首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mitochondrial (mt) genes and genomes are among the major sources of data for evolutionary studies in birds. This places mitogenomic studies in birds at the core of intense debates in avian evolutionary biology. Indeed, complete mt genomes are actively been used to unveil the phylogenetic relationships among major orders, whereas single genes (e.g., cytochrome c oxidase I [COX1]) are considered standard for species identification and defining species boundaries (DNA barcoding). In this investigation, we study the time of origin and evolutionary relationships among Neoaves orders using complete mt genomes. First, we were able to solve polytomies previously observed at the deep nodes of the Neoaves phylogeny by analyzing 80 mt genomes, including 17 new sequences reported in this investigation. As an example, we found evidence indicating that columbiforms and charadriforms are sister groups. Overall, our analyses indicate that by improving the taxonomic sampling, complete mt genomes can solve the evolutionary relationships among major bird groups. Second, we used our phylogenetic hypotheses to estimate the time of origin of major avian orders as a way to test if their diversification took place prior to the Cretaceous/Tertiary (K/T) boundary. Such timetrees were estimated using several molecular dating approaches and conservative calibration points. Whereas we found time estimates slightly younger than those reported by others, most of the major orders originated prior to the K/T boundary. Finally, we used our timetrees to estimate the rate of evolution of each mt gene. We found great variation on the mutation rates among mt genes and within different bird groups. COX1 was the gene with less variation among Neoaves orders and the one with the least amount of rate heterogeneity across lineages. Such findings support the choice of COX 1 among mt genes as target for developing DNA barcoding approaches in birds.  相似文献   

2.
Patterns of diversification and timing of evolution within Neoaves, which includes almost 95% of all bird species, are virtually unknown. On the other hand, molecular data consistently indicate a Cretaceous origin of many neoavian lineages and the fossil record seems to support an Early Tertiary diversification. Here, we present the first well-resolved molecular phylogeny for Neoaves, together with divergence time estimates calibrated with a large number of stratigraphically and phylogenetically well-documented fossils. Our study defines several well-supported clades within Neoaves. The calibration results suggest that Neoaves, after an initial split from Galloanseres in Mid-Cretaceous, diversified around or soon after the K/T boundary. Our results thus do not contradict palaeontological data and show that there is no solid molecular evidence for an extensive pre-Tertiary radiation of Neoaves.  相似文献   

3.
We improve the taxon sampling for avian phylogeny by analyzing 7 new mitochondrial genomes (a toucan, woodpecker, osprey, forest falcon, American kestrel, heron, and a pelican). This improves inference of the avian tree, and it supports 3 major conclusions. The first is that some birds (including a parrot, a toucan, and an osprey) exhibit a complete duplication of the control region (CR) meaning that there are at least 4 distinct gene orders within birds. However, it appears that there are regions of continued gene conversion between the duplicate CRs, resulting in duplications that can be stable for long evolutionary periods. Because of this stable duplicated state, gene order can eventually either revert to the original order or change to the new gene order. The existence of this stable duplicate state explains how an apparently unlikely event (finding the same novel gene order) can arise multiple times. Although rare genomic changes have theoretical advantages for tree reconstruction, they can be compromised if these apparently rare events have a stable intermediate state. Secondly, the toucan and woodpecker improve the resolution of the 6-way split within Neoaves that has been called an "explosive radiation." An explosive radiation implies that normal microevolutionary events are insufficient to explain the observed macroevolution. By showing the avian tree is, in principle, resolvable, we demonstrate that the radiation of birds is amenable to standard evolutionary analysis. Thirdly, and as expected from theory, additional taxa breaking up long branches stabilize the position of some problematic taxa (like the falcon). In addition, we report that within the birds of prey and allies, we did not find evidence pairing New World vultures with storks or accipitrids (hawks, eagles, and osprey) with Falconids.  相似文献   

4.
The woodcreepers is a highly specialized lineage within the New World suboscine radiation. Most systematic studies of higher level relationships of this group rely on morphological characters, and few studies utilizing molecular data exist. In this paper, we present a molecular phylogeny of the major lineages of woodcreepers (Aves: Dendrocolaptinae), based on nucleotide sequence data from a nuclear non-coding gene region (myoglobin intron II) and a protein-coding mitochondrial gene (cytochrome b ). A good topological agreement between the individual gene trees suggests that the resulting phylogeny reflects the true evolutionary history of woodcreepers well. However, the DNA-based phylogeny conflicts with the results of a parsimony analysis of morphological characters. The topological differences mainly concern the basal branches of the trees. The morphological data places the genus Drymornis in a basal position (mainly supported by characters in the hindlimb), while our data suggests it to be derived among woodcreepers. Unlike most other woodcreepers, Drymornis is ground-adapted, as are the ovenbirds. The observed morphological similarities between Drymornis and the ovenbird outgroup may thus be explained with convergence or with reversal to an ancestral state. This observation raises the question of the use of characters associated with locomotion and feeding in phylogenetic reconstruction based on parsimony.  相似文献   

5.
The Drosophila melanogaster species group is a popular model for evolutionary studies due to its morphological and ecological diversity and its inclusion of the model species D. melanogaster. However, phylogenetic relationships among major lineages within this species group remain controversial. In this report, the phylogeny of 10 species representing each of the well-supported monophyletic clades in the melanogaster group was studied using the sequences of 14 loci that together comprise 9493 nucleotide positions. Combined Bayesian analysis using gene-specific substitution models produced a 100% credible set of two trees. In the strict consensus of these trees, the ananassae subgroup branches first in the melanogaster species group, followed by the montium subgroup. The remaining lineages form a monophyletic clade in which D. ficusphila and D. elegans branch first, followed by D. biarmipes, D. eugracilis, and the melanogaster subgroup. This strongly supported phylogeny resolves most basal relationships in the melanogaster species group, and provides a framework that can be extended in the future to encompass more species.  相似文献   

6.
Phylogenetic relationships among feather mites of the subfamily Avenzoariinae (Acari: Analgoidea: Avenzoariidae) were reconstructed by parsimony analysis of a combined data matrix. We analyzed 41 morphological characters and 246 molecular characters from a fragment of the 16S rDNA. Morphological trees were well supported at deep branches (genera and above), but showed much less support and resolution within genera. Molecular analyses produced trees with better resolution and support on terminal branches and worse support on basal branches. I(MF) index for the combined matrix pointed to the significant congruence of both data subsets with the whole of the data. The topology of the combined tree was close to the morphological tree in the deep branches and had well-resolved terminal branches as in the molecular tree. This suggests a considerable level of complimentarity between the two data sets. An analysis of association patterns of the mites and their hosts was conducted based on the results of the combined analyses for the Avenzoariinae and a phylogeny of their charadriiform hosts (compiled from various bird phylogeny hypotheses). The trees could be reconciled by the invoking of 12-13 cospeciation events, 6-7 duplications, 2 host shifts, and 26-29 sorting events. This suggests a high degree of cospeciation.  相似文献   

7.
Because of the difficulties of constructing a robust phylogeny for Charadriiform birds using morphological characters, recent studies have turned to DNA sequences to resolve the systematic uncertainties of family-level relationships in this group. However, trees constructed using nuclear genes or the mitochondrial Cytochrome b gene suggest deep-level relationships of shorebirds that differ from previous studies based on morphology or DNA-DNA hybridization distances. To test phylogenetic hypotheses based on nuclear genes (RAG-1, myoglobin intron-2) and single mitochondrial genes (Cytochrome b), approximately 13,000 bp of mitochondrial sequence was collected for one exemplar species of 17 families of Charadriiformes plus potential outgroups. Maximum likelihood and Bayesian analyses show that trees constructed from long mitochondrial sequences are congruent with the nuclear gene topologies [Chardrii (Lari, Scolopaci)]. Unlike short mitochondrial sequences (such as Cytochrome b alone), longer sequences yield a well-supported phylogeny for shorebirds across various taxonomic levels. Examination of substitution patterns among mitochondrial genes reveals specific genes (especially ND5, ND4, ND2, and COI) that are better suited for phylogenetic analyses among shorebird families because of their relatively homogeneous nucleotide composition among lineages, slower accumulation of substitutions at third codon positions, and phylogenetic utility in both closely and distantly related lineages. For systematic studies of birds in which family and generic levels are examined simultaneously, we recommend the use of both nuclear and mitochondrial sequences as the best strategy to recover relationships that most likely reflect the phylogenetic history of these lineages.  相似文献   

8.

Background  

Evolutionary biologists are often misled by convergence of morphology and this has been common in the study of bird evolution. However, the use of molecular data sets have their own problems and phylogenies based on short DNA sequences have the potential to mislead us too. The relationships among clades and timing of the evolution of modern birds (Neoaves) has not yet been well resolved. Evidence of convergence of morphology remain controversial. With six new bird mitochondrial genomes (hummingbird, swift, kagu, rail, flamingo and grebe) we test the proposed Metaves/Coronaves division within Neoaves and the parallel radiations in this primary avian clade.  相似文献   

9.
Knowledge of avian phylogeny is prerequisite to understanding the circumstances and timing of the diversification of birds and the evolution of morphological, behavioral, and life-history traits. Recent molecular datasets have helped to elucidate the three most basal clades in the tree of living birds, but relationships among neoavian orders (the vast majority of birds) remain frustratingly vexing. Here, we examine intron 7 of the beta-fibrinogen gene in the most taxonomically inclusive survey of DNA sequences of nonpasserine bird families and orders to date. These data suggest that Neoaves consist of two sister clades with ecological parallelisms comparable to those found between marsupial and placental mammals. Some members of the putative respective clades have long been recognized as examples of convergent evolution, but it was not appreciated that they might be parts of diverse parallel radiations. In contrast, some traditional orders of birds are suggested by these data to be polyphyletic, with representative families in both radiations.  相似文献   

10.
The neighbor-joining (NJ) method is widely used in reconstructing large phylogenies because of its computational speed and the high accuracy in phylogenetic inference as revealed in computer simulation studies. However, most computer simulation studies have quantified the overall performance of the NJ method in terms of the percentage of branches inferred correctly or the percentage of replications in which the correct tree is recovered. We have examined other aspects of its performance, such as the relative efficiency in correctly reconstructing shallow (close to the external branches of the tree) and deep branches in large phylogenies; the contribution of zero-length branches to topological errors in the inferred trees; and the influence of increasing the tree size (number of sequences), evolutionary rate, and sequence length on the efficiency of the NJ method. Results show that the correct reconstruction of deep branches is no more difficult than that of shallower branches. The presence of zero-length branches in realized trees contributes significantly to the overall error observed in the NJ tree, especially in large phylogenies or slowly evolving genes. Furthermore, the tree size does not influence the efficiency of NJ in reconstructing shallow and deep branches in our simulation study, in which the evolutionary process is assumed to be homogeneous in all lineages. Received: 7 March 2000 / Accepted: 2 August 2000  相似文献   

11.
12.
The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction.  相似文献   

13.
It is widely assumed that high resource specificity predisposes lineages toward greater likelihood of extinction and lower likelihood of diversification than more generalized lineages. This suggests that host range evolution in parasitic organisms should proceed from generalist to specialist, and specialist lineages should be found at the 'tips' of phylogenies. To test these hypotheses, parsimony and maximum likelihood methods were used to reconstruct the evolution of host range on a phylogeny of parasitoid flies in the family Tachinidae. In contrast to predictions, most reconstructions indicated that generalists were repeatedly derived from specialist lineages and tended to occupy terminal branches of the phylogeny. These results are critically examined with respect to hypotheses concerning the evolution of specialization, the inherent difficulties in inferring host ranges, our knowledge of tachinid-host associations, and the methodological problems associated with ancestral character state reconstruction. Both parsimony and likelihood reconstructions are shown to provide misleading results and it is argued that independent evidence, in addition to phylogenetic trees, is needed to inform models of the evolution of host range and the evolutionary consequences of specialization.  相似文献   

14.
Chojnowski JL  Kimball RT  Braun EL 《Gene》2008,410(1):89-96
Neoaves is the most diverse major avian clade, containing ~95% of avian species, and it underwent an ancient but rapid diversification that has made resolution of relationships at the base of the clade difficult. In fact, Neoaves has been suggested to be a "hard" polytomy that cannot be resolved with any amount of data. However, this conclusion was based on slowly evolving coding sequences and ribosomal RNAs and some recent studies using more rapidly evolving intron sequences have suggested some resolution at the base of Neoaves. To further examine the utility of introns and exons for phylogenetics, we sequenced parts of two unlinked clathrin heavy chain genes (CLTC and CLTCL1). Comparisons of phylogenetic trees based upon individual partitions (i.e. introns and exons), the combined dataset, and published phylogenies using Robinson-Foulds distances (a metric of topological differences) revealed more similarity than expected by chance, suggesting there is structure at the base of Neoaves. We found that introns provided more informative sites, were subject to less homoplasy, and provided better support for well-accepted clades, suggesting that intron evolution is better suited to determining closely-spaced branching events like the base of Neoaves. Furthermore, phylogenetic power analyses indicated that existing molecular datasets for birds are unlikely to provide sufficient phylogenetic information to resolve relationships at the base of Neoaves, especially when comprised of exon or other slowly evolving regions. Although relationships among the orders in Neoaves cannot be definitively established using available data, the base of Neoaves does not appear to represent a hard polytomy. Our analyses suggest that large intron datasets have the best potential to resolve relationships among avian orders and indicate that the utility of intron data for other phylogenetic questions should be examined.  相似文献   

15.
Voles of the genus Microtus represent one of the most speciose mammalian genera in the Holarctic. We established a molecular phylogeny for Microtus to resolve contentious issues of systematic relationships and evolutionary history in this genus. A total of 81 specimens representing ten Microtus species endemic to Europe as well as eight Eurasian, six Asian and one Holarctic species were sequenced for the entire cytochrome b gene (1140 bp). A further 25 sequences were retrieved from GenBank, providing data on an additional 23, mainly Nearctic, Microtus species. Phylogenetic analysis of these 48 species generated four well-supported monophyletic lineages. The genus Chionomys, snow voles, formed a distinct and well-supported lineage separate from the genus Microtus. The subgenus Microtus formed the strongest supported lineage with two sublineages displaying a close relationship between the arvalis species group (common voles) and the socialis species group (social voles). Monophyly of the Palearctic pitymyid voles, subgenus Terricola, was supported, and this subgenus was also subdivided into two monophyletic species groups. Together, these groupings clarify long-standing taxonomic uncertainties in Microtus. In addition, the "Asian" and the Nearctic lineages reported previously were identified although the latter group was not supported. However, relationships among the main Microtus branches were not resolved, suggesting a rapid and potentially simultaneous radiation of a widespread ancestor early in the history of the genus. This and subsequent radiations discernible in the cytochrome b phylogeny, show the considerable potential of Microtus for analysis of historical and ecological determinants of speciation in small mammals. It is evident that speciation is an ongoing process in the genus and that the molecular data provides a vital insight into current species limits as well as cladogenic events of the past.  相似文献   

16.
17.
Due to the controversy surrounding incipient avian parental care, ancestral parental care systems were reconstructed in a phylogeny including major extant amniote lineages. Using two different resolutions for the basal avian branches, transitions between the states no care, female care, biparental care and male care were inferred for the most basal branches of the tree. Uniparental female care was inferred for the lineage to birds and crocodiles. Using a phylogeny where ratites and tinamous branch off early and an ordered character-state assumption, a transition to biparental care was inferred for the ancestor of birds. This ancestor could be any organism along the lineage leading from the crocodile-bird split up to modern birds, not necessarily the original bird. We discuss the support for alternative avian phylogenies and the homology in parental care between crocodiles and birds. We suggest that the phylogenetic pattern should be used as a starting point for a more detailed analysis of parental care systems in birds and their relatives.  相似文献   

18.
To date, there is little consensus concerning the phylogenetic relationships among neognath orders, which include all extant birds except ratites and tinamous. Different data sets, both molecular and morphologic, have yielded radically different and often unresolved ordinal topologies, especially within the neoaves clade. This lack of resolution and ongoing conflict indicates a need for additional phylogenetic characters to be applied to the question of higher-level avian phylogeny. In this study, sequences of a single-copy nuclear gene, ZENK, were used to reconstruct an ordinal-level phylogeny of neognath birds. Strong support was indicated for the oldest divergence within Neognathae; the chicken- and duck-like birds formed a clade that was sister to all other modern birds. In addition, many families of traditional taxonomic orders clustered together in the ZENK tree, indicating the gene's general phylogenetic reliability. However, within the neoaves clade, there was little support for relationships among orders, which is a result similar to all other recent molecular studies of higher-level avian phylogeny. This similarity among studies suggests the possibility of a rapid radiation of the major neoaves lineages. Despite the ongoing lack of neoaves resolution, ZENK's sequence divergence and base composition patterns indicate its general utility as a new phylogenetic marker for higher-level avian systematics.  相似文献   

19.
As one of the four main lineages diverging from the early diversification of land plants, the phylogeny of liverworts holds the information about nearly 500 Myr of independent adaptation to changing environments. Thus, resolving the phylogenetic history of liverworts will provide unique insights into the successful diversification of early land plants in terrestrial ecosystems. However, the deep diverging events of this group remain incompletely resolved, such as the definite position of Ptilidiales. Here, we aimed to reconstruct the backbone relationships of liverworts using 84 protein-coding chloroplast genes, a dataset comprising 35 representatives from all major lineages of liverworts, and three phylogenetic analyses, namely maximum parsimony, maximum likelihood and Bayesian inference. To test the impact of composition biases, the phylogenetic analyses were carried out using three alignments representing the same dataset either as: (i) nucleotides, (ii) amino acids, or (iii) recoded nucleotides applying ambiguity base code. Chloroplast genome data consistently supported the monophyletic origin of three major lineages in liverworts, as well as the majority of backbone relationships. Ptilidiales were found to be sister to Jungermanniales. The rapid accumulation of G/C tracks as a consequence of increased GC content is an important cause for the long branches inferred in this group. Our study not only provides empirical evidence to support the significance of plastid genome sequencing to reconstruct the phylogeny of this important plant lineage, but also suggests that the GC content has played a critical role in the evolutionary dynamics of plastid genomes in land plants.  相似文献   

20.
We studied the phylogenetic relationships among Japanese Leptocarabus ground beetles, which show extensive trans-species polymorphisms in mitochondrial gene genealogies. Simultaneous analysis of combined nuclear data with partial sequences from the long-wavelength rhodopsin, wingless, phosphoenolpyruvate carboxykinase, and 28S rRNA genes resolved the relationships among the five species, although separate analyses of these genes provided topologies with low resolution. For both the nuclear gene tree resulting from the combined data from four genes and a mitochondrial cytochrome oxidase subunit I (COI) gene tree, we applied a Bayesian divergence time estimation using a common calibration method to identify mitochondrial introgression events that occurred after speciation. Three mitochondrial lineages shared by two or three species were likely subject to introgression due to interspecific hybridization because the coalescent times for these lineages were much shorter than the corresponding speciation times estimated from nuclear gene sequences. We demonstrated that when species phylogeny is fully resolved with nuclear gene sequence data, comparative analysis of nuclear and mitochondrial gene trees can be used to infer introgressive hybridization events that might cause trans-species polymorphisms in mitochondrial gene trees.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号