首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A quantitative understanding of helix–coil dynamics will help explain their role in protein folding and in folded proteins. As a contribution to the understanding, the equilibrium and dynamical aspects of the helix–coil transition in polyvaline have been studied by computer simulation using a simplified model of the polypeptide chain. Each amino acid residue is treated as a single quasiparticle in an effective potential that approximates the potential of mean force in solution. The equilibrium properties examined include the helix–coil transition and its dependence on chain position and well depth at the coil–helix interface. A stochastic simulation of the Brownian motion of the chain in its solvent surroundings has been used to investigate dynamical properties. Time histories of the dihedral angles have been used to study the behavior of the helical structure. Auto and cross-correlation functions have been calculated from the time histories and from the state (helix or coil) functions of the residues with relaxation times of tens to hundreds of picoseconds. Helix–coil rate constants of tens of ns?1 were found for both directions of the transition. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Relaxation data obtained previously for the double helix coil transition of oligoriboadenylates and oligoribouridylates are compared to the results of numerical calculations according to various models. In these models the helix coil transition is described by individual rate constants for the first steps of helix formation, whereas the rate constants of the following steps of helix chain growth are assumed to be uniform. The existence of various helix intermediates containing the same number of base pairs is accounted for by statistical factors. First a quasistationary treatment of a zipper model is used for an analysis of the influence of various model parameters. Then relaxation spectra are calculated including helix coil intermediates explicitly without any assumption of quasistationarity. The relaxation spectrum calculated for any chain length N comprises N—1 fast processes with time constants in the range of 0.1 to 0.5 μs and one slow process with a time constant τ depending upon the nucleotide concentration (τ is usually in the ms time range). The fast processes are associated mainly with the unzippering at helix ends and are usually characterized by relatively small amplitudes, whereas the slow process represents the overall helix coil transition usually characterized by a very large amplitude.Consideration of staggered helix series (where the different helix scries are coupled to each other by the single stranded state) leads to a spectrum of slow relaxation processes with one separate relaxation process for each helix series. It is shown that this “non-sliding” staggering zipper model is not consistent with the experimental results. The measured relaxation curves can be represented by single exponentials for nucleotide chain lengths 8 to 11 (within experimental accuracy). This is also true for conditions where several, clearly separated time constants should be expected according to the theoretical model. The experimental data suggest the existence of a direct coupling between different series of staggered helices by a chain sliding mechanism with a time constant < 1ms. Chain sliding may be explained by diffusion of helix defects along the double helix such as diffusion of small loops. A simple model calculation for the diffusion of a bulge loop assuming quasistationarity suggests a sliding time constant around 100 μs for a helix comprising 10 base pairs.Finally some thermodynamic and kinetic parameters are evaluated according to the “sliding” staggering zipper model: The negative activation enthalpy observed for helix recombination can he described using a series of nucleation parameters indicating reduced stability constants for the first three base pairs. Nucleation may usually be achieved with the formation of the third or fourth base pair depending upon the magnitude of the chain growth parameter. The rate constant of helix chain growth is around 106 s?1 at 0.05 M [Na+] and increases to about 4 × 106 s?1 at 0.17 M [Na+].  相似文献   

3.
Calculation of binding isotherms for heterogenous polymers   总被引:30,自引:0,他引:30  
D M Crothers 《Biopolymers》1968,6(4):575-584
The matrix method of statistical mechanics is used to calculate equilibria for the binding of small molecules to polymers. When there is only one kind of binding site the problem is simple; some examples are given for illustrative purposes. If, however, the binding sites are not all equivalent and the bound molecules interact or interfere with each other, the problem is no longer trivial, being formally analogous with calculation of the helix–coil transition equilibrium in a heterogeneous polypeptide. Particular difficulties arise when the sequence of binding sites is aperiodic; most naturally occurring materials fall in this class. The purpose of this paper is to point out that problems of this type are readily solved with good accuracy by use of random-number methods on a high-speed digital computer. One such calculation is presented for illustration. The methods developed are applicable to such systems as the binding of actinomycin, Hg, and acridine dyes to DNA.  相似文献   

4.
Studies of the helix‐to‐coil transition in dilute solutions of poly‐L ‐lysine, dissolved in mixtures of water and methanol (MeOH), have been carried under shear flow using flow birefringence and modulated polarimetry. The fraction of helical conformations in a given solution remains independent of shear rate for MeOH concentrations above and below the critical value for the helix‐coil transition (i.e., 87.5% MeOH). For the 87.5% MeOH solutions, a shear‐induced helix‐to‐“stretched” coil transition occurs above a critical shear rate. Induction times for the transition show a temperature and shear rate dependence that can be described in terms of an activated jump process. Measurements of circular birefringence on cessation of flow also show that the transition is reversible, with the stretched coil reverting to the helical state on a time scale of several seconds. The activation energy for the jump process is found to be 16.2 kJ/mole. © 1999 John Wiley & Sons, Inc. Biopoly 50: 589–594, 1999  相似文献   

5.
Y Suzuki  Y Inoue  R Chùjò 《Biopolymers》1975,14(6):1223-1230
The helix–coil conformational transition undergone by poly(γ-benzyl-L -glutamate) in solutions of trifluoroacetic acid and deuterated chloroform was studied by proton and carbon-13 nmr. The results indicate that in the case of the solvent-induced helix–coil transition, the side chain assumes a helical conformation before the backbone. In the thermally induced helix–coil transition, the results indicate the existence of an intermediate state, which is between the α-helix and random coil and is free from intramolecular hydrogen bonding.  相似文献   

6.
Differential scanning calorimetry (DSC) was carried out to analyze the transition of helix to coil state of DNA, using ColE1 DNA molecules digested with EcoRI. The DSC curves showed multimodal transition, consisting of nine to 11 peaks over a temperature range, depending on the ionic strength of the DNA solution. These DSC curves were essentially in good agreement with the optical melting curves of ColE1 DNA. The theoretical melting profiles of ColE1 DNA were predicted from calculations based on the helix-coil transition theory and the nucleotide sequence of the DNA. These profiles resembled the DSC curves and made it possible to assign the peaks seen in the DSC curves to the helix-coil transition of particular regions of the nucleotide sequence of ColE1. The helix-coil transition of each of the small genes gave rise to a single peak in the DSC curve, while the helix-coil transition of large genes contributed to two or more peaks in the DSC curve. This multimodal transition within a single coding region might correspond to the melting of individual segments encoding the different domains of the proteins. The helix-coil transition at the specific sites including ori, the origin of replication of ColE1, was also found to occur in a particular temperature range. DSC, a simple method, is thus useful for analyzing the multimodal helix-coil transition of DNA, and for providing information on the genetic organization of DNA.  相似文献   

7.
The thermal helix–coil transition of DNA can be studied by means of the spin-echo technique. The longitudinal spin–lattice relaxation time T1 and the transvense spin–spin relaxation time T2 of the DNA sample show a similar phase transition as observed spec-trophotometrically with increasing and decreasing temperatures. Four slopes on the T1 and T2 temperature relationship curves were found and interpreted as functions of nonrelational hydration of the DNA molecule. The T1 and T2 values differ depending on the native or denatured state of the DNA molecule. The importance of the dynamic equilibrium between water molecules in the hydration lattice and steps in the denaturation of the DNA molecule are discussed. This phenomenon may be directly related to the nonrotational hydration.  相似文献   

8.
9.
Random number methods are used to calculate helix—coil transition curves for the model of a heterogeneous polypeptide of random sequence. These curves are compared with several other calculations. The random number computations confirm the exact calculation of Lehman; among the several approximate calculations examined only that of Fixman and Zeroka agrees closely with results of the random number method over the whole range of conditions considered. Calculations are also reported of the average length of helix and coil sections in a heterogeneous molecule of random sequence which is undergoing the helix-coil transition.  相似文献   

10.
A simplified model of a polypeptide chain is described. Each residue is represented by a single interaction center. The energy of the chain and the force acting on each residue are given as a function of the residue coordinates. Terms to approximate the effect of solvent and the stabilization energy of helix formation are included. The model is used to study equilibrium and dynamical aspects of the helix–coil transition. The equilibrium properties examined include helix–coil equilibrium constants and their dependence on chain position. Dynamical properties are examined by a stochastic simulation of the Brownian motion of the chain in its solvent surroundings. Correlations in the motions of the residues are found to have an important influence on the helix–coil transition rates.  相似文献   

11.
The lattice model of Flory has been extended in order to consider equilibrium between isotropic and nematic phases containing helix–coil type chains. Nearly complete exclusion of coil sequences from the lyotropic nematic phase produces an enhanced cooperativity in the helix–coil transition. In poor solvents this enhancement begins to occur at concentrations typical of some experiments.  相似文献   

12.
The RNA folding process is represented as a Markov process with states corresponding to RNA secondary structures and transition probabilities corresponding to transformations of a secondary structure caused by formation or disintegration of a helix. Transition probabilities (kinetic constants) are determined. A notion of a group of structures is introduced, and it allows to reduce the state space. Energetic and kinetic parameters of pseudoknots are estimated. Algorithms for computation of a kinetic ensemble for structures and groups of structures are presented, as well as their modifications that take into account pseudoknots. The described algorithms are implemented as a procedure for prediction of RNA secondary structure that is included in the package DNA-SUN.  相似文献   

13.
S Takashima 《Biopolymers》1966,4(6):663-676
The thermal helix–coil transition of DNA was studied by means of dielectric constant measurements. The dielectric dispersion of native helical DNA is characterized by a large dielectric increment and a large relaxation time, whereas that of denatured coil DNA is characterized by a small dielectric increment and a small relaxation time. The dielectric dispersion of partially denatured DNA is of particular interest. At the intermediate stage of the helix–coil transition, dispersion curves which are different from either that of helix DNA or that of coil DNA appear. This is particularly pronounced for large DNA. This indicates the presence of an intermediate form of DNA. Flow birefringence measurements were carried out simultaneously. The negative birefringence of helical DNA diminishes as the helix–coil transition proceeds. However, the extinction angle remains constant, as long as it can be measured. These results indicate the absence of intermediate forms during the helix–coil transition. The discrepancy between dielectric and birefringence measurements can be resolved by assuming that the intermediate forms are not birefringent. The size distribution of native DNA and of the indicated intermediate form of DNA was studied. It is found that a logarithmic normal distribution function explains the distribution of size of DNA reasonably well.  相似文献   

14.
15.
Helix-coil dynamics of a Z-helix hairpin   总被引:1,自引:0,他引:1  
The helix–coil transition of a Z-helix hairpin formed from d(C-G)5T4(C-G)5 has been characterized by equilibrium melting and temperature jump experiments in 5M NaClO4 and 10 mM Na2HPO4, pH 7.0. The melting curve can be represented by a simple all-or-none transition with a midpoint at 81.6 ± 0.4°C and an enthalpy change of 287 ± 15 kJ/mole. The temperature jump relaxation can be described by single exponentials at a reasonable accuracy. Amplitudes measured as a function of temperature provide equilibrium parameters consistent with those derived from equilibrium melting curves. The rate constants of Z-helix formation are found in the range from 1800 s?1 at 70°C to 800 s?1 at 90°C and are associated with an activation enthalpy of ?(50 ± 10) kJ/mole, whereas the rate constants of helix dissociation are found in the range from 200 s?1 at 70°C to 4500 s?1 at 90°C with an activation enthalpy +235 kJ/mole. These parameters are consistent with a requirement of 3–4 base pairs for helix nucleation. Apparently nucleation occurs in the Z-helix conformation, because a separate slow step corresponding to a B to Z transition has not been observed. In summary, the dynamics of the Z-helix–coil transition is very similar to that of previously investigated right-handed double helices.  相似文献   

16.
The alpha-helix containing the thiols, SH1 (Cys-707) and SH2 (Cys-697), has been proposed to be one of the structural elements responsible for the transduction of conformational changes in the myosin head (subfragment-1 (S1)). Previous studies, using a method that isolated and measured the rate of the SH1-SH2 cross-linking step, showed that this helix undergoes ligand-induced conformational changes. However, because of long incubation times required for the formation of the transition state complexes (S1.ADP.BeF(x), S1.ADP.AlF(4)-, and S1.ADP.V(i)), this method could not be used to determine the cross-linking rate constants for such states. In this study, kinetic data from the SH1-SH2 cross-linking reaction were analyzed by computational methods to extract rate constants for the two-step mechanism. For S1.ADP.BeF(x), the results obtained were similar to those for S1.ATPgammaS. For reactions involving S1.ADP.AlF(4)- and S1.ADP.V(i), the first step (SH1 modification) is rate limiting; consequently, only lower limits could be established for the rate constants of the cross-linking step. Nevertheless, these results show that the cross-linking rate constants in the transition state complexes are increased at least 20-fold for all the reagents, including the shortest one, compared with nucleotide-free S1. Thus, the SH1-SH2 helix appears to be destabilized in the post-hydrolysis state.  相似文献   

17.
Relaxation measurements on the kinetics of the double helix to coil transition for the self-complementary ribo-oligonucleotide A7U7 are reported over a concentration range of 6.9 μM to 19.6 μM in single strand in 1 M NaCl. The rate constants for helix formation are about 2 × 106 M?1 s?1 and decrease with increasing temperature yielding an activation enthalpy of ?6 kcalmole. The rate constants for helix dissociation range from 3 to 250 s?1 and increase with increasing temperature yielding an activation enthalpy of +45 kcalmole. The kinetic data reported here for 1 M NaCl is compared with previously published results obtained at lower salt concentrations. These data are discussed in terms of the quantitative effect of ionic strength on the kinetics of helix-coil transitions in oligo- and polynucleotides.  相似文献   

18.
A Wada  T Tanaka  H Kihara 《Biopolymers》1972,11(3):587-605
Dielectric studies have been carried out for the helix–coil transition of poly-β-benzyl-L -aspartate with m-cresol as a solvent. The transition of the solute molecules has been sharply reflected as a characteristic change in the dielectric dispersion curves in changing temperature. Two polarizations, one having a low and the other a high critical frequency, have appeared. According to theoretical considerations of a model of a broken helix, the former is found to come from the orientation. of helical sequences and the latter from the chemical relaxation due to the helix–coil transition. It also seems likely that the unfolded chain may have a polarizability which could not be neglected at the high-temperature side of the transition.  相似文献   

19.
A highly flexible computer program written in FORTRAN is presented which fits computer-generated simulations to experimental progress-curve data by an iterative non-linear weighted least-squares procedure. This fitting procedure allows kinetic rate constants to be determined from the experimental progress curves. Although the numerical integration of the rate equations by a previously described method [Barshop, Wrenn & Frieden (1983) Anal. Biochem. 130, 134-145] is used here to generate predicted curves, any routine capable of the integration of a set of differential equations can be used. The fitting program described is designed to be widely applicable, easy to learn and convenient to use. The use, behaviour and power of the program is explored by using simulated test data.  相似文献   

20.
Constants of the helix–coil transition for all natural amino acid residues are evaluated on the basis of thermodynamic parameters obtained in paper I of this series. The specific effects at the termini of the helices are also considered as well as the parameters controlling the formation of β-bends in the unfolded protein chain. Evaluated s constants of the helix–coil transition agree with the experimental data on helix–coil transitions of synthetic polypeptides in water. Only a very qualitative correlation exists between s constants (both experimental and theoretical) and the occurrence of corresponding residues in internal turns of α-helices in globular proteins: residues with s > 1 occur in helices as a rule more often than residues with s < 1. At the same time a direct correlation is demonstrated between theoretical parameters of residue incorporation into α-helical termini and β-bends in an unfolded polypeptide chain and the occurrence of residues in corresponding positions of the globular protein secondary structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号