首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
We describe an integrated software system called Sculptor that combines visualization capabilities with molecular modeling algorithms for the analysis of multi-scale data sets. Sculptor features extensive special purpose visualization techniques that are based on modern GPU programming and are capable of representing complex molecular assemblies in real-time. The integration of graphics and modeling offers several advantages. The user interface not only eases the usually steep learning curve of pure algorithmic techniques, but it also permits instant analysis and post-processing of results, as well as the integration of results from external software. Here, we implemented an interactive peak-selection strategy that enables the user to explore a preliminary score landscape generated by the colors tool of Situs. The interactive placement of components, one at a time, is advantageous for low-resolution or ambiguously shaped maps, which are sometimes difficult to interpret by the fully automatic peak selection of colors. For the subsequent refinement of the preliminary models resulting from both interactive and automatic peak selection, we have implemented a novel simultaneous multi-body docking in Sculptor and Situs that softly enforces shape complementarities between components using the normalization of the cross-correlation coefficient. The proposed techniques are freely available in Situs version 2.6 and Sculptor version 2.0.  相似文献   

3.
Many structures of large molecular assemblies such as virus capsids and ribosomes have been experimentally determined to atomic resolution. We consider four software problems that arise in interactive visualization and analysis of large assemblies: how to represent multimers efficiently, how to make cartoon representations, how to calculate contacts efficiently, and how to select subassemblies. We describe techniques and algorithms we have developed and give examples of their use. Existing molecular visualization programs work well for single protein and nucleic acid molecules and for small complexes. The methods presented here are proposed as features to add to existing programs or include in next-generation visualization software to allow easy exploration of assemblies containing tens to thousands of macromolecules. Our approach is pragmatic, emphasizing simplicity of code, reliability, and speed. The methods described have been distributed as the Multiscale extension of the UCSF Chimera (www.cgl.ucsf.edu/chimera) molecular graphics program.  相似文献   

4.
MOTIVATION: Heterogeneity of databases and software resources continues to hamper the integration of biological information. Top-down solutions are not feasible for the full-scale problem of integration across biological species and data types. Bottom-up solutions so far have not integrated, in a maximally flexible way, dynamic and interactive graphical-user-interface components with data repositories and analysis tools. RESULTS: We present a component-based approach that relies on a generalized platform for component integration. The platform enables independently-developed components to synchronize their behavior and exchange services, without direct knowledge of one another. An interface-based data model allows the exchange of information with minimal component interdependency. From these interactions an integrated system results, which we call ISYSf1.gif" BORDER="0">. By allowing services to be discovered dynamically based on selected objects, ISYS encourages a kind of exploratory navigation that we believe to be well-suited for applications in genomic research.  相似文献   

5.
Recent advances in experimental structure determination provide a wealth of structural data on huge macromolecular assemblies such as the ribosome or viral capsids, available in public databases. Further structural models arise from reconstructions using symmetry orders or fitting crystal structures into low-resolution maps obtained by electron-microscopy or small angle X-ray scattering experiments. Visual inspection of these huge structures remains an important way of unravelling some of their secrets. However, such visualization cannot conveniently be carried out using conventional rendering approaches, either due to performance limitations or due to lack of realism. Recent developments, in particular drawing benefit from the capabilities of Graphics Processing Units (GPUs), herald the next generation of molecular visualization solutions addressing these issues. In this article, we present advances in computer science and visualization that help biologists visualize, understand and manipulate large and complex molecular systems, introducing concepts that remain little-known in the bioinformatics field. Furthermore, we compile currently available software and methods enhancing the shape perception of such macromolecular assemblies, for example based on surface simplification or lighting ameliorations.  相似文献   

6.
Methods are presented for organizing and integrating DNA sequence data, restriction maps, and genetic maps for the same organism but from a variety of sources (databases, publications, personal communications). Proper software tools are essential for successful organization of such diverse data into an ordered, cohesive body of information, and a suite of novel software to support this endeavor is described. Though these tools automate much of the task, a variety of strategies is needed to cope with recalcitrant cases. We describe such strategies and illustrate their application with numerous examples. These strategies have allowed us to order, analyze, and display over one megabase of E. coli DNA sequence information. The integration task often exposes inconsistencies in the available data, perhaps caused by strain polymorphisms or human oversight, necessitating the application of sound biological judgment. The examples illustrate both the level of expertise required of the database curator and the knowledge gained as apparent inconsistencies are resolved. The software and mapping methods are applicable to the study of any genome for which a high resolution restriction map is available. They were developed to support a weakly coordinated sequencing effort involving many laboratories, but would also be useful for highly orchestrated sequencing projects.  相似文献   

7.
Many cellular processes are carried out by large macromolecular assemblies. We systematically analyzed large macromolecular assemblies in the cytoplasm of mouse macrophages (RAW264.7 cell line), cells with crucial roles in immunity and inflammation. Fractionation of the cytoplasmic fraction was performed using sucrose density gradient centrifugation, and individual fractions were subjected in parallel to (i) identification of constituent proteins by mass spectrometry and (ii) structural visualization by electron microscopy. Macromolecular assemblies present in the fractions were analyzed by integrating available data using bioinformatic approaches. We identified 368 unique proteins in our sample. Among these are components of some well-characterized assemblies involved in diverse cellular processes and structures including translation, proteolysis, protein folding, metabolism, and the cytoskeleton, as well as less characterized proteins that may correspond to additional components of known assemblies or other homo- or hetero-oligomeric structures. Single-particle analysis of electron micrographs of negatively stained samples allowed the identification of clearly distinguishable two-dimensional projections of discrete protein assemblies. Among these, we can identify small ribosomal subunits and preribosomal particles, the 26S proteasome complex and small ringlike structures resembling the molecular chaperone complexes. In addition, a broad range of discrete and different complexes were seen at size ranges between 11 to 38 nm in diameter. Our procedure selects the assemblies on the basis of abundance and ease of isolation, and therefore provides an immediately useful starting point for further study of structure and function of large assemblies. Our results will also contribute toward building a molecular cell atlas.  相似文献   

8.
In 1949, Donald Hebb postulated that assemblies of synchronously activated neurons are the elementary units of information processing in the brain. Despite being one of the most influential theories in neuroscience, Hebb's cell assembly hypothesis only started to become testable in the past two decades due to technological advances. However, while the technology for the simultaneous recording of large neuronal populations undergoes fast development, there is still a paucity of analytical methods that can properly detect and track the activity of cell assemblies. Here we describe a principal component-based method that is able to (1) identify all cell assemblies present in the neuronal population investigated, (2) determine the number of neurons involved in ensemble activity, (3) specify the precise identity of the neurons pertaining to each cell assembly, and (4) unravel the time course of the individual activity of multiple assemblies. Application of the method to multielectrode recordings of awake and behaving rats revealed that assemblies detected in the cerebral cortex and hippocampus typically contain overlapping neurons. The results indicate that the PCA method presented here is able to properly detect, track and specify neuronal assemblies, irrespective of overlapping membership.  相似文献   

9.
Highthroughput cell-based assays with flow cytometric readout provide a powerful technique for identifying components of biologic pathways and their interactors. Interpretation of these large datasets requires effective computational methods. We present a new approach that includes data pre-processing, visualization, quality assessment, and statistical inference. The software is freely available in the Bioconductor package prada. The method permits analysis of large screens to detect the effects of molecular interventions in cellular systems.  相似文献   

10.
We present several bioinformatics applications for the identification and quantification of phosphoproteome components by MS. These applications include a front‐end graphical user interface that combines several Thermo RAW formats to MASCOT? Generic Format extractors (EasierMgf), two graphical user interfaces for search engines OMSSA and SEQUEST (OmssaGui and SequestGui), and three applications, one for the management of databases in FASTA format (FastaTools), another for the integration of search results from up to three search engines (Integrator), and another one for the visualization of mass spectra and their corresponding database search results (JsonVisor). These applications were developed to solve some of the common problems found in proteomic and phosphoproteomic data analysis and were integrated in the workflow for data processing and feeding on our LymPHOS database. Applications were designed modularly and can be used standalone. These tools are written in Perl and Python programming languages and are supported on Windows platforms. They are all released under an Open Source Software license and can be freely downloaded from our software repository hosted at GoogleCode.  相似文献   

11.
We describe methods for interactive visualization and analysis of density maps available in the UCSF Chimera molecular modeling package. The methods enable segmentation, fitting, coarse modeling, measuring and coloring of density maps for elucidating structures of large molecular assemblies such as virus particles, ribosomes, microtubules, and chromosomes. The methods are suitable for density maps with resolutions in the range spanned by electron microscope single particle reconstructions and tomography. All of the tools described are simple, robust and interactive, involving computations taking only seconds. An advantage of the UCSF Chimera package is its integration of a large collection of interactive methods. Interactive tools are sufficient for performing simple analyses and also serve to prepare input for and examine results from more complex, specialized, and algorithmic non-interactive analysis software. While both interactive and non-interactive analyses are useful, we discuss only interactive methods here.  相似文献   

12.
A major challenge in structural biology is to determine the configuration of domains and proteins in multidomain proteins and assemblies, respectively. All available data should be considered to maximize the accuracy and precision of these models. Small-angle X-ray scattering (SAXS) efficiently provides low-resolution experimental data about the shapes of proteins and their assemblies. Thus, we integrated SAXS profiles into our software for modeling proteins and their assemblies by satisfaction of spatial restraints. Specifically, we modeled the quaternary structures of multidomain proteins with structurally defined rigid domains as well as quaternary structures of binary complexes of structurally defined rigid proteins. In addition to SAXS profiles and the component structures, we used stereochemical restraints and an atomic distance-dependent statistical potential. The scoring function is optimized by a biased Monte Carlo protocol, including quasi-Newton and simulated annealing schemes. The final prediction corresponds to the best scoring solution in the largest cluster of many independently calculated solutions. To quantify how well the quaternary structures are determined based on their SAXS profiles, we used a benchmark of 12 simulated examples as well as an experimental SAXS profile of the homotetramer d-xylose isomerase. Optimization of the SAXS-dependent scoring function generally results in accurate models if sufficiently precise approximations for the constituent rigid bodies are available; otherwise, the best scoring models can have significant errors. Thus, SAXS profiles can play a useful role in the structural characterization of proteins and assemblies if they are combined with additional data and used judiciously. Our integration of a SAXS profile into modeling by satisfaction of spatial restraints will facilitate further integration of different kinds of data for structure determination of proteins and their assemblies.  相似文献   

13.
Researchers in quantitative systems biology make use of a large number of different software packages for modelling, analysis, visualization, and general data manipulation. In this paper, we describe the Systems Biology Workbench (SBW), a software framework that allows heterogeneous application components--written in diverse programming languages and running on different platforms--to communicate and use each others' capabilities via a fast binary encoded-message system. Our goal was to create a simple, high performance, opensource software infrastructure which is easy to implement and understand. SBW enables applications (potentially running on separate, distributed computers) to communicate via a simple network protocol. The interfaces to the system are encapsulated in client-side libraries that we provide for different programming languages. We describe in this paper the SBW architecture, a selection of current modules, including Jarnac, JDesigner, and SBWMeta-tool, and the close integration of SBW into BioSPICE, which enables both frameworks to share tools and compliment and strengthen each others capabilities.  相似文献   

14.
Electron cryo-microscopy (cryo-EM) has played an increasingly important role in elucidating the structure and function of macromolecular assemblies in near native solution conditions. Typically, however, only non-atomic resolution reconstructions have been obtained for these large complexes, necessitating computational tools for integrating and extracting structural details. With recent advances in cryo-EM, maps at near-atomic resolutions have been achieved for several macromolecular assemblies from which models have been manually constructed. In this work, we describe a new interactive modeling toolkit called Gorgon targeted at intermediate to near-atomic resolution density maps (10-3.5 ?), particularly from cryo-EM. Gorgon's de novo modeling procedure couples sequence-based secondary structure prediction with feature detection and geometric modeling techniques to generate initial protein backbone models. Beyond model building, Gorgon is an extensible interactive visualization platform with a variety of computational tools for annotating a wide variety of 3D volumes. Examples from cryo-EM maps of Rotavirus and Rice Dwarf Virus are used to demonstrate its applicability to modeling protein structure.  相似文献   

15.
Creating useful software is a major activity of many scientists, including bioinformaticians. Nevertheless, software development in an academic setting is often unsystematic, which can lead to problems associated with maintenance and long-term availibility. Unfortunately, well-documented software development methodology is difficult to adopt, and technical measures that directly improve bioinformatic programming have not been described comprehensively. We have examined 22 software projects and have identified a set of practices for software development in an academic environment. We found them useful to plan a project, support the involvement of experts (e.g. experimentalists), and to promote higher quality and maintainability of the resulting programs. This article describes 12 techniques that facilitate a quick start into software engineering. We describe 3 of the 22 projects in detail and give many examples to illustrate the usage of particular techniques. We expect this toolbox to be useful for many bioinformatics programming projects and to the training of scientific programmers.  相似文献   

16.
Bacterial microcompartments are supramolecular protein assemblies that function as bacterial organelles by compartmentalizing particular enzymes and metabolic intermediates. The outer shells of these microcompartments are assembled from multiple paralogous structural proteins. Because the paralogs are required to assemble together, their genes are often transcribed together from the same operon, giving rise to a distinctive genomic pattern: multiple, typically small, paralogous proteins encoded in close proximity on the bacterial chromosome. To investigate the generality of this pattern in supramolecular assemblies, we employed a comparative genomics approach to search for protein families that show the same kind of genomic pattern as that exhibited by bacterial microcompartments. The results indicate that a variety of large supramolecular assemblies fit the pattern, including bacterial gas vesicles, bacterial pili, and small heat‐shock protein complexes. The search also retrieved several widely distributed protein families of presently unknown function. The proteins from one of these families were characterized experimentally and found to show a behavior indicative of supramolecular assembly. We conclude that cotranscribed paralogs are a common feature of diverse supramolecular assemblies, and a useful genomic signature for discovering new kinds of large protein assemblies from genomic data.  相似文献   

17.
Protein folding and protein binding are similar processes. In both, structural units combinatorially associate with each other. In the case of folding, we mostly handle relatively small units, building blocks or domains, that are covalently linked. In the case of multi-molecular binding, the subunits are relatively large and are associated only by non-covalent bonds. Experimentally, the difficulty in the determination of the structures of such large assemblies increases with the complex size and the number of components it contains. Computationally, the prediction of the structures of multi-molecular complexes has largely not been addressed, probably owing to the magnitude of the combinatorial complexity of the problem. Current docking algorithms mostly target prediction of pairwise interactions. Here our goal is to predict the structures of multi-unit associations, whether these are chain-connected as in protein folding, or separate disjoint molecules in the assemblies. We assume that the structures of the single units are known, either through experimental determination or modeling. Our aim is to combinatorially assemble these units to predict their structure. To address this problem we have developed CombDock. CombDock is a combinatorial docking algorithm for the structural units assembly problem. Below, we briefly describe the algorithm and present examples of its various applications to folding and to multi-molecular assemblies. To test the robustness of the algorithm, we use inaccurate models of the structural units, derived either from crystal structures of unbound molecules or from modeling of the target sequences. The algorithm has been able to predict near-native arrangements of the input structural units in almost all of the cases, suggesting that a combinatorial approach can overcome the imperfect shape complementarity caused by the inaccuracy of the models. In addition, we further show that through a combinatorial docking strategy it is possible to enhance the predictions of pairwise interactions involved in a multi-molecular assembly.  相似文献   

18.
Multiscale models are important tools to elucidate how small changes in local subunit conformations may propagate to affect the properties of macromolecular complexes. We review recent advances in coarse-graining methods for poly-protein assemblies, systems that are composed of many copies of relatively few components, with a particular focus on viral capsids and cytoskeletal filaments. These methods are grouped into two broad categories-mapping methods, which use information from one scale of representation to parameterize a lower resolution model, and bridging methods, which repeatedly connect different scales during simulation-and we provide examples of both classes at different levels of complexity. Collectively, these models illustrate the numerous approaches to information transfer between scales and demonstrate that the complexity required of the model depends in general on the nature of the information sought.  相似文献   

19.
Detection and Integration of Genotyping Errors in Statistical Genetics   总被引:15,自引:0,他引:15       下载免费PDF全文
Detection of genotyping errors and integration of such errors in statistical analysis are relatively neglected topics, given their importance in gene mapping. A few inopportunely placed errors, if ignored, can tremendously affect evidence for linkage. The present study takes a fresh look at the calculation of pedigree likelihoods in the presence of genotyping error. To accommodate genotyping error, we present extensions to the Lander-Green-Kruglyak deterministic algorithm for small pedigrees and to the Markov-chain Monte Carlo stochastic algorithm for large pedigrees. These extensions can accommodate a variety of error models and refrain from simplifying assumptions, such as allowing, at most, one error per pedigree. In principle, almost any statistical genetic analysis can be performed taking errors into account, without actually correcting or deleting suspect genotypes. Three examples illustrate the possibilities. These examples make use of the full pedigree data, multiple linked markers, and a prior error model. The first example is the estimation of genotyping error rates from pedigree data. The second-and currently most useful-example is the computation of posterior mistyping probabilities. These probabilities cover both Mendelian-consistent and Mendelian-inconsistent errors. The third example is the selection of the true pedigree structure connecting a group of people from among several competing pedigree structures. Paternity testing and twin zygosity testing are typical applications.  相似文献   

20.
A large number of surfactants (surface active molecules) are chemically simple compounds that can be obtained by simple chemical reactions, in some cases even under presumably prebiotic conditions. Surfactant assemblies are self-organized polymolecular aggregates of surfactants, in the simplest case micelles, vesicles, hexagonal and cubic phases. It may be that these different types of surfactant assemblies have played various, so-far underestimated important roles in the processes that led to the formation of the first living systems.Although nucleic acids are key players in the formation of cells as we know them today (RNA world hypothesis), it is still unclear how RNA could have been formed under prebiotic conditions. Surfactants with their self-organizing properties may have assisted, controlled and compartimentalized some of the chemical reactions that eventually led to the formation of molecules like RNA. Therefore, surfactants were possibly very important in prebiotic times in the sense that they may have been involved in different physical and chemical processes that finally led to a transformation of non-living matter to the first cellular form(s) of life. This hypothesis is based on four main experimental observations: (i) Surfactant aggregation can lead to cell-like compartimentation (vesicles). (ii) Surfactant assemblies can provide local reaction conditions that are very different from the bulk medium, which may lead to a dramatic change in the rate of chemical reactions and to a change in reaction product distributions. (iii) The surface properties of surfactant assemblies that may be liquid- or solid-like, charged or neutral, and the elasticity and packing density of surfactant assemblies depend on the chemical structure of the surfactants, on the presence of other molecules, and on the overall environmental conditions (e. g. temperature). This wide range of surface characteristics of surfactant assemblies may allow a control of surface-bound chemical reactions not only by the charge or hydrophobicity of the surface but also by its “softness”. (iv) Chiral polymolecular assemblies (helices) may form from chiral surfactants.There are many examples that illustrate the different roles and potential roles of surfactant assemblies in different research areas outside of the field of the origin(s) of life, most importantly in investigations of contemporary living systems, in nanotechnology applications, and in the development of drug delivery systems. Concepts and ideas behind many of these applications may have relevance also in connection to the different unsolved problems in understanding the origin(s) of life.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号