, and the method can be applied for small- or large-scale preparations.  相似文献   

5.
Arachidonate incorporation into synaptosomal phospholipids was shown to be affected by factors including the procedure for preparation of the membrane fractions and preincubation of synaptosomes prior to assay of incorporation of arachidonate into both phosphatidylcholine (PC) and phosphatidylinositol (PI). However, the inhibition toward incorporation into PIs, but not PCs, was fully reversed when the membranes were washed with bovine serum albumin. A twofold increase in arachidonate incorporation into PIs was also observed when freshly prepared synaptosomes were washed with serum albumin immediately before assay of incorporation activity. The inhibitory action is thought to be due to an increase in polyunsaturated fatty acids and/or their oxidation products which may then elicit a special effect on the acyltransferase responsible for transferring arachidonate into phosphatidylinositols. The differences in fatty acid uptake and response to serum albumin also suggest the presence of different acyltransferase for acyl transfer to PIs and PCs.  相似文献   

6.
Rats were fed a semisynthetic diet containing either sunflower oil or soya oil. Half the litter fed with sunflower oil diet was changed to a soya oil diet when the pups were 15 days old (during active myelination). Fatty acid analysis was then performed on subcellular fractions of the animals fed (a) soya oil, (b) sunflower oil, and (c) soya oil replacing sunflower oil from the 15th day, to determine the speed of the recovery. All material from animals fed sunflower oil showed an important reduction in docosahexaenoic acid (22:6 n-3), compensated by an increase in docosapentaenoic acid (22:5 n-6), whereas arachidonic acid (20:4 n-6) was not affected. In all fractions examined, when sunflower oil was replaced by soya oil in 15-day-old pups the recovery started from the very first day but lasted more than 2 months (this recovery was determined by the increase of 22:6 n-3 up to the normal value and decrease of the 22:5 n-6). In addition a delay was found for myelin recovery, starting only from the 25th day.  相似文献   

7.
Abstract: Cellular edema and increased lactate production were induced in rat brain cortical slices by xanthine oxidase and xanthine, in the presence of ferric ions. Lipid peroxidation, as measured by thiobarbituric acid-reactive malon-dialdehyde, was increased 174%. Among the various subcellular fractions of brain cortex, xanthine oxidase-stimulated lipid peroxidation was highest in myelin, mitochondria, and synaptosomes, followed by microsomes and nuclei. Antioxidants, catalase, chlorpromazine, and butylated hydroxytoluene inhibited lipid peroxidation in both homogenates and synaptosomes, indicating H2O2 and radicals were involved. Further, several free fatty acids, especially oleic acid (18:1), arachidonic acid (20:4), and docosahexaenoic acid (22:6) were released from the phospholipid pool concomitant with the degradation of membrane phospholipids in xanthine oxidase-treated synaptosomes. These data suggest that Upases are activated by free radicals and lipid peroxides in the pathogenesis of cellular swelling.  相似文献   

8.
Abstract: The influence of putrescine, spermidine, spermine, and some aliphatic α,ω-diamines on the uptake of neurotransmitters by rat forebrain synaptosomes was investigated. Choline uptake was most effectively inhibited by spermine (IC50= 0.22 m M ), less so by spermidine (IC50= 4.0 m M ), but not by putrescine (IC50 > 100 m M ). At 10 m M, 1,3-diaminopropane, cadaverine, and 1,8-diaminooctane all inhibited choline uptake by 50% or more. Spermine and spermidine inhibited the uptake of dopamine with IC50 values of 2.7 and 2.2 m M , respectively. Putrescine was only slightly inhibitory (IC50= 17.3 m M ) and the other diamines were inactive. The uptake of γ-aminobutyrate (GABA) was only slightly inhibited (15–40%) by the polyamines at 10 m M . With the exception of inhibition of glycine uptake by 1,8-diaminooctane (60%) and of glutamate uptake by cadaverine (35%) none of the polyamines, tested at 10 m M , affected the uptake of adenosine, glutamate, and glycine significantly. A possible modulatory role for polyamines in synaptic transmission through interaction by negatively charged groups of the synaptic membrane with the polycationic compounds is discussed.  相似文献   

9.
In a study employing mouse brain synaptosomes and synaptosomal sonicates, the complete metabolic machinery was found to be present for transport of arginine into synaptosomes, its conversion to ornithine, and the formation from the latter of glutamic acid, gamma-aminobutyric acid, and proline. The results show that a delicate balance probably exists between the flows of metabolites. This balance, which probably determines the steady-state levels of these substances in nerve terminals, can be altered by concentrations of the metabolites themselves through feedback inhibition as well as by levels of cofactors.  相似文献   

10.
Abstract: Synaptosomes from normoxic and hypoxic rats were incubated aerobically in the presence and absence of veratridine. In the absence of veratridine, no significant difference was observed between the two types of preparation regarding either ATP/ADP ratio or 14CO2 or [14C]acetylcholine synthesis from D-[U-14C]glucose. However, in the presence of veratridine, significant reductions in the output of 14CO2 and [14C]acetylcholine by synaptosomes from hypoxic rats were apparent. It was concluded that irreversible metabolic lesions occur at the synapse as a result of hypoxia, which are apparent only when the metabolism of the preparation is accelerated to a level comparable with the maximal rate occurring in vivo. The presence of such lesions is further evidenced by the significant reductions in ATP/ADP ratio, 14CO2 output, and [14C]acetylcholine synthesis that occur in synaptosomes from hypoxic rats made anoxic in vitro and permitted to recover. Such decreases are not seen when synaptosomes from normoxic rats are similarly treated.  相似文献   

11.
Quantitation of Cholinergic Synaptosomes from Guinea Pig Brain   总被引:1,自引:7,他引:1  
An antiserum raised to nerve terminal sacs derived from the electric organ and Torpedo marmorata was used to lyse guinea pig brain synaptosomes in the presence of complement. From the release of the cytoplasmic enzymes choline acetyltransferase, lactate dehydrogenase, tyrosine hydroxylase and glutamate decarboxylase it appears that the antiserum binds specifically to cholinergic terminals. The amount of lactate dehydrogenase released was used to estimate the proportion of cholinergic nerve terminals in different synaptosome preparations.  相似文献   

12.
The effects of fatty acids, oleate and palmitate, on gamma-aminobutyric acid (GABA), aspartate, and 3,4- dihydroxyphenylethylamine (dopamine) transport and a variety of other membrane functions were studied in rat brain synaptosomes at a constant lipid-to-protein ratio. Under the conditions utilized oleate, but not palmitate, caused statistically significant changes in synaptosomal functions. Oleic acid inhibited the uptake of the amino acid neurotransmitters and dopamine in a tetrodotoxin-insensitive manner; it also induced the release of neurotransmitters from synaptosomes. The synaptosomal membrane potential decreased and the maximum GABA accumulation ratio [( GABA]i/[GABA]o) declined in parallel. The same depolarizing effect was seen in the presence of 50 microM verapamil or when chloride was replaced by propionate. The rate of respiration was stimulated by the unsaturated fatty acid; neither verapamil (50 microM) nor ouabain (100 microM) was effective in preventing the increase in oxygen consumption. By contrast, ruthenium red substantially decreased the stimulatory effect of oleate. The intrasynaptosomal [Ca2+] was increased by 40%, whereas [Na+]i remained unaltered. It is postulated that under the conditions used the inhibition of neurotransmitter uptake and the decrease in their accumulation caused by oleate result from the depolarization of synaptosomes that arises, at least in part, from increased permeability of the plasma membrane to calcium ions.  相似文献   

13.
The effect of glucose on the release of immunoreactive insulin (IRI) in synaptosomes isolated from rat brain was studied. In the absence of glucose synaptosomes release about 4% (0.77 IU/mg protein) of total content. Glucose increases significantly the IRI released by synaptosomes. Addition of the glycolytic inhibitor iodoacetic acid (IAA), decreased the glucose-induced release of IRI by about 50%, suggesting that glucose metabolism is involved. The observation that glucose provides a concentration related signal for IRI release indicates that this synaptosomal preparation may be useful as a model for research on the mechanism of insulin release in brain.  相似文献   

14.
Acetylcholine Turnover and Compartmentation in Rat Brain Synaptosomes   总被引:2,自引:1,他引:1  
Abstract: The turnover of acetylcholine (ACh) in rat brain synaptosomes and its compartmentation in the labile bound and stable bound pools were investigated. The P2 fraction from rat brain was subjected to three sequential incubations, each terminated by centrifugation followed by determination of ACh concentrations by gas chromatography-mass spectrometry (GCMS): (1) Depletion phase: Incubation of synaptosomes at 37°C for 10 min in Na+-free buffer containing 35 mM-KCl reduced the content of both labile bound and stable bound ACh by 40%. (2) Synthesis phase: Incubation at 37°C with 2 μ M -[2H4]choline resulted in accumulation of labeled and unlabeled ACh in both compartments. Addition of an anticholinesterase had little effect on stable bound ACh but greatly increased the content of labile bound ACh. This excess accumulated ACh was probably due to inhibition of intracellular acetylcholinesterase (AChE), because negligible uptake of ACh from the medium was observed. The effects on ACh synthesis of altered cation concentrations and metabolic inhibitors were examined. (3) Release phase: The tissue was incubated in the presence of 35 mM-KCl, 40 μM-paraoxon, and 20 μM-hemicholinium-3 (HC-3) (to inhibit further synthesis of ACh). Measurements of the compartmental localization of ACh at several time points indicated that ACh was being released from the labile bound fraction. In support of this conclusion, 20 mM-Mg2+ reduced ACh release and increased the labile bound ACh concentration.  相似文献   

15.
Rat brain synaptosomes exhibit calcium-dependent transglutaminase activity. This activity, measured in detergent-treated or sonicated preparations, was six- to sevenfold lower than that in the liver. The synaptosomal transglutaminase was inhibited by various amines and alpha-difluoromethylornithine, compounds known to inhibit activity of this enzyme in other tissues. The inhibitors of transglutaminase induced release of catecholamines, but not of gamma-aminobutyric acid, from synaptosomes both under basal and K+-stimulated conditions. The concentrations of the agents that caused stimulation of catecholamine release were approximately the same as those that inhibited the activity of transglutaminase. Stimulation of release was largely reduced by the withdrawal of calcium from the incubation medium. Inhibitors of transglutaminase had little effect either on the uptakes of neurotransmitters or the amounts of deaminated products of catecholamine degradation released into the medium. It is suggested that a synaptosomal transglutaminase is involved in suppressing vesicular release of catecholamines by resting (nondepolarized) neurons and that this action may also be a part of negative feedback control which prevents excessive transmitter release at the synapse during increased neuronal activity.  相似文献   

16.
Abstract: The effect of Ginkgo biloba extract (EGb 761) treatment (100 mg/kg/day, per os, for 14 days) on electroconvulsive shock (ECS)-induced accumulation of free fatty acids (FFA) and diacylglycerols (DAG) was analyzed in rat cerebral cortex and hippocampus. EGb 761 reduced the FFA pool size by 33% and increased the DAG pool by 36% in the hippocampus. These endogenous lipids were unaffected in cerebral cortex. During the tonic seizure (10 s after ECS) the fast accumulation of FFA, mainly 20:4, was similar in sham- and EGb 761 -treated rats, in both the cerebral cortex and hippocampus. However, further accumulation of free 18:0 and 20:4, observed in the hippocampus of sham-treated rats during clonic seizures (30 s to 2 min after ECS), did not occur in EGb 761-treated animals. The rise in DAG content triggered in the cortex and hippocampus by ECS was delayed by EGb 761 treatment from 10 s to 1 min, when values similar to those in sham animals were attained. Moreover, in the hippocampus the size of the total DAG pool was decreased by 19% during the tonic seizure. At later times, DAG content showed a faster decrease in EGb 761-treated rats. By 2 min levels of all DAG acyl groups decreased to values significantly lower than in sham animals in both cortex and hippocampus. This study shows that EGb 761 treatment affects, with high selectivity, lipid metabolism and lipid-derived second messenger release and removal in the hippocampus, while affecting to a lesser extent the cerebral cortex.  相似文献   

17.
Abstract: Histidine transport and metabolism in rat brain synptosomes were investigated to study the possible role of histidine uptake in the synthesis of the putative neurotransmitter histamine (HA). Histidine uptake was found to be regionally distributed and temperature sensitive and was not totally independent of sodium or possium ions. Transport was inhibited by metabolic inhibitors, as well as by promethazine and quinacrine. A number of other HA-related agents and several histidine metabolites had no effect. Kinetic analyses of histidine transport revealed the presence of both high- and lowaffinity systems in cerebral cortex. Histidine uptake increased following preexposure of synaptosomes to depolarizing concentrations of potassium. This effect was dependent on the presence of calcium ions during the preincubation. No newly formed [3H]HA was detectable in rat brain synaptosomes following [3H]histidine transport. Lesions of the medial forebrain bundle did not alter histidine uptake in the hippocampus or cerebral cortex. Ontogenic studies indicated that the histidine uptake system developed rapidly and reached a peak during postnatal days 12–17. Overall, the present findings do not support a role for histidine transport in the regulation or maintenance of neurotransmitter pools of HA in rat brain.  相似文献   

18.
The cholinergic agonist, arecoline, was used to examine the effects of cholinergic stimulation upon incorporation of radiolabeled arachidonic acid from blood into cerebral microvessels of awake rats. Animals received a single I.P. injection of arecoline (1 mg/kg) followed 3 to 5 minutes later by a 5 minute intravenous infusion of [1-14C]arachidonic acid (AA) (170 Ci/kg) via the femoral vein. Timed arterial blood samples were collected over 20 minutes following the start of infusion, after which the animal was killed, and the brain was removed. The incorporation coefficient k* for [1-14C] AA was approximately 2-fold higher in microvessels isolated from arecoline-injected than from sham-injected animals. The data demonstrate in an in vivo paradigm, that activation of cholinergic pathways within the rat CNS stimulates arachidonic acid turnover in cerebral microvessels. This suggests a direct involvement of this fatty acid in second messenger function within microvessel endothelial cells and possibly attached pericytes.  相似文献   

19.
Neurotransmitter release from rat brain synaptosomes was measured following pretreatment with various phorbol esters. Ca2+-dependent, evoked neurotransmitter release was increased by phorbol esters that were active in stimulating protein kinase C. Protein kinase C activation was demonstrated by increased incorporation of 32P into 87-kilodalton phosphoprotein, a specific substrate for that kinase. Inactive phorbol esters had no effect on neurotransmitter release or on the phosphorylation of 87-kilodalton phosphoprotein. The increased release was observed in either crude cortical synaptosomal fractions (P2) or purified cortical synaptosomal fractions. The enhancement was found for all neurotransmitters (norepinephrine, acetylcholine, gamma-aminobutyric acid, serotonin, dopamine, and aspartate), all brain regions (cerebral cortex, hippocampus, and corpus striatum), and all secretagogues (elevated extracellular K+ level, veratridine, or A23187) examined. It was also observed at all calcium concentrations present during stimulation of release. The phorbol ester enhancement of Ca2+-dependent release occurred whether or not calcium was present during pretreatment. These results indicate that stimulation of protein kinase C leads to an enhanced sensitivity of the stimulus-secretion coupling processes to calcium within the nerve terminal. The results support the possibility that presynaptic activation of protein kinase C modulates nerve terminal neurotransmitter release in the CNS.  相似文献   

20.
Phosphate Ion Transport in Rabbit Brain Synaptosomes   总被引:1,自引:1,他引:0  
Abstract: Synaptosomes (vesicles of nerve endings) isolated from rabbit brain were studied as a model system for the uptake of inorganic phosphate. The phosphate uptake showed a sodium-dependent, saturable component with a K t of 0.29 m m , The sodium-dependent component was larger at pH 6 than at pH 7.4 or 8. Application of potassium salts, ouabain, monensin, nigericin or FCCP decreased the uptake. The results indicate that the sodium-sensitive phosphate influx is dependent on the Na+ gradient and on the membrane potential, which might act, preferentially, on the transport of the monovalent phosphate ion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号