首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Endotoxic shock, a syndrome characterized by deranged hemodynamics, coagulation abnormalities, and multiple system organ failure is caused by the release into the circulation of lipopolysaccharide (LPS), the structurally diverse component of Gram-negative bacterial outer membranes, and is responsible for 60% mortality in humans. Polymyxin B (PMB), a cyclic, cationic peptide antibiotic, neutralizes endotoxin but induces severe side effects in the process. The potent endotoxin neutralizing ability of PMB, however, offers possibilities for designing non-toxic therapeutic agents for combating endotoxicosis. Amongst the numerous approaches for combating endotoxic shock, peptide mediated neutralization of LPS seems to be the most attractive one. The precise mode of binding of PMB to LPS and the structural features involved therein have been elucidated only recently using a variety of biophysical approaches. These suggest that efficient neutralization of endotoxin by PMB is not achieved by mere binding to LPS but requires its sequestration from the membrane. Incorporation of this feature into the design of endotoxin neutralizing peptides should lead to the development of effective antidotes for endotoxic shock.  相似文献   

2.
Bacterial lipopolysaccharides (LPS) from Gram‐negative bacteria, located in the outer leaflet of their outer membrane, are called endotoxins due to their ability to induce a variety of biological effects in mammals. Their lipid moiety, lipid A, is called “the endotoxic principle” and is responsible for the toxic effects of LPS. As a result of the polyanionic character of LPS, the study of the interaction with divalent cations Mg2+ and Ca2+ and polycationic peptides such as polymyxin B (PMB) and its nonapeptide PMBN is of considerable interest, and therefore the authors have investigated the interaction of LPS/lipid A with cationic compounds by applying isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC). The data indicate a clear binding of the divalent cations with the anionic glycolipids, leading to calorimetric reactions, such as an increase in the phase transition temperature, Tm, of the gel to the liquid crystalline phase of LPS, indicating a stabilization of the gel phase. The peptides react quite differently as assessed by DSC. In contrast to the interaction of divalent cations with the glycolipids, a destabilization of the gel phase is observed, accompanied by a decrease in the gel to liquid crystalline phase transition enthalpy for the peptide‐glycolipid interaction. The extent of this effect is peptide‐concentration‐dependent. Using ITC for the analysis of the binding reaction of the cations and the peptides with the glycolipid in the liquid crystalline phase, strong exothermic effects are observed. These are indicative of the dominance of electrostatic attractions between the reaction partners. Interestingly, Ca2+ binding to LPS leads to a slightly exothermic reaction, whereas Mg2+ binding leads to an endothermic reaction (some kJ/mol). The observed highly endothermic binding reactions for the lipid‐peptide interaction in the gel phase are mainly driven by a gain in entropy. This is explained by the fact that during binding, water molecules from the hydration shells of the components are liberated. Although the electrostatic attraction is still the driving force of the interaction, it is quantitatively of minor importance for the interaction in the gel phase. The binding results are discussed in terms of competition between electrostatic interaction and hydration forces. These data are of importance for the understanding of the reaction mechanisms of cationic compounds with LPS under physiological conditions.  相似文献   

3.
Cationic antimicrobial peptides serve as the first chemical barrier between all organisms and microbes. One of their main targets is the cytoplasmic membrane of the microorganisms. However, it is not yet clear why some peptides are active against one particular bacterial strain but not against others. Recent studies have suggested that the lipopolysaccharide (LPS) outer membrane is the first protective layer that actually controls peptide binding and insertion into Gram-negative bacteria. In order to shed light on these interactions, we synthesized and investigated a 12-mer amphipathic alpha-helical antimicrobial peptide (K(5)L(7)) and its diastereomer (4D-K(5)L(7)) (containing four d-amino acids). Interestingly, although both peptides strongly bind LPS bilayers and depolarize bacterial cytoplasmic membranes, only the diastereomer kills Gram-negative bacteria. Attenuated total reflectance Fourier transform infrared, CD, and surface plasmon resonance spectroscopies revealed that only the diastereomer penetrates the LPS layer. In contrast, K(5)L(7) binds cooperatively to the polysaccharide chain and the outer phosphate groups. As a result, the self-associated K(5)L(7) is unable to traverse through the tightly packed LPS molecules, revealed by epifluorescence studies with LPS giant unilamellar vesicles. The difference in the peptides' modes of binding is further demonstrated by the ability of the diastereomer to induce LPS miscellization, as shown by transmission electron microscopy. In addition to increasing our understanding of the molecular basis of the protection of bacteria by LPS, this study presents a potential strategy to overcome resistance by LPS, and it should help in the design of antimicrobial peptides for future therapeutic purposes.  相似文献   

4.
5.
Lipopolysaccharide (LPS) on gram‐negative bacterial outer membranes is the first target for antimicrobial agents, due to their spatial proximity to outer environments of microorganisms. To develop antibacterial compounds with high specificity for LPS binding, the understanding of the molecular nature and their mode of recognition is of key importance. In this study, atomic force microscopy (AFM) and single molecular force spectroscopy were used to characterize the effects of antibiotic polymyxin B (PMB) to the bacterial membrane at the nanoscale. Isolated LPS layer and the intact bacterial membrane were examined with respect to morphological changes at different concentrations of PMB. Our results revealed that 3 hours of 10 μg/mL of PMB exposure caused the highest roughness changes on intact bacterial surfaces, arising from the direct binding of PMB to LPS on the bacterial membrane. Single molecular force spectroscopy was used to probe specific interaction forces between the isolated LPS layer and PMB coupled to the AFM tip. A short range interaction regime mediated by electrostatic forces was visible. Unbinding forces between isolated LPS and PMB were about 30 pN at a retraction velocity of 500 nm/s. We further investigated the effects of the polycationic peptide PMB on bacterial outer membranes and monitored its influences on the deterioration of the bacterial membrane structure. Polymyxin B binding led to rougher appearances and wrinkles on the outer membranes surface, which may finally lead to lethal membrane damage of bacteria. Our studies indicate the potential of AFM for applications in pathogen recognition and nano‐resolution approaches in microbiology.  相似文献   

6.
One common mechanism of resistance against antimicrobial peptides in Gram‐negative bacteria is the addition of 4‐amino‐4‐deoxy‐l ‐arabinose (l ‐Ara4N) to the lipopolysaccharide (LPS) molecule. Burkholderia cenocepacia exhibits extraordinary intrinsic resistance to antimicrobial peptides and other antibiotics. We have previously discovered that unlike other bacteria, B. cenocepacia requires l ‐Ara4N for viability. Here, we describe the isolation of B. cenocepacia suppressor mutants that remain viable despite the deletion of genes required for l ‐Ara4N synthesis and transfer to the LPS. The absence of l ‐Ara4N is the only structural difference in the LPS of the mutants compared with that of the parental strain. The mutants also become highly sensitive to polymyxin B and melittin, two different classes of antimicrobial peptides. The suppressor phenotype resulted from a single amino acid replacement (aspartic acid to histidine) at position 31 of LptG, a protein component of the multi‐protein pathway responsible for the export of the LPS molecule from the inner to the outer membrane. We propose that l ‐Ara4N modification of LPS provides a molecular signature required for LPS export and proper assembly at the outer membrane of B. cenocepacia, and is the most critical determinant for the intrinsic resistance of this bacterium to antimicrobial peptides.  相似文献   

7.
Lipid-specific membrane activity of human beta-defensin-3   总被引:2,自引:0,他引:2  
Defensins represent a major component of innate host defense against bacteria, fungi, and enveloped viruses. One potent defensin found, e.g., in epithelia, is the polycationic human beta-defensin-3 (hBD3). We investigated the role of the lipid matrix composition, and in particular the presence of negatively charged lipopolysaccharides (LPS) from sensitive (Escherichia coli, Salmonella enterica serovar Minnesota) or resistant (Proteus mirabilis) Gram-negative bacteria or of the zwitterionic phospholipids of human cells, in determining the action of polycationic hBD3 on the different membranes, and related to their biological activity. The main focus was directed on data derived from electrical measurements on a reconstitution system of the OM as a planar asymmetric bilayer composed on one side of LPS and on the other of a phospholipid mixture. Our results demonstrate that the antimicrobial activity and the absence of cytotoxicity can be explained by the lipid-specificity of the peptide. A clear correlation between these aspects of the biological activity of hBD3 and its interaction with lipid matrices could be found. In particular, hBD3 could only induce lesions in those membranes resembling the lipid composition of the OM of sensitive bacterial strains. The permeation through the membrane is a decisive first step for the biological activity of many antimicrobial peptides. Therefore, we propose that the lipid-specificity of hBD3 as well as some other membrane-active antimicrobial peptides is important for their activity against bacteria or mammalian cells.  相似文献   

8.
Lipopolysaccharide (LPS), the major constituent of the outer membrane of Gram-negative bacteria, is the very first site of interactions with the antimicrobial peptides. In this work, we have determined a solution conformation of melittin, a well-known membrane active amphiphilic peptide from honey bee venom, by transferred nuclear Overhauser effect (Tr-NOE) spectroscopy in its bound state with lipopolysaccharide. The LPS bound conformation of melittin is characterized by a helical structure restricted only to the C-terminus region (residues A15-R24) of the molecule. Saturation transfer difference (STD) NMR studies reveal that several C-terminal residues of melittin including Trp19 are in close proximity with LPS. Isothermal titration calorimetry (ITC) data demonstrates that melittin binding to LPS or lipid A is an endothermic process. The interaction between melittin and lipid A is further characterized by an equilibrium association constant (Ka) of 2.85 x 10(6) M(-1) and a stoichiometry of 0.80, melittin/lipid A. The estimated free energy of binding (delta G0), -8.8 kcal mol(-1), obtained from ITC experiments correlates well with a partial helical structure of melittin in complex with LPS. Moreover, a synthetic peptide fragment, residues L13-Q26 or mel-C, derived from the C-terminus of melittin has been found to contain comparable outer membrane permeabilizing activity against Escherichia coli cells. Intrinsic tryptophan fluorescence experiments of melittin and mel-C demonstrate very similar emission maxima and quenching in presence of LPS micelles. The Red Edge Excitation Shift (REES) studies of tryptophan residue indicate that both peptides are located in very similar environment in complex with LPS. Collectively, these results suggest that a helical conformation of melittin, at its C-terminus, could be an important element in recognition of LPS in the outer membrane.  相似文献   

9.
At present, antibiotics options to cure infections caused by drug resistant Gram-negative pathogens are highly inadequate. LPS outer membrane, proteins involved in LPS transport and biosynthesis pathways are vital targets. Thanatin, an insect derived 21-residue long antimicrobial peptide may be exploited for the development of effective antibiotics against Gram-negative bacteria. As a mode of bacterial cell killing, thanatin disrupts LPS outer membrane and inhibits LPS transport by binding to the periplasmic protein LptAm. Here, we report structure-activity correlation of thanatin and analogs for the purpose of rational design. These analogs of thanatin are investigated, by NMR, ITC and fluorescence, to correlate structure, antibacterial activity and binding with LPS and LptAm, a truncated monomeric variant. Our results demonstrate that an analog thanatin M21F exhibits superior antibacterial activity. In LPS interaction analyses, thanatin M21F demonstrate high affinity binding to outer membrane LPS. The atomic resolution structure of thanatin M21F in LPS micelle reveals four stranded β-sheet structure in a dimeric topology whereby the sidechain of aromatic residues Y10, F21 sustained mutual packing at the interface. Strikingly, LptAm binding affinity of thanatin M21F has been significantly increased with an estimated Kd ~ 0.73 nM vs 13 nM for thanatin. Further, atomic resolution structures and interactions of Ala based thanatin analogs define plausible correlations with antibacterial activity and LPS, LptAm interactions. Taken together, the current work provides a frame-work for the designing of thanatin based potent antimicrobial peptides for the treatment of drug resistance Gram-negative bacteria.  相似文献   

10.
Lipopolysaccharide (LPS), the major lipid on the surface of Gram-negative bacteria, plays a key role in bacterial resistance to hydrophobic antibiotics and antimicrobial peptides. Using atomic force microscopy (AFM) we characterized supported bilayers composed of LPSs from two bacterial chemotypes with different sensitivities to such antibiotics and peptides. Rd LPS, from more sensitive "deep rough" mutants, contains only an inner saccharide core, whereas Ra LPS, from "rough" mutants, contains a longer polysaccharide region. A vesicle fusion technique was used to deposit LPS onto either freshly cleaved mica or polyethylenimine-coated mica substrates. The thickness of the supported bilayers measured with contact-mode AFM was 7 nm for Rd LPS and 9 nm for Ra LPS, consistent with previous x-ray diffraction measurements. In water the Ra LPS bilayer surface was more disordered than Rd LPS bilayers, likely due to the greater volume occupied by the longer Ra LPS polysaccharide region. Since deep rough mutants contain bacterial phospholipid (BPL) as well as LPS on their surfaces, we also investigated the organization of Rd LPS/BPL bilayers. Differential scanning calorimetry and x-ray diffraction indicated that incorporation of BPL reduced the phase transition temperature, enthalpy, and average bilayer thickness of Rd LPS. For Rd LPS/BPL mixtures, AFM showed irregularly shaped regions thinner than Rd LPS bilayers by 2 nm (the difference in thickness between Rd LPS and BPL bilayers), whose area increased with increasing BPL concentration. We argue that the increased permeability of deep rough mutants is due to structural modifications caused by BPL to the LPS membrane, in LPS hydrocarbon chain packing and in the formation of BPL-enriched microdomains.  相似文献   

11.
Tsubery H  Ofek I  Cohen S  Fridkin M 《Biochemistry》2000,39(39):11837-11844
The Gram-negative bacterial endotoxin lipopolysaccharide (LPS) is a major inducer of sepsis. The natural cyclic peptide polymyxin B (PMB) is a potent antimicrobial agent, albeit highly toxic, by virtue of its capacity to neutralize the devastating effects of LPS. However, the exact mode of association between PMB and LPS is not clear. In this study, we have synthesized polymyxin B nonapeptide, the LPS-binding cyclic domain of PMB, and its enantiomeric analogue and studied several parameters related to their interaction with LPS and their capacity to sensitize Gram-negative bacteria toward hydrophobic antibiotics. The results suggest that whereas the binding of the two enantiomeric peptides to E. coli and to E. coli LPS is rather similar, functional association with the bacterial cell is stereospecific. Thus, the L-enantiomer is capable of synergism with the hydrophobic antimicrobial drugs novobiocin and erythromycin, whereas the D-enantiomer is devoid of such activity. The potential of understanding and consequently utilizing the PMB-LPS association for novel, nontoxic PMB-derived drugs is discussed.  相似文献   

12.
We have investigated the mechanism of action of the cationic antimicrobial protein (18 kDa) CAP18 on liposomes and monolayers made from phospholipids and enterobacterial lipopolysaccharides (LPS). CAP18 intercalates into lipid matrices composed of LPS from sensitive strains, weaker into those made of LPS from a resistant strain (Proteus mirabilis strain R45) or negatively charged phospholipids, but not into those composed of neutral phosphatidylcholine. From the combination of data obtained with fluorescence resonance energy transfer and Fourier-transform infrared spectroscopy and film balance measurements, it can be concluded that structural differences in the LPS determine the depth of intercalation of CAP18 into the respective lipid matrices. Thus, we identified the L-Arap4N linked to the first Kdo of the LPS of P. mirabilis strain R45 to be responsible for the CAP18 resistance of this strain. These data provide insight into CAP18-mediated effects on the integrity of the outer membrane of Gram-negative bacteria and led to an improved model for rabbit CAP18 membrane interaction. Received: 14 January 2000/Revised: 20 April 2000  相似文献   

13.
《Theriogenology》2011,75(9):1691-1700
Gram negative bacteria are the predominant type detected in boar semen. Since these bacteria release lipopolysaccharide (LPS), and because polymyxin B (PMB) neutralizes LPS activity, the objective was to improve techniques for long-term storage of boar sperm by testing the beneficial effects of PMB. In the present study, LPS bound directly to the head region of sperm, decreased sperm motility, and induced sperm apoptosis. The addition of 100 μg/mL PMB suppressed LPS binding activity and blocked the negative effects of LPS on sperm quality. Additionally, when PMB treatment was combined with penicillin G (PenG), sperm motility was increased after 10 d of liquid storage or in frozen-thawed sperm (P<0.05). When the PMB- and PenG-treated sperm was used for artificial insemination, the conception rate was increased relative to that of artificial insemination with sperm treated by PenG alone in both liquid (62 vs. 81%) and cryopreserved forms (50 vs. 80%, P < 0.05). We concluded that PMB suppressed LPS-induced low sperm motility and apoptosis via the reduction of LPS binding to Toll-like receptors (TLRs). Thus, in order to enhance sperm quality for artificial insemination, a combined treatment with PMB and PenG immediately after ejaculation seemed appropriate to maintain sperm motility and function during both liquid storage and cryopreservation.  相似文献   

14.
Su Y  Waring AJ  Ruchala P  Hong M 《Biochemistry》2011,50(12):2072-2083
The structural basis for the gram selectivity of two disulfide-bonded β-hairpin antimicrobial peptides (AMPs) is investigated using solid-state nuclear magnetic resonance (NMR) spectroscopy. The hexa-arginine PG-1 exhibits potent activities against both gram-positive and gram-negative bacteria, while a mutant of PG-1 with only three cationic residues maintains gram-positive activity but is 30-fold less active against gram-negative bacteria. We determined the topological structure and lipid interactions of these two peptides in a lipopolysaccharide (LPS)-rich membrane that mimics the outer membrane of gram-negative bacteria and in the POPE/POPG membrane, which mimics the membrane of gram-positive bacteria. (31)P NMR line shapes indicate that both peptides cause less orientational disorder in the LPS-rich membrane than in the POPE/POPG membrane. (13)C chemical shifts and (13)C-(1)H dipolar couplings show that both peptides maintain their β-hairpin conformation in these membranes and are largely immobilized, but the mutant exhibits noticeable intermediate-time scale motion in the LPS membrane at physiological temperature, suggesting shallow insertion. Indeed, (1)H spin diffusion from lipid chains to the peptides shows that PG-1 fully inserts into the LPS-rich membrane whereas the mutant does not. The (13)C-(31)P distances between the most hydrophobically embedded Arg of PG-1 and the lipid (31)P are significantly longer in the LPS membrane than in the POPE/POPG membrane, indicating that PG-1 does not cause toroidal pore defects in the LPS membrane, in contrast to its behavior in the POPE/POPG membrane. Taken together, these data indicate that PG-1 causes transmembrane pores of the barrel-stave type in the LPS membrane, thus allowing further translocation of the peptide into the inner membrane of gram-negative bacteria to kill the cells. In comparison, the less cationic mutant cannot fully cross the LPS membrane because of weaker electrostatic attractions, thus causing weaker antimicrobial activities. Therefore, strong electrostatic attraction between the peptide and the membrane surface, ensured by having a sufficient number of Arg residues, is essential for potent antimicrobial activities against gram-negative bacteria. The data provide a rational basis for controlling gram selectivity of AMPs by adjusting the charge densities.  相似文献   

15.
Bacteria are frequently exposed to cationic antimicrobial peptides (CAMPs) from eukaryotic hosts (host defence peptides) or from prokaryotic competitors (bacteriocins). However, many bacteria, among them most of the major human pathogens, achieve CAMP resistance by MprF, a unique enzyme that modifies anionic phospholipids with l-lysine or l-alanine thereby introducing positive charges into the membrane surface and reducing the affinity for CAMPs. The lysyl or alanyl groups are derived from aminoacyl tRNAs and are usually transferred to phosphatidylglycerol (PG). Recent studies with MprF from Staphylococcus aureus demonstrated that production of Lys-PG only leads to CAMP resistance when an additional flippase domain of MprF is present that translocates Lys-PG and exposes it at the outer leaflet of the membrane. Thus, MprF exerts two specific functions that have hardly been found in other bacterial proteins. MprF proteins are crucial virulence factors of many human pathogens, which recommends them as targets for new anti-virulence drugs. Intriguingly, specific point mutations in mprF cause resistance to the CAMP-like antibiotic daptomycin in a yet unclear way that may involve altered Lys-PG synthesis and/or Lys-PG flipping capacities. Thus, a thorough characterization of MprF domains and functions will help to unravel how bacteria maintain and protect their cytoplasmic membranes.  相似文献   

16.
Gram negative bacteria are the predominant type detected in boar semen. Since these bacteria release lipopolysaccharide (LPS), and because polymyxin B (PMB) neutralizes LPS activity, the objective was to improve techniques for long-term storage of boar sperm by testing the beneficial effects of PMB. In the present study, LPS bound directly to the head region of sperm, decreased sperm motility, and induced sperm apoptosis. The addition of 100 μg/mL PMB suppressed LPS binding activity and blocked the negative effects of LPS on sperm quality. Additionally, when PMB treatment was combined with penicillin G (PenG), sperm motility was increased after 10 d of liquid storage or in frozen-thawed sperm (P<0.05). When the PMB- and PenG-treated sperm was used for artificial insemination, the conception rate was increased relative to that of artificial insemination with sperm treated by PenG alone in both liquid (62 vs. 81%) and cryopreserved forms (50 vs. 80%, P < 0.05). We concluded that PMB suppressed LPS-induced low sperm motility and apoptosis via the reduction of LPS binding to Toll-like receptors (TLRs). Thus, in order to enhance sperm quality for artificial insemination, a combined treatment with PMB and PenG immediately after ejaculation seemed appropriate to maintain sperm motility and function during both liquid storage and cryopreservation.  相似文献   

17.
The peptide antibiotic Polymyxin B (PMB) binds to bacterial endotoxin (lipopolysaccharide, LPS). We prepared covalent conjugates of PMB and horseradish peroxidase (HRP) by periodation of HRP-linked oligosaccharides followed by direct condensation with PMB. In addition we prepared monoclonal antibodies (Mabs) to PMB. The PMB-HRP conjugates and anti-PMB Mabs were used to study in ELISA the binding of PMB to LPS from Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa. In addition, PMB-HRP was used to quantify lipid A in ELISA, and to stain gram-negative bacteria histochemically. For the study of PMB-LPS interaction, PMB-HRP proved to be superior to the anti-PMB Mabs. PMB-HRP conjugates are useful general probes to detect or measure lipid A and LPS of various species using very simple methods and to stain bacteria, and they may obviate the need for many specific antisera. Thus, PMB-HRP conjugates are useful probes for endotoxin research.  相似文献   

18.
Favier J  Kempf H  Corvol P  Gasc JM 《FEBS letters》1999,461(1-2):19-24
The thermodynamics of interaction of two model peptides melittin and mastoparan with bovine brain calmodulin (CAM) and a smaller CAM analogue, a calcium binding protein from Entamoeba histolytica (CaBP) in 10 mM MOPS buffer (pH 7.0) was examined using isothermal titration calorimetry (ITC). These data show that CAM binds to both the peptides and the enthalpy of binding is endothermic for melittin and exothermic for mastoparan at 25 degrees C. CaBP binds to the longer peptide melittin, but does not bind to mastoparan, the binding enthalpy being endothermic in nature. Concurrently, we also observe a larger increase in alpha-helicity upon the binding of melittin to CAM when compared to CaBP. The role of hydrophobic interactions in the binding process has also been examined using 8-anilino-1-naphthalene-sulphonic acid (ANS) binding monitored by ITC. These results have been employed to rationalize the energetic consequences of the binding reaction.  相似文献   

19.
To combat infections by Gram-negative bacteria, it is not only necessary to kill the bacteria but also to neutralize pathogenicity factors such as endotoxin (lipopolysaccharide, LPS). The development of antimicrobial peptides based on mammalian endotoxin-binding proteins is a promising tool in the fight against bacterial infections, and septic shock syndrome. Here, synthetic peptides derived from granulysin (Gra-pep) were investigated in microbiological and biophysical assays to understand their interaction with LPS. We analyzed the influence of the binding of Gra-pep on (1) the acyl chain melting of the hydrophobic moiety of LPS, lipid A, by Fourier-transform spectroscopy, (2) the aggregate structure of LPS by small-angle X-ray scattering and cryo-transmission electron microscopy, and 3) the enthalpy change by isothermal titration calorimetry. In addition, the influence of Gra-pep on the incorporation of LPS and LPS-LBP (lipopolysaccharide-binding protein) complexes into negatively charged liposomes was monitored. Our findings demonstrate a characteristic change in the aggregate structure of LPS into multilamellar stacks in the presence of Gra-pep, but little or no change of acyl chain fluidity. Neutralization of LPS by Gra-pep is not due to a scavenging effect in solution, but rather proceeds after incorporation into target membranes, suggesting a requisite membrane-bound step.  相似文献   

20.
To combat infections by Gram-negative bacteria, it is not only necessary to kill the bacteria but also to neutralize pathogenicity factors such as endotoxin (lipopolysaccharide, LPS). The development of antimicrobial peptides based on mammalian endotoxin-binding proteins is a promising tool in the fight against bacterial infections, and septic shock syndrome. Here, synthetic peptides derived from granulysin (Gra-pep) were investigated in microbiological and biophysical assays to understand their interaction with LPS. We analyzed the influence of the binding of Gra-pep on (1) the acyl chain melting of the hydrophobic moiety of LPS, lipid A, by Fourier-transform spectroscopy, (2) the aggregate structure of LPS by small-angle X-ray scattering and cryo-transmission electron microscopy, and 3) the enthalpy change by isothermal titration calorimetry. In addition, the influence of Gra-pep on the incorporation of LPS and LPS-LBP (lipopolysaccharide-binding protein) complexes into negatively charged liposomes was monitored. Our findings demonstrate a characteristic change in the aggregate structure of LPS into multilamellar stacks in the presence of Gra-pep, but little or no change of acyl chain fluidity. Neutralization of LPS by Gra-pep is not due to a scavenging effect in solution, but rather proceeds after incorporation into target membranes, suggesting a requisite membrane-bound step.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号