首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Watts KL  Adair J  Kiem HP 《Cytotherapy》2011,13(10):1164-1171
Hematopoietic stem cell (HSC) gene therapy remains a highly attractive treatment option for many disorders, including hematologic conditions, immunodeficiencies including human immunodeficiency virus (HIV)/acquired immune deficiency syndrome (AIDS), and other genetic disorders such as lysosomal storage diseases. In this review, we discuss the successes, side-effects and limitations of current gene therapy protocols. In addition, we describe the opportunities presented by implementing ex vivo expansion of gene-modified HSC, as well as summarize the most promising ex vivo expansion techniques currently available. We conclude by discussing how some of the current limitations of HSC gene therapy could be overcome by combining novel HSC expansion strategies with gene therapy.  相似文献   

2.
3.
The metabolism of [stearoyl-1-14C]- and [choline-methyl-14C]sphingomyelin, [stearoyl-1-14C]ceramide-1-phospho-N,N-dimethylethanolamine (demethylsphingomyelin) and [choline-methyl-14C]phosphatidylcholine was measured 1, 3 and 5 days after uptake from the media of cultured skin fibroblasts. This was done to measure the relative contributions of lysosomal sphingomyelinase and plasma membrane phosphocholine transferase on the metabolism of sphingomyelin, a component of all cell membranes. By using cell lines from controls and from patients with Niemann-Pick disease and other lysosomal storage diseases, it was concluded that a significant portion (10-15%) of the observed degradation of sphingomyelin is due to exchange of the phosphocholine moiety producing phosphatidylcholine. Although cell lines from type A and B Niemann-Pick disease have only 0-2% of lysosomal sphingomyelinase activity measured in vitro, three cell lines from type B Niemann-Pick disease could metabolize 54.4% of the labeled sphingomyelin by day 3 while cell lines from type A Niemann-Pick disease could only metabolize 18.5% by day 3. This compares to 86.7% metabolized in control cells by day 3. Cells from one patient with juvenile Niemann-Pick disease and one with type D Niemann-Pick disease metabolized sphingomyelin normally while cells from two other patients with juvenile or type C Niemann-Pick disease could only metabolize 58.2% by day 3. Cells from patients with I-cell disease and 'lactosylceramidosis' also demonstrated decreased metabolism of sphingomyelin (55.1 and 54.9% by day 3, respectively). Cells from the patient with Farber disease accumulated [14C]stearic acid-labeled ceramide produced from [14C]sphingomyelin. Studies with choline-labeled sphingomyelin and phosphatidylcholine demonstrated that phosphocholine exchange takes place in either direction in the cells, and this is normal in Niemann-Pick disease. Studies in cells from patients with all clinical types of sphingomyelinase deficiency have led to new methods for diagnosis and prognosis and to a better understanding of sphingomyelin metabolism.  相似文献   

4.
The 20-fold increase of free sphingoid bases found in liver from a murine model of Niemann-Pick type C (NPC) combined to the NPC-like phenotype induced by addition of sphinganine to normal fibroblast cultures prompted us to investigate the potential involvement of these compounds in the human disease. The contents of sphingosine and sphinganine were measured in liver, spleen, brain and skin fibroblast cultures by a sensitive HPLC method. In liver and spleen from NPC patients, a 6- to 24-fold elevation of sphingosine and sphinganine already prominent at the fetal stage of the disease was observed, while no clear increase could be evidenced in brain tissue. A significant increase, not modulated by the intralysosomal content of free cholesterol, also occurred in skin fibroblast cultures. To investigate the specificity of these findings, other lysosomal storage disorders were studied. A striking accumulation was found in liver and spleen (24- to 36-fold) from patients with Niemann-Pick disease type A and B (sphingomyelinase-deficient forms), and in cerebral cortex of type A Niemann-Pick disease. A significant storage also occurred in Sandhoff disease, while several other sphingolipidoses showed a moderate elevation. In all cases but Sandhoff disease brain, the sphingosine/sphinganine ratio remained unchanged, suggesting that the accumulated free sphingoid bases derived from sphingolipid catabolism. Formation of complexes between sphingosine and the lipid material accumulated in lysosomes might be a general mechanism in lysosomal lipidoses. In NPC, however, an increase of free sphingoid bases disproportionate to the degree of lysosomal storage and a specific involvement of cultured fibroblasts suggested a more complex or combined mechanism.  相似文献   

5.
As costly stem cell treatments progress from experimental concepts toward licensed products and routine procedures, governmental and private payers grapple with shrinking budgets to cover more lives. We describe efforts underway in the US to create mechanisms for reimbursement of cell therapies and discuss other reimbursement-related issues for the stem cell community.  相似文献   

6.
Most lysosomal storage diseases (LSD) exhibit neurological symptoms and there has been limited success in their treatment. Innovative treatments employing novel therapy or gene therapy may offer the prospect of improvement. Recent attempts to treat the neurological forms of LSD include neural stem cell therapy, mesenchymal stem cell therapy, hematopoietic stem cell therapy and gene therapy. Additional approaches have included substrate deprivation/chaperone therapy for the treatment of LSD. This article reviews these new technologies, discusses recent progress, and suggests their possible application.  相似文献   

7.
Lysosomal storage disorders (LSDs) are monogenic inborn errors of metabolism. Various groups have been delineated according to the affected pathway and the accumulated substrate, and new entities are still being identified. They are severe disorders with a heterogeneous clinical spectrum encompassing visceral, skeletal and neurologic involvement, and high morbidity and mortality. Most of the genes encoding the lysosomal enzymes have been cloned, and animal models have been obtained for almost each disease. In the last decades, LSDs have been models for the development of molecular and cellular therapies for inherited metabolic diseases. Studies in preclinical in vitro systems and animal models have allowed the successful development of bone marrow transplantation, substrate deprivation, enzyme replacement therapy and gene transfer methods as therapeutic options for several LSDs. The aim of this paper is to review the biology of acid hydrolases and lysosomal membrane proteins, to describe the systematic classification of LSDs and the most recently identified entities, and to briefly review novel therapeutic approaches for two lipidoses: Gaucher disease and Fabry disease.  相似文献   

8.
As a novel neurotherapeutic strategy, stem cell transplantation has received considerable attention. However, little focus of this attention has been devoted to the probabilities of success of stem cell therapies for specific neurological disorders. Given the complexities of the cellular organization of the nervous system and the manner in which it is assembled during development, it seems unlikely that a cellular replacement strategy will succeed for any but the simplest of neurological disorders in the near future. A general strategy for stem cell transplantation to prevent or minimize neurological disorders is much more likely to succeed. The lysosomal storage diseases represent the quintessential neurodegenerative diseases for which preventative stem cell transplantation will both likely succeed and set the stage for therapeutic approaches to other neurodegenerative diseases.  相似文献   

9.
Lysosomal storage diseases (LSDs) are debilitating genetic conditions that frequently manifest as neurodegenerative disorders. They severely affect eye, motor and cognitive functions and, in most cases, abbreviate the lifespan. Postmitotic cells such as neurons and mononuclear phagocytes rich in lysosomes are most often affected by the accumulation of undegraded material. Cell death is well documented in parts of the brain and in other cells of LSD patients and animal models, although little is known about mechanisms by which death pathways are activated in these diseases, and not all cells exhibiting increased storage material are affected by cell death. Lysosomes are essential for maturation and completion of autophagy-initiated protein and organelle degradation. Moreover, accumulation of effete mitochondria has been documented in postmitotic cells whose lysosomal function is suppressed or in aging cells with lipofuscin accumulation. Based upon observations in the literature and our own data showing similar mitochondrial abnormalities in several LSDs, we propose a new model of cell death in LSDs. We suggest that the lysosomal deficiencies in LSDs inhibit autophagic maturation, leading to a condition of autophagic stress. The resulting accumulation of dysfunctional mitochondria showing impaired Ca2+ buffering increases the vulnerability of the cells to pro-apoptotic signals.  相似文献   

10.
Niemann-Pick type C1 (NPC1) disease is a neurodegenerative lysosomal storage disorder caused by mutations in the acidic compartment (which we define as the late endosome and the lysosome) protein, NPC1. The function of NPC1 is unknown, but when it is dysfunctional, sphingosine, glycosphingolipids, sphingomyelin and cholesterol accumulate. We have found that NPC1-mutant cells have a large reduction in the acidic compartment calcium store compared to wild-type cells. Chelating luminal endocytic calcium in normal cells with high-affinity Rhod-dextran induced an NPC disease cellular phenotype. In a drug-induced NPC disease cellular model, sphingosine storage in the acidic compartment led to calcium depletion in these organelles, which then resulted in cholesterol, sphingomyelin and glycosphingolipid storage in these compartments. Sphingosine storage is therefore an initiating factor in NPC1 disease pathogenesis that causes altered calcium homeostasis, leading to the secondary storage of sphingolipids and cholesterol. This unique calcium phenotype represents a new target for therapeutic intervention, as elevation of cytosolic calcium with curcumin normalized NPC1 disease cellular phenotypes and prolonged survival of the NPC1 mouse.  相似文献   

11.
Autoimmune diseases affect approximately 6% of the population and are characterised by a pathogenic immune response that targets self-antigens. Well known diseases of this nature include type 1 diabetes, systemic lupus erythematosus, rheumatoid arthritis and multiple sclerosis. Treatment is often restricted to replacement therapy or immunosuppressive regimes and to date there are no cures. The strategy of utilising autologous or allogeneic haematopoietic stem cell transplantation to treat autoimmunity and induce immunological tolerance has been trailed with various levels of success. A major issue is disease relapse as the autoimmune response is reinitiated. Cells of the immune system originate from bone marrow and have a central role in the induction of immunological tolerance. The ability to isolate and genetically manipulate bone marrow haematopoietic stem cells therefore makes these cells a suitable vehicle for driving ectopic expression of defined autoantigens and induction of immunological tolerance.  相似文献   

12.
A central feature of Niemann-Pick Type C (NPC) disease is sequestration of cholesterol and glycosphingolipids in lysosomes. A large phenotypic variability, on both a clinical as well as a molecular level, challenges NPC diagnosis. For example, substantial difficulties in identifying or excluding NPC in a patient exist in cases with a "variant" biochemical phenotype, where cholesterol levels in cultured fibroblasts, the primary diagnostic indicator, are only moderately elevated. Here we apply quantitative microscopy as an accurate and objective diagnostic tool to measure cholesterol accumulation at the level of single cells. When employed to characterize cholesterol enrichment in fibroblasts from 20 NPC patients and 11 controls, considerable heterogeneity became evident both within the population of cells cultured from one individual as well as between samples from different probands. An obvious correlation between biochemical phenotype and clinical disease course was not apparent from our dataset. However, plasma levels of HDL-cholesterol (HDL-c) tended to be in the normal range in patients with a "variant" as opposed to a "classic" biochemical phenotype. Attenuated lysosomal cholesterol accumulation in "variant" cells was associated with detectable NPC1 protein and residual capability to upregulate expression of ABCA1 in response to LDL. Taken together, our approach opens perspectives not only to support diagnosis, but also to better characterize mechanisms impacting cholesterol accumulation in NPC patient-derived cells.  相似文献   

13.
14.
Hematopoietic stem cell transplantation (HSCT) represents the only cure for patients with thalassemia. At present HSCT in younger patients from an HLA- matched sibling donor offers 80% to 87% probability of cure according to risk classes. However, results HSCT in adult patients continue to be inferior due to advanced of disease. High-resolution tissue typing techniques have enabled transplant centres to offer allogeneic HSCT from unrelated donors to patients with thalassemia who could not benefit from matched sibling donor transplantation with results comparable to those obtained using sibling donors. Advances in transplantation biology have made it possible to perform haploidentical HSCT in patients with thalassemia who lack a related or unrelated matched donor. Although limited number of patients, results of unrelated cord blood transplantation for thalassemia are encouraging. Patients with graft failure could now benefit from second transplantation using the same donor with a high disease-free survival rate. Most ex-thalassemics continue to have disease and treatment-related complications acquired before transplantation which require adequate treatment following BMT.  相似文献   

15.
Crohn's disease(CD) is an inflammatory bowel disease that can affect any site of the digestive system. It occurs due to an immunological imbalance and is responsible for intestinal mucosal lesions and complications such as fistulas and stenoses. Treatment aims to stabilize the disease, reducing the symptoms and healing intestinal lesions. Surgical procedures are common in patients. Cell therapy was initially used to treat this disease in patients who also suffered from lymphoma and leukemia and were considered to be good candidates for autologous and allogeneic transplantation. After transplantation, an improvement was also observed in their CD. In 2003, the procedure began to be used to treat the disease itself, and several case series and randomized studies have been published since then; this approach currently comprises a new option in the treatment of CD. However, considerable doubt along with significant gaps in our knowledge continue to exist in relation to cell therapy for CD. Cell therapy is currently restricted to the autologous modality of hematopoietic stem cell transplantation and, experimentally, to mesenchymal stromal cells to directly treat lesions of the anal mucosa. This article presents the supporting claims for transplantation as well as aspects related to the mobilization regime, conditioning and perspectives of cell therapy.  相似文献   

16.
A functional decline of the immune system occurs during organismal aging that is attributable, in large part, to changes in the hematopoietic stem cell (HSC) compartment. In the mouse, several hallmark age-dependent changes in the HSC compartment have been identified, including an increase in HSC numbers, a decrease in homing efficiency, and a myeloid skewing of differentiation potential. Whether these changes are caused by gradual intrinsic changes within individual HSCs or by changes in the cellular composition of the HSC compartment remains unclear. However, of note, many of the aging properties of HSCs are highly dependent on their genetic background. In particular, the widely used C57Bl/6 strain appears to have unique HSC aging characteristics compared with those of other mouse strains. These differences can be exploited by using recombinant inbred strains to further our understanding of the genetic basis for HSC aging. The mechanism(s) responsible for HSC aging have only begun to be elucidated. Recent studies have reported co-ordinated variation in gene expression of HSCs with age, possibly as a result of epigenetic changes. In addition, an accumulation of DNA damage, in concert with an increase in intracellular reactive oxygen species, has been associated with aged HSCs. Nevertheless, whether age-related changes in HSCs are programmed to occur in a certain predictable fashion, or whether they are simply an accumulation of random changes over time remains unclear. Further, whether the genetic dysregulation observed in old HSCs is a cause or an effect of cellular aging is unknown. We are grateful for the generous financial support provided by the Dutch Platform for Tissue Engineering (to B.D.) and for a VICI grant awarded by the Netherlands Organization for Scientific Research (to G.d.H.).  相似文献   

17.
18.
A probable neurovisceral lysosomal storage disease is reported, for the first time, in immature red and grey kangaroos (Macropus rufus and M. giganteus). Foamy, pale eosinophilic, periodic acid-Schiff positive, intracytoplasmic material was stored in the liver, lymphoid tissue, kidney, adrenal gland, stomach, blood vessels and central nervous system. Extensive Wallerian-type degeneration was present in the central nervous system. Electron microscopic study of one animal revealed electron dense, cytoplasmic lamellar bodies in neurons and foamy visceral cells. The disease differs from other reported storage diseases in the distribution and nature of the lesions.  相似文献   

19.
More than 50 hereditary lysosomal storage disorders (LSDs) are currently described. Most of these disorders are due to a deficiency of certain hydrolases/glycosidases and subsequent accumulation of nonhydrolyzable carbohydrate-containing compounds in lysosomes. Such accumulation causing hypertrophy of the lysosomal compartment is a characteristic feature of affected cells in LSDs. The investigation of biochemical and cellular parameters is of particular interest for understanding “life” of lysosomes in the normal state and in LSDs. This review highlights the wide spectrum of biochemical and morphological changes during developing LSDs that are extremely critical for many metabolic processes inside the various cells and tissues of affected persons. The data presented will help establish new complex strategies for metabolic correction of LSDs.  相似文献   

20.
Beck M 《Human genetics》2007,121(1):1-22
During the last few years, much progress has been made in the treatment of lysosomal storage disorders. In the past, no specific therapy was available for the affected patients, and management consisted solely of supportive care and treatment of complications. Since enzyme replacement therapy has been successfully introduced for patients with Gaucher disease, this principle of treatment has been taken into consideration for other lysosomal storage disorders as well. Clinical trials could demonstrate the clinical benefit of this therapeutic principle in Fabry disease, mucopolysaccharidoses type I, II and VI and in Pompe disease. However, the usefulness of enzyme replacement therapy is limited due to the fact that a given enzyme preparation does not have beneficial effects on all aspects of a disorder in the same degree. Additionally, clinical studies have shown that many symptoms of a lysosomal storage disorder even after long-term treatment are no more reversible. A further novel therapeutic option for lysosomal storage disorders consists of the application of small molecules that either inhibit a key enzyme which is responsible for substrate synthesis (substrate deprivation) or act as a chaperone to increase the residual activity of the lysosomal enzyme (enzyme enhancing therapy). Various gene therapeutic techniques (in vivo and ex vivo technique) have been developed in order to administer the gene that is defective in a patient to the bloodstream or directly to the brain in order to overcome the blood–brain barrier. This review will give an insight into these newly developed therapeutic strategies and will discuss their advantages and limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号