首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Suspension culture cells of cowpea (Vigna unguiculata) were examined using transmission electron microscopy to characterize morphological changes associated with hyperthermal stress. Cultures maintained at 26°C (unadapted cells) and 38°C (thermoadapted cells) were examined before and after exposure to elevated temperatures of 34°C and 45°C, respectively. Observations indicate that while there were significant ultrastructural differences between unadapted and thermoadapted cells, the following structural modifications in response to heat stress were observed in cells of both cultures: (a) almost a complete loss of polyribosomes, rough ER, and dictyosomes, (b) migration of intracellular waste material (presumably proteinaceous in composition) into the cell vacuole, (c) swelling of the nucleolus with assumed accumulation of preribosomal RNP granules, and (d) retraction of the tonoplast from the cytoplasm into the vacuoles of some cells. Heat shock granules (two size classes) were observed in the cytoplasm of stressed thermoadapted cells along with hollow-cored granules within the leucoplasts. Apart from a few minor differences, the morphological modifications that were made in apparent response to hyperthermal stress were remarkably similar in both cultures.  相似文献   

2.
Effect of heat shock on RNA metabolism in HeLa cells   总被引:14,自引:0,他引:14  
  相似文献   

3.
Obesity has been associated with impaired immune responses and inflammation. The mechanisms underlying these immune disturbances in obesity are not yet clarified. This study investigated the effects of in vitro heat shock (HS) on immune cells from the point of view of thymocyte apoptosis and T-cell mitogen-stimulated splenocyte cytokine production as well as the heat shock protein 70 (HSP70) protein levels in diet-induced obese mice to explore a possible association between the disturbance of T cell immunity and HS response in obesity. Obese mice had increased apoptotic and necrotic thymocytes populations and increased splenocyte cytokine production of both proinflammatory and anti-inflammatory cytokines compared with lean mice. The in vitro HS at 42 °C decreased the rate of live cells in thymocytes, and the degree of the decrease was larger in obese mice compared with lean mice. The in vitro HS increased the intracellular and extracellular HSP70 protein levels in thymocytes and splenocytes, while the effects of obesity on the HSP70 protein levels were not obvious. The in vitro HS prior to T cell mitogen stimulation decreased IFN-γ and IL-10 production by mitogen-stimulated splenocytes. This change in cytokine production due to HS was not affected by obesity. The obvious alteration of the HSP70 protein levels and association between cytokine production and the HS response in obesity were not found in this obesity model; however, our results indicate an association between the viability of thymocytes and an altered HS response in obesity and provide evidence that the increase in thymocyte apoptosis and acceleration of thymus involution in obesity could be, in part, due to the alteration of the HS response.  相似文献   

4.
Summary. In 3T3 cells temperatures higher than physiological stimulated amino acid transport activity in a dose-dependent manner up to 44°C. However, the temperature increase did not induce widespread transport increase of all other nutrients tested. The activities of both amino acid transport systems A and ASC were enhanced within a few minutes following cell exposure to increased temperature. The maintenance of this effect required continuous exposure of the cells to hyperthermia. Kinetic analysis indicated that the stimulation of the activity of transport System A occurred through a mechanism affecting Vmax rather than Km. The continuous presence of cycloheximide did not prevent the transport changes induced by hyperthermia. These results suggest that the increased amino acid uptake reflects an activation or relocation of existing amino acid transport proteins. During the hyperthermic treatment, the content of ninhydrin-positive substances (NPS), mostly amino acids, increased within the cells and the accumulation of these compatible osmolytes was parallelled by an increase in cell volume. The withdrawal of amino acids from the culture medium immediately before and during the shock phase counteracted the increase and reduced the NPS content but did not prevent the increase in amino acid transport, the cell swelling and the induction of the heat shock response. Received June 30, 1999 Accepted July 27, 2000  相似文献   

5.
Heat-shock proteins from confluent primary cultures of bovine aortic endothelial cells were analyzed by SDS-polyacrylamide gels. In addition to the increased synthesis of the classical heat-shock proteins, there is an increase of a 180,000-mol wt polypeptide in the growth media of heat-shocked cells. Immunoprecipitation with specific antiserum indicates that the 180,000-mol wt polypeptide is thrombospondin. Assay of mRNA levels coding for thrombospondin after brief hyperthermic treatment (45 degrees C, 10 min), followed by a recovery of 2 h at 37 degrees C, results in a twofold increase in mRNA abundance. In contrast, the activation level of the 71,000-mol wt heat-shock protein mRNA occurs at an earlier time than for thrombospondin mRNA. Immunofluorescence microscopy was used to study the intracellular and extracellular distribution of thrombospondin. Thrombospondin is localized to a prominent pattern of granules of intracellular fluorescence in a perinuclear distribution in cells not exposed to heat. Upon heat treatment, the pattern of granules of intracellular fluorescence appears more pronounced, and the fluorescence appears to be clustered more about the nucleus. There are at least three pools of extracellular forms of thrombospondin: (a) the fine fibrillar extracellular matrix thrombospondin; (b) the punctate granular thrombospondin; and (c) the thrombospondin found in the conditioned medium not associated with the extracellular matrix. When bovine aortic endothelial cells are exposed to heat, the extracellular matrix staining of a fibrillar nature is noticeably decreased, with an increase in the number and degree of fluorescence of focal areas where the punctate granule thrombospondin structures are highly localized. No gross morphological changes in extracellular matrix staining of fibronectin was noted. However, the intermediate filament network was very sensitive and collapsed around the nucleus after heat shock. We conclude that the expression of thrombospondin is heat-shock stimulated.  相似文献   

6.
7.
Smith EA  Macfarlane GT 《Anaerobe》1997,3(5):327-337
The abilities of slurries of human faecal bacteria to ferment 20 different amino acids were investigated in batch culture incubations. Ammonia, short chain fatty acids, and in some cases, amines, were the principal products of dissimilatory metabolism. The types of SCFA produced were dependent on the chemical compositions of the test substrates. Thus, acetate and butyrate were formed from the acidic amino acid glutamate, while acetate and propionate predominated in aspartate fermentations. Breakdown of the basic amino acids lysine and arginine was rapid, and yielded butyrate and acetate, and ornithine and citrulline, respectively. The major products of histidine deamination were also acetate and butyrate. However, fermentation of sulphur-containing amino acids was slow and incomplete. Acetate, propionate and butyrate were formed from cysteine, whereas the main products of methionine metabolism were propionate and butyrate. The simple aliphatic amino acids alanine and glycine were fermented to acetate, propionate and butyrate, and acetate and methylamine, respectively. Branched-chain amino acids were slowly fermented by colonic bacteria, with the main acidic products being branched-chain fatty acids one carbon atom shorter than the parent amino acid. Low concentrations of amines were also detected in these fermentations. Aliphatic-hydroxy amino acids were rapidly deaminated by large intestinal microorganisms. Serine was primarily fermented to acetate and butyrate, while threonine was mainly metabolised to propionate. Proline was poorly utilized by intestinal bacteria, but hydroxyproline was efficiently fermented to acetate and propionate. The aromatic amino acids tyrosine, phenylalanine and tryptophan were broken down to a range of phenolic and indolic compounds.  相似文献   

8.
9.
High performance liquid chromatography analyses revealed that glutathione (GSH) and cysteine are two of the major low molecular weight thiol compounds in maize root extracts. Treatment of maize roots to heat shock temperatures of 40°C resulted in a decrease of cysteine levels and an increase of GSH levels. Pulse labeling of maize roots with [35S]cysteine showed that the rate of incorporation of 35S into GSH or glutathione disulfide (GSSG) in heat shocked tissues was twice that in nonheat shocked tissues. In addition, extracts from heat shocked maize, barley, and soybean tissues contained an unidentified low molecular weight compound that increased from 1.2- to 8-fold within 2 hours of heat shock treatment depending on the tissue and plant involved. Our results indicate that during heat shock there is an increase in the activity of the GSH synthetizing capacity in maize root cells. The elevated synthesis of GSH may be related to the cells capacity to cope with heat stress conditions.  相似文献   

10.
We have previously reported that Drosophila Kc cells require glutamine for maximal expression of heat shock proteins in stressed conditions (Sanders and Kon: J. Cell. Physiol. 146:180-190, 1991). The mechanism of this effect has been investigated by comparing the metabolic utilization of glutamine in conditions which support hsp expression with that of glutamate in conditions where up to 100-fold less hsp is synthesized. This comparison showed that free ammonia was generated by cells incubated in the presence of glutamine in 37 degrees C (heat shock) conditions, but not at 25 degrees C, and not in the presence of glutamate in either normal or heat shock conditions. There was no difference in the amount of [14C]O2 generated from either [14C]-labeled amino acid in the tricarboxylic acid cycle, but three- to four-fold more alanine was synthesized in cells incubated in glutamine than in glutamate. Treating the cells with aminotransferase inhibitors to artificially increase NH3 release raised hsp expression in the presence of glutamate to maximal levels characteristic of glutamine. This potentiation correlated with inhibition of alanine aminotransferase. Since only NH3 production correlated with hsp expression in heat shock conditions in the presence of glutamine, and NH3 addition to glutamate also resulted in maximal hsp expression, we measured glutamine production in glutamate plus NH3 and observed net glutamine synthesis. The supposition that glutamine itself is responsible for the regulatory changes supporting maximal hsp expression was supported by the finding that the glutamine analog, 6-diazo-5-oxo-L-norleucine (DON), mimicked the effects of glutamine. We conclude that glutamine imposes regulatory changes which alter nitrogen metabolism and support hsp expression in Kc cells.  相似文献   

11.
Temperature-dependent changes of growth rate and protein components were investigated for primary cultured cells derived from goldfish caudal fin. When the culture temperature was shifted from 20 degrees C to 35 degrees C and 40 degrees C, the growth rate was increased at 35 degrees C as compared with that at 20 degrees C, but no cell growth was observed at 40 degrees C. The differential scanning calorimetry demonstrated the onset of the endothermic reaction for goldfish cellular components at 40 degrees C. Therefore, the temperature shift to 40 degrees C was found to be of severe heat shock for goldfish cultured cells. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that, although expression of 70-kDa components was slightly induced at 35 degrees C, the temperature shift to 40 degrees C markedly induced the expression of the 30-kDa component in addition to that of 70-kDa component. The N-terminal amino acid sequencing identified the 30- and 70-kDa components to be heat shock protein (Hsp)-30 and Hsp70, respectively. Northern blot analysis revealed that the enhanced Hsp30 messenger ribonucleic acid (mRNA) levels were only observed at 40 degrees C, whereas Hsp70 mRNA was slightly accumulated at 35 degrees C. These results indicated that Hsp30 might have important functions under severe heat stress condition.  相似文献   

12.
The processes of lipid synthesis and decomposition in Aspergillus niger under conditions of heat shock (HS) were studied in a pulse-chase experiment with 14C-labeled sodium acetate. HS (60 min) resulted in the synthesis of phospholipids and sphingolipids intensified compared to the control, as was evident from incorporation of the labeled substrate. The same pattern was observed for neutral lipids, especially for triacylglycerides, while incorporation of the label into sterols remained almost the same. Further cultivation for 3 h in the medium without the labeled substrate resulted in a significant decrease of the label content in the membrane lipids of both the control and the experiment, although under HS conditions this decrease was much more pronounced, especially for phosphatidylcholines and phosphatidylethanolamines. A threefold increase of the label content in phosphatidic acids was observed only under HS conditions. These results indicate more intense metabolism of the membrane lipids under heat shock and suggest the degradation of the major cell phospholipids as the factor responsible for the increased level of phosphatidic acids in A. niger mycelium.  相似文献   

13.
Heat shock proteins (HSPs) are a family of proteins produced by cells in response to exposure to stressful conditions. In addition to their role as chaperones, they also play an important role in the cardiovascular, immune, and other systems. Normal bone tissue is maintained by bone metabolism, particularly by the balance between osteoblasts and osteoclasts, which are physiologically regulated by multiple hormones and cytokines. In recent years, studies have reported the vital role of HSPs in bone metabolism. However, the conclusions remain largely controversial, and the exact mechanisms are still unclear, so a review and analyses of previous studies are of importance. This article reviews the current understanding of the roles and effects of HSPs on bone cells (osteoblasts, osteoclasts, and osteocytes), in relation to bone metabolism.  相似文献   

14.
15.
Recently, we found that in ovo feeding of l-leucine (l-Leu) afforded thermotolerance, stimulated lipid metabolism and modified amino acid metabolism in male broiler chicks. However, the effects of in ovo feeding of l-Leu on thermoregulation and growth performance until marketing age of broilers are still unknown. In this study, we investigated the effects of in ovo feeding of l-Leu on body weight (BW) gain under control thermoneutral temperature or chronic heat stress. We measured changes of body temperature and food intake, organ weight, as well as amino acid metabolism and plasma metabolites under acute and chronic heat stress in broilers. A total of 168 fertilized Chunky broiler eggs were randomly divided into 2 treatment groups in experiments. The eggs were in ovo fed with l-Leu (34.5 µmol/500 µl per egg) or sterile water (500 µl/egg) during incubation. After hatching, male broilers were selected and assigned seven to nine replicates (one bird/replicate) in each group for heat challenge experiments. Broilers (29- or 30-day-old) were exposed to acute heat stress (30 ± 1°C) for 120 min or a chronic heat cyclic and continued heat stress (over 30 ± 1°C; ages, 15 to 44 days). In ovo feeding of l-Leu caused a significant suppression of enhanced body temperature without affecting food intake, plasma triacylglycerol, non-esterified fatty acids, ketone bodies, glucose, lactic acid or thyroid hormones under acute heat stress. Daily body temperature was significantly increased by l-Leu in ovo feeding under chronic heat stress. Interestingly, in ovo feeding of l-Leu caused a significantly higher daily BW gain compared with that of the control group under chronic heat stress. Moreover, some essential amino acids, including Leu and isoleucine, were significantly increased in the liver and decreased in the plasma by l-Leu in ovo feeding under acute heat stress. These results suggested that l-Leu in ovo feeding afforded thermotolerance to broilers under acute heat stress mainly through changing amino acid metabolism until marketing age.  相似文献   

16.
17.
Effect of heat shock on the growth of cultured sugarcane cells (Saccharum officinarum L.) was measured. Heat shock (HS) treatment at 36 to 38°C (2 hours) induced the development of maximum thermotolerance to otherwise nonpermissive heat stress at 54°C (7 minutes). Optimum thermotolerance was observed 8 hours after heat shock. Development of thermotolerance was initiated by treatments as short as 30 minutes at 36°C. Temperatures below 36°C or above 40°C failed to induce maximum thermotolerance. In vivo labeling revealed that HS at 32 to 34°C induced several high molecular mass heat shock proteins (HSPs). A complex of 18 kilodalton HSPs required at least 36°C treatment for induction. The majority of the HSPs began to accumulate within 10 minutes, whereas the synthesis of low molecular mass peptides in the 18 kilodalton range became evident 30 minutes after initiation of HS. HS above 38°C resulted in progressively decreased HSP synthesis with inhibition first observed for HSPs larger than 50 kilodaltons. Analysis of two-dimensional gels revealed a complex pattern of label incorporation including the synthesis of four major HSPs in the 18 kilodalton range and continued synthesis of constitutive proteins during HS.  相似文献   

18.
Effects of cycloheximide on amino Acid biosynthesis in corn roots   总被引:1,自引:1,他引:0       下载免费PDF全文
  相似文献   

19.
20.
Incubation of Chinese Hamster Ovary (CHO) cells for one hour at 43 degrees C results in several obvious changes in protein distribution and protein synthesis. One major protein of the cytoplasm (molecular weight 45,000 daltions), also present as a minor component in the nucleus, rapidly disappeared while several proteins, especially high molecular weight peptides, were induced by heat shock. Localization of the proteins in the cytoplasm, extra-nucleolar chromatin and nucleolar bodies has been carried out. Different sets of induced proteins appear in each subcellular compartment. Four hours after restoration of the normal temperature, the normal pattern of protein synthesis was observed. The 45,000 dalton protein reappeared first. Relations between structural and functional alterations and changes in protein distribution are suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号