共查询到20条相似文献,搜索用时 15 毫秒
1.
Ethanol production by extractive fermentation 总被引:2,自引:0,他引:2
The ideal method to produce a terminal metabolite inhibitor of cell growth and production is to remove and recover it from the fermenting broth as it formed. Extractive fermentation is achieved in the case of ethanol production by coupling both fermentation and liquid-liquid extraction, The solvent of extraction is 1-dodecanol (or a mixture 1-dedecanol, 1-tetradecanol); study of the inhibitory effect of primary aliphatic alcohols of different chain lengths shows that no growth is observed in the presence of alcohols which have between 2 and 12 carbons. This effect is suppressed when the carbon number is 12 or higher. A new reactor has been used-1 pulsed packed column. Pulsation is performed pneumatically. Porous material used as a package adsorbs the cells. The fermentation broth is pulsed in order to (1) increase the interfacial area between the aqueous phase and the dodecanol, (2) decrease gas holdup. Alcoholic fermentation, performed at 35 degrees C on glucose syrup, permits the total utilization of glucose solution of 409 g/L with a yeast which cannot-in classical process- completely use solutions with 200 g/L of glucose. The feasibility of a new method of fermentation coupling both liquid-liquid extraction and fermentation is demonstrated. Extension of this method is possible to any microbial production inhibited by its metabolite excretion. 相似文献
2.
《Journal of Fermentation and Bioengineering》1995,79(6):589-593
For effective microbial lactic acid production using Lactobacillus delbrueckii, two-stage extractive fermentation was examined. Extractants were screened from the viewpoints of a high distribution coefficient for lactic acid and less toxicity toward the microorganism. Even if the extractant showed some toxicity toward the microorganism, it was found that a reduction of toxicity was possible by back-extraction using oleyl alcohol. As a result, 40% Alamine 336 diluted with oleyl alcohol, and oleyl alcohol, were selected as the extractant and the back-extractant, respectively. After two-stage extraction by these extractants, the growth rate was improved by the removal of lactic acid. This method was then applied to continuous extractive fermentation using a jar-fermentor. During 4-h extraction, lactic acid accumulation in the broth was significantly suppressed, while the cell growth and glucose consumption rates were also found not to be reduced. After 24 h, the cell concentration attained an OD660 of 14, which corresponded to a level 1.25 times higher than that of the control culture without extraction. Total lactic acid productivity was 1.4 times level compared with the control culture. 相似文献
3.
Hassan K Sreenath Richard G Koegel Ana B Moldes Thomas W Jeffries Richard J Straub 《Process Biochemistry》2001,36(12):6479-1204
This work describes ethanol production from alfalfa fiber using separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) with and without liquid hot water (LHW) pretreatment. Candida shehatae FPL-702 produced 5 and 6.4 g/l ethanol with a yield of 0.25 and 0.16 g ethanol/g sugar respectively by SHF and SSF from alfalfa fiber without pretreatment. With LHW pretreatment using SSF, C. shehatae FPL-702 produced 18.0 g/l ethanol, a yield of 0.45 g ethanol/g sugar from cellulosic solids or ‘raffinate’. Using SHF, it produced 9.6 g/l ethanol, a yield of 0.47 g ethanol/g sugar from raffinate. However, the soluble extract fraction containing hemicelluloses was poorly fermented in both SHF and SSF due to the presence of inhibitors. Addition of dilute acid during LHW pretreatment of alfalfa fiber resulted in fractions that were poorly saccharified and fermented. These results show that unpretreated alfalfa fiber produced a lower ethanol yield. Although LHW pretreatment can increase ethanol production from raffinate fiber fractions, it does not increase production from the hemicellulosic and pectin fractions. 相似文献
4.
5.
6.
Goodman, R. E. (University of California, Los Angeles), and M. J. Pickett. Delayed lactose fermentation by Enterobacteriaceae. J. Bacteriol. 92:318-327. 1966.-When 171 Citrobacter freundii strains and 14 Paracolobactrum arizonae strains examined, 51 of the C. freundii strains and 13 of the P. arizonae strains were found to be delayed or negative lactose fermenters. Of the slow fermenters, 65% yielded rapidly fermenting mutants in cultures undergoing delayed fermentation. Lactose fermentation could generally be hastened by increasing lactose concentrations. Many organisms which fermented lactose slowly grew readily on a medium containing lactose as the sole carbon source. Regardless of their ability to ferment lactose, all strains of C. freundii and P. arizonae investigated could be shown to possess beta-galactosidase. Delayed fermenters failed to take up lactose from the culture medium, whereas prompt fermenters did so readily. The beta-galactosidases of 12 strains of enteric bacteria were studied in crude cell extracts with respect to specific activity, stability, and activity at varying substrate (o-nitrophenyl-beta-d-galactopyranoside) concentrations, at varying pH, and in the presence of sodium, potassium, and magnesium. The widely varying specific activities and the approximate similarity of the Michaelis constants (about 2 x 10(-4)m) suggested that the strains investigated produced differing amounts of beta-galactosidase. Moreover, qualitative differences in the enzymes provided evidence that these strains synthesized different molecular forms of beta-galactosidase. The results suggested that organisms which ferment lactose only after a prolonged delay do so because they possess multiple defects in their lactose-metabolizing machinery. 相似文献
7.
《Trends in biotechnology》1988,6(6):126-130
Fermentation with simultaneous extraction of a product inside the fermentor is an attractive alternative where substrates and/or products otherwise inhibit processes. Although a large number of systems are being tested, the selection of solvent and the technology and design of the process have nevertheless to be improved. 相似文献
8.
Churairat Moukamnerd Masahiro Kino-oka Minetaka Sugiyama Yoshinobu Kaneko Chuenchit Boonchird Satoshi Harashima Hideo Noda Kazuaki Ninomiya Suteaki Shioya Yoshio Katakura 《Applied microbiology and biotechnology》2010,88(1):87-94
To save cost and input energy for bioethanol production, a consolidated continuous solid-state fermentation system composed
of a rotating drum reactor, a humidifier, and a condenser was developed. Biomass, saccharifying enzymes, yeast, and a minimum
amount of water are introduced into the system. Ethanol produced by simultaneous saccharification and fermentation is continuously
recovered as vapor from the headspace of the reactor, while the humidifier compensates for the water loss. From raw corn starch
as a biomass model, 95 ± 3, 226 ± 9, 458 ± 26, and 509 ± 64 g l−1 of ethanol solutions were recovered continuously when the ethanol content in reactor was controlled at 10–20, 30–50, 50–70
and 75–85 g kg-mixture−1, respectively. The residue showed a lesser volume and higher solid content than that obtained by conventional liquid fermentation.
The cost and energy for intensive waste water treatment are decreased, and the continuous fermentation enabled the sustainability
of enzyme activity and yeast in the system. 相似文献
9.
Summary The addition of an oleyl alcohol extractant to a batch fermentation of glucose byClostridium acetobutylicum resulted in a concentration profile that was distinctly different from the non-extractive control fermentation. The concentration of butyric acid increased and subsequently decreased in the control fermentation. The concentration of butyric acid increased but did not subsequently decrease in the oleyl alcohol extractive fermentation. The production of butyric acid was found to have been prolonged into the solventogenic phase in the oleyl alcohol extractive fermentation. Butyric acid was continually replenished from glucose while it was being converted to butanol. Supplementation of exogenous acetic and butyric acids, the metabolic uncoupler carbonyl cyanide 3-chlorophenylhydrazone, or decanol to the oleyl alcohol extractive fermentation helped to reinstate the normal butyric acid concentration profile. These findings are discussed with respect to the effects of these additives on the pH ofC. acetobutylicum and its importance with regard to the production of butyric acid. 相似文献
10.
Ethanol production in a microporous hollow-fiber-based extractive fermentor with immobilized yeast 总被引:3,自引:0,他引:3
Microporous-membrane-based extractive product recovery in product-inhibited fermentations allows in situ recovery of inhibitory products in a nondispersive fashion. A tubular bioreactor with continuous strands of hydrophobic microporous hollow fibers having extracting solvent flowing in fiber lumen was utilized for yeast fermentation of glucose to ethanol. Yeast was effectively immobilized on the shell side in small lengths of chopped microporous hyrophilic hollow fibers. The beneficial effects of in situ dispersion-free solvent ex (oleyl alcohol and dibutyl phthalate) were demonstrated for a 300 g/L glucose substrate feed. Outlet glucose concentration dropped drastically from 123 to 41 g/L as solvent/ substrate flow ratio was increased from 0 to 3 at 9 mL/h of substrate flow rate with oleyl alcohol as extracting solvent. The significant productivity increase with in situ solvent extraction became more evident as solvent/ substrate flow ratio increased. A model of the locally integrated extractive bioreactor describes the observed fermentor performance quite well. 相似文献
11.
先进固体发酵技术(ASSF)生产甜高粱乙醇 总被引:7,自引:0,他引:7
介绍了利用高产能源作物甜高粱生产燃料乙醇的先进固态发酵(ASSF)技术,从甜高粱茎秆保存、菌种、反应器,到固体发酵过程的数学模拟和工程放大进行了系统研究。筛选出高效产乙醇的菌种CGMCC1949,固体发酵时间低于30 h,乙醇收率高于92%;优选出贮存甜高粱茎秆的有效方法,通过抑菌处理,厌氧贮存200 d糖分损失小于5%;对固态发酵过程进行了数学模拟,设计并优化了固体发酵设备,成功进行了工程放大试验,并且基于ASPEN软件对该技术进行了技术经济评价,结果表明ASSF法生产甜高粱乙醇在技术、工程和经济上均具有充分的可行性和明显优势。 相似文献
12.
Ethanol fermentation from sweet sorghum juice containing 240 g/l of total sugar by Saccharomyces cerevisiae TISTR 5048 and S. cerevisiae NP 01 immobilized on low-cost support materials, corncob pieces, was investigated. In batch fermentation, S. cerevisiae TISTR 5048 immobilized on 6 × 6 × 6 mm3 corncobs gave higher ethanol production than those immobilized on 12 × 12 × 12 mm3 corncobs in terms of ethanol concentration (P), yield (Y
p/s
) and productivity (Q
p
) with the values of 102.39 ± 1.11 g/l, 0.48 ± 0.01 and 2.13 ± 0.02 g/l h, respectively. In repeated-batch fermentation, the
yeasts immobilized on the 6 × 6 × 6 mm3 corncobs could be used at least eight successive cycles with the average P, Y
p/s
and Q
p
of 97.19 ± 5.02 g/l, 0.48 ± 0.02 and 2.02 ± 0.11 g/l h, respectively. Under the same immobilization and repeated-batch fermentation
conditions, P (90.75 ± 3.05 g/l) and Q
p
(1.89 ± 0.06 g/l h) obtained from S. cerevisiae NP 01 were significantly lower than those from S. cerevisiae TISTR 5048 (P < 0.05), while Y
p/s
from both strains were not different. S. cerevisiae TISTR 5048 immobilized on the corncobs also gave significantly higher P, Y
p/s
and Q
p
than those immobilized on calcium alginate beads (P < 0.05). 相似文献
13.
B. Bulawayo J. M. Bvochora M. I. Muzondo R. Zvauya 《World journal of microbiology & biotechnology》1996,12(4):357-360
Ethanol tolerance, osmotolerance and sugar conversion efficiency were used to screen yeasts for potential ethanol production from sweet-stem sorghum juice. Of the ten strains of Saccharomyces sp. that produced ethanol from the sorghum juice or from yeast extract/phosphate/sucrose (YEPS) media, the best sugar conversion efficiencies were greater than 85% for the strains Vin7, SB9, N96 and GSL. Vin7 and SB9 had higher sugar conversion efficiencies for sweet-stem sorghum juice, while strains N96 and GSL gave higher conversions in YEPS.The authors are with the Food and Fermentation Laboratory, Department of Biochemistry, University of Zimbabwe, M.P.167. Mount Pleasant, Harare, Zimbabwe 相似文献
14.
A Mathematical model for ethanol production by extractive fermentation in a continuous stirred tank fermentor 总被引:1,自引:0,他引:1
Extractive fermentation is a technique that can be used to reduce the effect of end product inhibition through the use of a water-immiscible phase that removes fermentation products in situ. This has the beneficial effect of not only removing inhibitory products as they are formed (thus keeping reaction rates high) but also has the potential for reducing product recovery costs. We have chosen to examine the ethanol fermentation as a model system for end product inhibition and extractive fermentation and have developed a computer model predicting the productivity enhancement possible with this technique together with other key parameters such as extraction efficiency and residual glucose concentration. The model accommodates variable liquid flowrates entering and leaving the system, since it was found that the aqueous outlet flowrate could be up to 35% lower than the inlet flowrate during extractive fermentation of concentrated glucose feeds due to the continuous removal of ethanol from the fermentation broth by solvent extraction. The model predicts a total ethanol productivity of 82.6 g/L h if a glucose feed of 750 g/L is fermented with a solvent having a distribution coefficient of 0.5 at a solvent dilution rate of 5.0 h(-1). This is more than 10 times higher than for a conventional chemostat fermentation of a 250 g/L glucose feed. The model has furthermore illustrated the possible trade-offs that exist between obtaining a high extraction efficiency and a low residual glucose concentration. 相似文献
15.
L.C. Chiang H.Y. Hsiao M.C. Flickinger L.F. Chen G.T. Tsao 《Enzyme and microbial technology》1982,4(2):93-95
The capabilities of immobilized Fusarium oxysporum f. sp. lini, Mucor sp., and Saccharomyces cerevisiae in fermenting pentose to ethanol have been compared. S. cerevisiae was found to have the best fermentation rate on d-xylulose of 0.3 g l?1 h?1. By using a separate isomerase column for converting d-xylose to d-xylulose and a yeast column for converting d-xylulose to ethanol, an ethanol concentration of 32 g l?1 was obtained from 10% d-xylose. The ethanol yield was calculated to be 64% of the theoretical yield. 相似文献
16.
为获得菌株发酵菊芋生产燃料乙醇的最佳方案,首先选取实验室保存的重组菌株R32对其产酶条件进行优化,其最高产菊粉酶活性为298.8 U· mL-1,此时的最佳培养基配方为:YPG培养基为酵母粉1% (w/v),蛋白胨2% (w/v),甘油0.5% (v/v);YPM培养基为酵母粉1% (w/v),蛋白胨2% (w/v),甲醇1%(v/v);培养基pH为自然初始pH.然后选取酿酒酵母S.c和克鲁维酵母Klu,比较是否在添加重组菌株R32粗酶液条件下,两株酵母菌分别进行单独发酵和混合发酵时的产乙醇能力,以获得最佳的发酵组合.结果表明,酿酒酵母S.c和克鲁维酵母Klu在未添加重组菌株R32粗酶液时,混合一步发酵获得的乙醇含量较高,发酵84 h时乙醇含量为11.37%.添加重组菌株R32粗酶液进行两步发酵时,2株酵母菌混合发酵72 h时,乙醇含量为11.43%.2种发酵组合的最高乙醇含量以及各个发酵参数基本相同,虽然一步法发酵时间延长,但节省成本,操作简单,更适宜工业生产应用.最后对其进行正交试验优化,培养条件为菊粉浓度225 g· L-1,脲素浓度40 g·L-1,接种量15%,pH为5时,酿酒酵母菌S.c和克鲁维酵母Klu混合一步发酵法的最高乙醇体积比达11.82%. 相似文献
17.
Mathematical model of extractive fermentation: application to the production of ethanol 总被引:1,自引:0,他引:1
Fournier RL 《Biotechnology and bioengineering》1986,28(8):1206-1212
A mathematical model has been developed for the process of extractive fermentation. The model rigorously treats the material balance, reaction kinetics, and liquid-liquid equilibrium relationships. Convergence is promoted through use of the Quasi-Newton Method. Extractive fermentation is particularly attractive for those bioreactions where the cell growth and product formation is inhibited by the product or other secondary cellular products. The model is illustrated for the production of ethanol. The results show an increase in specific productivity and the ability to process a more concentrated feed. However, volumetric productivity is reduced in the presence of a low capacity solvent. 相似文献
18.
《Process Biochemistry》1999,34(2):115-119
A novel solid substrate fermentation system was used to produce fuel ethanol from sweet sorghum and sweet potato using a thermotolerant Saccharomyces cerevisiae strain (VS3) and a local isolate of amylolytic Bacilllus sps. (VB9). The process was carried out on a laboratory scale using broth cultures. Alcohol produced was estimated by gas chromatography after an incubation time of 72 h at 37 and 42°C. More ethanol was produced in co-culture with a mixed substrate than with the thermotolerant yeast (VS3) alone. The maximum amount of ethanol produced in co-culture with a mixed substrate was 5 g/100 g of substrate at 37°C and 3·5 g/100 g of substrate at 42°C. 相似文献
19.
N. ONISHI, I. KIRA AND K. YOKOZEKI. 1996. Galacto-oligosaccharide (Gal-OS) was produced from lactose by a yeast, Sirobasidium magnum CBS6803. With toluene-treated resting cells, 136 mg ml−1 of Gal-OS was produced from 360 mg ml−1 of lactose at 50°C for 42 h. Then, the yield of Gal-OS was increased by a culture method in which cell growth followed the enzymatic reaction : 224 mg ml−1 of Gal-OS was produced at 30°C for 60 h. Finally, combination of the toluene-treated resting cells and glucose oxidase plus catalase was applied to improve productivity by the removal of a by-product, glucose, which inhibits the Gal-OS production, from the reaction mixture. In this case, 242 mg ml−1 4-galactosyl-lactose. of Gal-OS was produced at 50°C for 42 h without cell growth. The structure of the major product ws identified as 4-galactosyl-laetos. 相似文献
20.
Girishchandra B. Patel 《Applied microbiology and biotechnology》1984,20(2):111-117
Summary The specific growth rate () during cultivation of Bacteroides polypragmatus in 2.51 batch cultures in 4–5% (w/v) l-arabinose medium was 0.23 h-1 while that in either d-xylose or d-ribose medium was lower (=0.19 h-1). Whereas growth on arabinose or xylose occurred after about 6–8 h lag period, growth on ribose commenced after a 30 h lag phase. The maximum substrate utilization rate for arabinose, ribose and xylose in media with an initial substrate concentration of 4–5% (w/v) was 0.77, 0.76, and 0.60 g/l/h respectively. In medium containing a mixture of glucose, arabinose, and xylose, the utilization of all three substrates occurred concurrently. The maximum amount of ethanol produced after 72 h growth in 4–5% (w/v) of arabinose, xylose, and ribose was 9.4, 6.5, and 5.3 g/l, respectively. The matabolic end products (mol/mol substrate) of growth in 4.4% (w/v) xylose medium were 0.73 ethanol, 0.49 acetate, 1.39 CO2, 1.05 H2, and 0.09 butyrate.National Research Council of Canada No. 23406 相似文献