首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To resist to β-lactam antibiotics Eubacteria either constitutively synthesize a β-lactamase or a low affinity penicillin-binding protein target, or induce its synthesis in response to the presence of antibiotic outside the cell. In Bacillus licheniformis and Staphylococcus aureus, a membrane-bound penicillin receptor (BlaR/MecR) detects the presence of β-lactam and launches a cytoplasmic signal leading to the inactivation of BlaI/MecI repressor, and the synthesis of a β-lactamase or a low affinity target. We identified a dipeptide, resulting from the peptidoglycan turnover and present in bacterial cytoplasm, which is able to directly bind to the BlaI/MecI repressor and to destabilize the BlaI/MecI-DNA complex. We propose a general model, in which the acylation of BlaR/MecR receptor and the cellular stress induced by the antibiotic, are both necessary to generate a cell wall-derived coactivator responsible for the expression of an inducible β-lactam-resistance factor. The new model proposed confirms and emphasizes the role of peptidoglycan degradation fragments in bacterial cell regulation.  相似文献   

2.
The novel method described in this paper combines the use of blaI, which encodes a repressor involved in Bacillus licheniformis BlaP β-lactamase regulation, an antibiotic resistance gene, and a B. subtilis strain (BS1541) that is conditionally auxotrophic for lysine. We constructed a BlaI cassette containing blaI and the spectinomycin resistance genes and two short direct repeat DNA sequences, one at each extremity of the cassette. The BS1541 strain was obtained by replacing the B. subtilis PlysA promoter with that of the PblaP β-lactamase promoter. In the resulting strain, the cloning of the blaI repressor gene confers lysine auxotrophy to BS1541. After integration of the BlaI cassette into the chromosome of a conditionally lys-auxotrophic (BS1541) strain by homologous recombination and positive selection for spectinomycin resistance, the eviction of the BlaI cassette was achieved by single crossover between the two short direct repeat sequences. This strategy was successfully used to inactivate a single gene and to introduce a gene of interest in the Bacillus chromosome. In both cases the resulting strains are free of selection marker. This allows the use of the BlaI cassette to repeatedly further modify the Bacillus chromosome.  相似文献   

3.
4.
5.
6.
7.
XRCC1 (X-ray cross-complementing group 1) is a DNA repair protein that forms complexes with DNA polymerase β (β-Pol), DNA ligase III and poly-ADP-ribose polymerase in the repair of DNA single strand breaks. The domains in XRCC1 have been determined, and characterization of the domain–domain interaction in the XRCC1-β-Pol complex has provided information on the specificity and mechanism of binding. The domain structure of XRCC1, determined using limited proteolysis, was found to include an N-terminal domain (NTD), a central BRCT-I (breast cancer susceptibility protein-1) domain and a C-terminal BRCT-II domain. The BRCT-Ilinker–BRCT-II C-terminal fragment and the linker–BRCT-II C-terminal fragment were relatively stable to proteolysis suggestive of a non-random conformation of the linker. A predicted inner domain was found not to be stable to proteolysis. Using cross-linking experiments, XRCC1 was found to bind intact β-Pol and the β-Pol 31 kDa domain. The XRCC1-NTD1–183 (residues 1183) was found to bind β-Pol, the β-Pol 31 kDa domain and the β-Pol C-terminal palm-thumb (residues 140–335), and the interaction was further localized to XRCC1-NTD1–157 (residues 1–157). The XRCC1-NTD1–183-β-Pol 31 kDa domain complex was stable at high salt (1 M NaCl) indicative of a hydrophobic contribution. Using a yeast two-hybrid screen, polypeptides expressed from two XRCC1 constructs, which included residues 36–355 and residues 1–159, were found to interact with β-Pol, the β-Pol 31 kDa domain, and the β-Pol C-terminal thumb-only domain polypeptides expressed from the respective β-Pol constructs. Neither the XRCC1-NTD1–159, nor the XRCC136–355 polypeptide was found to interact with a β-Pol thumbless polypeptide. A third XRCC1 polypeptide (residues 75–212) showed no interaction with β-Pol. In quantitative gel filtration and analytical ultracentrifugation experiments, the XRCC1-NTD1–183 was found to bind β-Pol and its 31 kDa domain in a 1:1 complex with high affinity (Kd of 0.4–2.4 µM). The combined results indicate a thumb-domain specific 1:1 interaction between the XRCC1-NTD1–159 and β-Pol that is of an affinity comparable to other binding interactions involving β-Pol.  相似文献   

8.
The worldwide dissemination of CTX-M type β-lactamases is a threat to human health. Previously, we have reported the spread of bla CTX-M-15 gene in different clinical strains of Enterobacteriaceae from the hospital settings of Aligarh in north India. In view of the varying resistance pattern against cephalosporins and other β-lactam antibiotics, we intended to understand the correlation between MICs and catalytic activity of CTX-M-15. In this study, steady-state kinetic parameters and MICs were determined on E. coli DH5α transformed with bla CTX-M-15 gene that was cloned from Enterobacter cloacae (EC-15) strain of clinical background. The effect of conventional β-lactamase inhibitors (clavulanic acid, sulbactam and tazobactam) on CTX-M-15 was also studied. We have found that tazobactam is the best among these inhibitors against CTX-M-15. The inhibition characteristic of tazobactam is defined by its very low IC50 value (6 nM), high affinity (K i = 0.017 µM) and better acylation efficiency (k +2/K′ = 0.44 µM−1s−1). It forms an acyl-enzyme covalent complex, which is quite stable (k +3 = 0.0057 s−1). Since increasing resistance has been reported against conventional β-lactam antibiotic-inhibitor combinations, we aspire to design a non-β-lactam core containing β-lactamase inhibitor. For this, we screened ZINC database and performed molecular docking to identify a potential non-β-lactam based inhibitor (ZINC03787097). The MICs of cephalosporin antibiotics in combination with this inhibitor gave promising results. Steady-state kinetics and molecular docking studies showed that ZINC03787097 is a reversible inhibitor which binds non-covalently to the active site of the enzyme through hydrogen bonds and hydrophobic interactions. Though, it’s IC50 (180 nM) is much higher than tazobactam, it has good affinity for CTX-M-15 (K i = 0.388 µM). This study concludes that ZINC03787097 compound can be used as seed molecule to design more efficient non-β-lactam containing β-lactamase inhibitor that could evade pre-existing bacterial resistance mechanisms.  相似文献   

9.
A complex of the three (αεθ) core subunits and the β2 sliding clamp is responsible for DNA synthesis by Pol III, the Escherichia coli chromosomal DNA replicase. The 1.7 Å crystal structure of a complex between the PHP domain of α (polymerase) and the C-terminal segment of ε (proofreading exonuclease) subunits shows that ε is attached to α at a site far from the polymerase active site. Both α and ε contain clamp-binding motifs (CBMs) that interact simultaneously with β2 in the polymerization mode of DNA replication by Pol III. Strengthening of both CBMs enables isolation of stable αεθ:β2 complexes. Nuclear magnetic resonance experiments with reconstituted αεθ:β2 demonstrate retention of high mobility of a segment of 22 residues in the linker that connects the exonuclease domain of ε with its α-binding segment. In spite of this, small-angle X-ray scattering data show that the isolated complex with strengthened CBMs has a compact, but still flexible, structure. Photo-crosslinking with p-benzoyl-L-phenylalanine incorporated at different sites in the α-PHP domain confirm the conformational variability of the tether. Structural models of the αεθ:β2 replicase complex with primer-template DNA combine all available structural data.  相似文献   

10.
Firmicutes multidrug resistance inc18 plasmids encode parS sites and two small homodimeric ParA-like (δ2) and ParB-like (ω2) proteins to ensure faithful segregation. Protein ω2 binds to parS DNA, forming a short left-handed helix wrapped around the full parS, and interacts with δ2. Protein δ2 interacts with ω2 and, in the ATP-bound form, binds to nonspecific DNA (nsDNA), forming small clusters. Here, we have mapped the ω2·δ2 and δ2·δ2 interacting domains in the δ2 that are adjacent to but distinct from each other. The δ2 nsDNA binding domain is essential for stimulation of ω2·parS-mediated ATP hydrolysis. From the data presented here, we propose that δ2 interacts with ATP, nsDNA, and with ω2 bound to parS at near equimolar concentrations, facilitating a δ2 structural transition. This δ2 “activated” state overcomes its impediment in ATP hydrolysis, with the subsequent release of both of the proteins from nsDNA (plasmid unpairing).  相似文献   

11.
There is widespread agreement that the clamp loader of the Escherichia coli replicase has the composition DnaX3δδ’χψ. Two DnaX proteins exist in E. coli, full length τ and a truncated γ that is created by ribosomal frameshifting. τ binds DNA polymerase III tightly; γ does not. There is a controversy as to whether or not DNA polymerase III holoenzyme (Pol III HE) contains γ. A three-τ form of Pol III HE would contain three Pol IIIs. Proponents of the three-τ hypothesis have claimed that γ found in Pol III HE might be a proteolysis product of τ. To resolve this controversy, we constructed a strain that expressed only τ from a mutated chromosomal dnaX. γ containing a C-terminal biotinylation tag (γ-Ctag) was provided in trans at physiological levels from a plasmid. A 2000-fold purification of Pol III* (all Pol III HE subunits except β) from this strain contained one molecule of γ-Ctag per Pol III* assembly, indicating that the dominant form of Pol III* in cells is Pol III2τ2 γδδ’χψ. Revealing a role for γ in cells, mutants that express only τ display sensitivity to ultraviolet light and reduction in DNA Pol IV-dependent mutagenesis associated with double-strand-break repair, and impaired maintenance of an F’ episome.  相似文献   

12.
13.
Our investigations show that nonlethal concentrations of nitric oxide (NO) abrogate the antibiotic activity of β-lactam antibiotics against Burkholderia pseudomallei, Escherichia coli and nontyphoidal Salmonella enterica serovar Typhimurium. NO protects B. pseudomallei already exposed to β-lactams, suggesting that this diatomic radical tolerizes bacteria against the antimicrobial activity of this important class of antibiotics. The concentrations of NO that elicit antibiotic tolerance repress consumption of oxygen (O2), while stimulating hydrogen peroxide (H2O2) synthesis. Transposon insertions in genes encoding cytochrome c oxidase-related functions and molybdenum assimilation confer B. pseudomallei a selective advantage against the antimicrobial activity of the β-lactam antibiotic imipenem. Cumulatively, these data support a model by which NO induces antibiotic tolerance through the inhibition of the electron transport chain, rather than by potentiating antioxidant defenses as previously proposed. Accordingly, pharmacological inhibition of terminal oxidases and nitrate reductases tolerizes aerobic and anaerobic bacteria to β-lactams. The degree of NO-induced β-lactam antibiotic tolerance seems to be inversely proportional to the proton motive force (PMF), and thus the dissipation of ΔH+ and ΔΨ electrochemical gradients of the PMF prevents β-lactam-mediated killing. According to this model, NO generated by IFNγ-primed macrophages protects intracellular Salmonella against imipenem. On the other hand, sublethal concentrations of imipenem potentiate the killing of B. pseudomallei by NO generated enzymatically from IFNγ-primed macrophages. Our investigations indicate that NO modulates the antimicrobial activity of β-lactam antibiotics.  相似文献   

14.
15.
A truncated version of the nef gene of simian immunodeficiency virus SIVmac239 capable of encoding amino acids 98 to 263 was used as bait to screen a cDNA library from activated lymphocytes in a yeast two-hybrid system. The zeta chain of the T-cell receptor (TCRζ) was found to interact specifically not only with truncated SIV nef in yeast cells but also with full-length glutathione S-transferase (GST)-SIVnef fusion protein in vitro. Coimmunoprecipitation of TCRζ with full-length SIV nef was demonstrated in transfected Jurkat cells and in Cos 18 cells which express the cytoplasmic domain of TCRζ fused to the external domain of CD8 via the CD8 transmembrane domain. Using a series of nef deletion mutants, we have mapped the binding site within the central core domain of nef (amino acids 98 to 235). Binding of TCRζ was specific for nef isolated from SIVmac239, SIVsmH4, and human immunodeficiency virus (HIV)-2ST and was not detected with nef from five different HIV-1 isolates. An active tyrosine kinase was coprecipitated with nef-TCRζ complexes from Jurkat cells but not from J.CAM1.6 cells which lack a functional Lck tyrosine kinase. These results demonstrate a specific association of SIV and HIV-2 nef, but not HIV-1 nef, with TCRζ.  相似文献   

16.
The SOS response, a conserved regulatory network in bacteria that is induced in response to DNA damage, has been shown to be associated with the emergence of resistance to antibiotics. Previously, we demonstrated that heterogeneous (HeR) MRSA strains, when exposed to sub-inhibitory concentrations of oxacillin, were able to express a homogeneous high level of resistance (HoR). Moreover, we showed that oxacillin appeared to be the triggering factor of a β-lactam-mediated SOS response through lexA/recA regulators, responsible for an increased mutation rate and selection of a HoR derivative. In this work, we demonstrated, by selectively exposing to β-lactam and non-β-lactam cell wall inhibitors, that PBP1 plays a critical role in SOS-mediated recA activation and HeR-HoR selection. Functional analysis of PBP1 using an inducible PBP1-specific antisense construct showed that PBP1 depletion abolished both β-lactam-induced recA expression/activation and increased mutation rates during HeR/HoR selection. Furthermore, based on the observation that HeR/HoR selection is accompanied by compensatory increases in the expression of PBP1,-2, -2a, and -4, our study provides evidence that a combination of agents simultaneously targeting PBP1 and either PBP2 or PBP2a showed both in-vitro and in-vivo efficacy, thereby representing a therapeutic option for the treatment of highly resistant HoR-MRSA strains. The information gathered from these studies contributes to our understanding of β-lactam-mediated HeR/HoR selection and provides new insights, based on β-lactam synergistic combinations, that mitigate drug resistance for the treatment of MRSA infections.  相似文献   

17.
Bacterial resistance to β-lactam antibiotics is a global issue threatening the success of infectious disease treatments worldwide. Mycobacterium tuberculosis has been particularly resilient to β-lactam treatment, primarily due to the chromosomally encoded BlaC β-lactamase, a broad-spectrum hydrolase that renders ineffective the vast majority of relevant β-lactam compounds currently in use. Recent laboratory and clinical studies have nevertheless shown that specific β-lactam–BlaC inhibitor combinations can be used to inhibit the growth of extensively drug-resistant strains of M. tuberculosis, effectively offering new tools for combined treatment regimens against resistant strains. In the present work, we performed combinatorial active-site replacements in BlaC to demonstrate that specific inhibitor-resistant (IRT) substitutions at positions 69, 130, 220, and/or 234 can act synergistically to yield active-site variants with several thousand fold greater in vitro resistance to clavulanate, the most common clinical β-lactamase inhibitor. While most single and double variants remain sensitive to clavulanate, double mutants R220S-K234R and S130G-K234R are substantially less affected by time-dependent clavulanate inactivation, showing residual β-lactam hydrolytic activities of 46% and 83% after 24 h incubation with a clinically relevant inhibitor concentration (5 μg/ml, 25 µM). These results demonstrate that active-site alterations in BlaC yield resistant variants that remain active and stable over prolonged bacterial generation times compatible with mycobacterial proliferation. These results also emphasize the formidable adaptive potential of inhibitor-resistant substitutions in β-lactamases, potentially casting a shadow on specific β-lactam–BlaC inhibitor combination treatments against M. tuberculosis.  相似文献   

18.
Penicillin-binding proteins (PBPs) are enzymes responsible for the polymerization of the glycan strand and the cross-linking between glycan chains as well as the target proteins for β-lactam antibiotics. Mutational alterations in PBPs can confer resistance either by reducing binding of the antibiotic to the active site or by evolving a β-lactamase activity that degrades the antibiotic. As no systematic studies have been performed to examine the potential of all PBPs present in one bacterial species to evolve increased resistance against β-lactam antibiotics, we explored the ability of fifteen different defined or putative PBPs in Salmonella enterica to acquire increased resistance against penicillin G. We could after mutagenesis and selection in presence of penicillin G isolate mutants with amino-acid substitutions in the PBPs, FtsI, DacB and DacC (corresponding to PBP3, PBP4 and PBP6) with increased resistance against β-lactam antibiotics. Our results suggest that: (i) most evolved PBPs became ‘generalists” with increased resistance against several different classes of β-lactam antibiotics, (ii) synergistic interactions between mutations conferring antibiotic resistance are common and (iii) the mechanism of resistance of these mutants could be to make the active site more accessible for water allowing hydrolysis or less binding to β-lactam antibiotics.  相似文献   

19.
Active efflux of antimicrobial agents is a primary mechanism by which bacterial pathogens can become multidrug resistant. The combined use of efflux pump inhibitors (EPIs) with pump substrates is under exploration to overcome efflux-mediated multidrug resistance. Phenylalanine-arginine β-naphthylamide (PAβN) is a well-studied EPI that is routinely combined with fluoroquinolone antibiotics, but few studies have assessed its utility in combination with β-lactam antibiotics. The initial goal of this study was to assess the efficacy of β-lactams in combination with PAβN against the opportunistic pathogen, Pseudomonas aeruginosa. PAβN reduced the minimal inhibitory concentrations (MICs) of several β-lactam antibiotics against P. aeruginosa; however, the susceptibility changes were not due entirely to efflux inhibition. Upon PAβN treatment, intracellular levels of the chromosomally-encoded AmpC β-lactamase that inactivates β-lactam antibiotics were significantly reduced and AmpC levels in supernatants correspondingly increased, potentially due to permeabilization of the outer membrane. PAβN treatment caused a significant increase in uptake of 8-anilino-1-naphthylenesulfonic acid, a fluorescent hydrophobic probe, and sensitized P. aeruginosa to bulky antibiotics (e.g. vancomycin) that are normally incapable of crossing the outer membrane, as well as to detergent-like bile salts. Supplementation of growth media with magnesium to stabilize the outer membrane increased MICs in the presence of PAβN and restored resistance to vancomycin. Thus, PAβN permeabilizes bacterial membranes in a concentration-dependent manner at levels below those typically used in combination studies, and this additional mode of action should be considered when using PAβN as a control for efflux studies.  相似文献   

20.
The extensive use and misuse of antibiotics during the last seven decades has led to the evolution and global spread of a variety of resistance mechanisms in bacteria. Of high medical importance are β-lactamases, a group of enzymes inactivating β-lactam antibiotics. Metallo-β-lactamases (MBLs) are particularly problematic because of their ability to act on virtually all classes of β-lactam antibiotics. An engineered MBL (evMBL9) characterized by low level activity with several β-lactam antibiotics was constructed and employed as a parental MBL in an experiment to examine how an enzyme can evolve toward increased activity with a variety of β-lactam antibiotics. We designed and synthesized a mutant library in which the substrate activity profile was varied by randomizing six active site amino acid residues. The library was expressed in Salmonella typhimurium, clones with increased resistance against seven different β-lactam antibiotics (penicillin G, ampicillin, cephalothin, cefaclor, cefuroxime, cefoperazone, and cefotaxime) were isolated, and the MBL variants were characterized. For the majority of the mutants, bacterial resistance was significantly increased despite marked reductions in both mRNA and protein levels relative to those of parental evMBL9, indicating that the catalytic activities of these mutant MBLs were highly increased. Multivariate analysis showed that the majority of the mutant enzymes were generalists, conferring increased resistance against most of the examined β-lactams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号