首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study investigated the effect of exogenous amino acids on apoplastic and symplastic uptake and root to shoot translocation of nickel (Ni) in two wheat cultivars. Seedlings of a bread (Triticum aestivum cv. Back Cross) and a durum wheat cultivar (T. durum cv. Durum) were grown in a modified Johnson nutrient solution and exposed to two levels (50 and 100 μM) of histidine, glycine, and glutamine. Application of amino acids resulted in increasing symplastic to apoplastic Ni ratio in roots of both wheat cultivars, although glutamine and glycine were more effective than histidine under our experimental conditions. The amino acid used in the present study generally increased the relative transport of Ni from the roots to shoots in both wheat cultivars. Higher amounts of Ni were translocated to wheat shoots in the presence of histidine than the other amino acids studied, which indicated that histidine was more effective in translocation of Ni from roots to shoots. Amino acids used in the present study largely increased root symplastic Ni, but shoot Ni accumulation was much lower than the total Ni accumulation in roots, indicating a large proportion of Ni was retained or immobilized in wheat roots (either in the apoplastic or symplastic space), with only a very small fraction of Ni being translocated from the root to the shoot. According to the results, glutamine and glycine were more effective than histidine in enhancing the symplastic to apoplastic Ni ratio in the roots, while more Ni was translocated from the roots to the shoots in the presence of histidine.  相似文献   

2.
Large initial seed size frequently confers distinct advantages on cereal crops in terms of seedling vigor, hardiness, improved stand establishment, and higher productivity. This study was conducted to determine if these advantages inherent in the plants grown from large seeds persist when the crop is subjected to salinity stress. Two hard red spring wheat cultivars, Yecora Rojo and Anza were grown in greenhouse sand cultures from seed of two size classes that differed in weight by a factor of 2. The cultures were irrigated four times daily with complete nutrient solutions to which NaCl and CaCl2 (2:1 molar ratio) were added to achieve osmotic potentials of –0.05. –0.55, and –0.70 MPa with electrical conductivities of 1.8, 12.8, and 15.8 dS m-1, respectively. In response to both salinity and small initial seed size, the following plant characteristics decreased: leaf appearance rate, blade area, tillers per plant, spikelets per spike and seeds per spike. Plants grown from large seeds out-yielded those from small seeds by 8, 37, and 27% for Yecora Rojo and by 15, 30, and 23% for Anza at osmotic potentials of –0.05, –0.55 and –0.70 MPa, respectively. Compared to the corresponding nonsaline controls, the yield of Yecora Rojo grown at –0.55 MPa was 51% for the plants from large seed and 35% from the small seeds. For Anza salinized at –0.55 MPa, these values were 49 and 40%, respectively. Exploitation of the benefits derived from large initial seed size may be a cost-effective management strategy for improving wheat productivity in salt-affected areas.  相似文献   

3.
Summary Two barley cultivars differing in Al tolerance, Kearney (Al-sensitive) and Dayton (Al-tolerant) were exposed to Al stress with varied Ca and Mg concentrations in the nutrient solution. Increase in calcium and magnesium supply protected root meristems and root growth from Al toxicity more effectively in the Al-tolerant cultivar than in the Al-sensitive one. Lateral roots were much more sensitive to Al than adventitious roots. Exposure to 0.33 mM Al with low concentrations of Ca (1.3 mM) and Mg (0.3 mM) caused damage to root tips in both cultivars. Increasing the Ca concentration to 4.3 and 6.3 mM prevented root tip damage in Dayton but not in Kearney. In the Al-tolerant cultivar Dayton, however, the root tips regenerated even at the low Ca concentration of 1.3 mM, whereas 6.3 mM Ca was necessary for this to occur in Kearney. This difference was due to the fact that Dayton's root meristem cells were more resistant to damage. Magnesium responses also varied between the two cultivars. At the lowest Ca concentration an increase in Mg to 6.3 mM permitted regeneration of damaged Kearney root tips and completely prevented any damage in Dayton. It is to be assumed that the different responses of the two cultivars are due to differences in plasma membrane properties.  相似文献   

4.
The phytotoxic aluminum species (Al3+) is considered as the primary factor limiting crop productivity in over 40 % of world’s arable land that is acidic. We evaluated the responses of two wheat cultivars (Triticum aestivum L.) with differential Al resistance, cv. Yecora E (Al-resistant) and cv. Dio (Al-sensitive), exposed to 0, 37, 74 and 148 μM Al for 14 days in hydroponic culture at pH 4.5. With increasing Al concentration, leaf Ca2+ and Mg2+ content decreased, as well as the effective quantum yield of photosystem II (PSII) photochemistry (Φ PSII ), while a gradual increase in leaf membrane lipid peroxidation, Al accumulation, photoinhibition (estimated as F v /F m ), and PSII excitation pressure (1 ? q p ) occurred. However, the Al-resistant cultivar with lower Al accumulation, retained larger concentrations of Ca2+ and Mg2+ in the leaves and kept a larger fraction of the PSII reaction centres (RCs) in an open configuration, i.e. a higher ratio of oxidized to reduced quinone A (QA), than plants of the Al-sensitive cultivar. Four times higher Al concentration in the nutrient solution was required for Al-resistant plants (148 μM Al) than for Al-sensitive (37 μM Al), in order to establish the same closed RCs. Yet, the decline in photosynthetic efficiency in the cultivar Dio was not only due to closure of PSII RCs but also to a decrease in the quantum yield of the open RCs. We suggest that Al3+ toxicity may be mediated by nutrient deficiency and oxidative stress, and that Al-resistance of the wheat cultivar Yecora E, may be due at least partially, from the decreased Al accumulation that resulted to decreased reactive oxygen species (ROS) formation. However, under equal internal Al accumulation (exposure Al concentration: Dio 74 μM, Yecora E 148 μM) that resulted to the same oxidative stress, the reduced PSII excitation pressure and the better PSII functioning of the Al-resistant cultivar was probably due to the larger concentrations of Ca2+ and Mg2+ in the leaves. We propose that the different sensitivities of wheat cultivars to Al3+ toxicity can be correlated to differences in the redox state of QA. Thus, chlorophyll fluorescence measurements can be a promising tool for rapid screening of Al resistance in wheat cultivars.  相似文献   

5.
Soil acidity and aluminum (Al) toxicity are major factors limiting crop yield and forest productivity worldwide. Hybrid poplar (Populus spp.) was used as a model to assess genotypic variation in Al resistance and physiological stress responses to Al in a woody tree species. Eight hybrid crosses of P. trichocarpa, P. deltoides and P. nigra were exposed to Al in solution culture. Resistance to Al varied by genotype and hybrid cross, with P. trichocarpa × P. deltoides crosses being most resistant, P. trichocarpa × P. nigra being intermediate and P. deltoides × P. nigra being most sensitive to Al. Total root Al accumulation was not a good indicator of Al resistance/sensitivity. However, the partitioning of Al into apoplastic and symplastic fractions indicated that differences in sensitivity among genotypes were associated with Al uptake into the symplasm. Aluminum treatment increased callose and pectin concentrations of root tips in all genotypes, but more prominently in Al sensitive genotypes/hybrids. In Al sensitive genotypes, higher levels of symplastic Al accumulation correlated with elevated concentrations of citrate, malate, succinate or formate in root tips, whereas organic acid accumulation was not as pronounced in Al resistant genotypes. These findings suggest that exclusion of Al from the symplast is associated with Al resistance. Further screening of Al tolerant poplar genotypes could yield successful candidates to be utilized for sustainable reforestation/reclamation and carbon sequestration projects where soil acidity may limit tree growth.  相似文献   

6.
Ammonium-nitrogen supply increased Al tolerance (parameter root elongation rate) of soybean (Glycine max L.) plants compared to nitrate-nitrogen supply when grown at constant pH in solution culture. This protective effect of ammonium against Al could only partially be attributed to lowered activity of monomeric aluminium species in the ammonium solution. For ammonium and nitrate-grown plants the relationship between Al concentration in the root tips and total length could be described by the same regression equation. The higher Al tolerance of soybean plants grown in the presence of ammonium was due to restricted ad/absorption of Al which resulted from competition with positively charged Al species for binding sites in the apoplast. Induction of higher symplastic Al tolerance is unlikely because preculture with ammonium decreased rather than increased aluminium tolerance of the plants.  相似文献   

7.
Two cultivars of wheat (Triticum aestivum L. cvs Sonoita and Yecora Rojo) were grown to maturity in a growth chamber within four sub-chambers under two CO2 levels (350 or 1000 microliters per liter) at either ambient (21%) or low O2 (5%). Growth analysis was used to characterize changes in plant carbon budgets imposed by the gas regimes. Large increases in leaf areas were seen in the low O2 treatments, due primarily to a stimulation of tillering. Roots developed normally at 5% O2. Seed development was inhibited by the subambient O2 treatment, but this effect was overcome by CO2 enrichment at 1000 microliters per liter. Dry matter accumulation and seed number responded differently to the gas treatments. The greatest dry matter production occurred in the low O2, high CO2 treatment, while the greatest seed production occurred in the ambient O2, high CO2 treatment. Growth and assimilation were stimulated more by either CO2 enrichment or low O2 in cv Yecora Rojo than in Sonoita. These experiments are the first to explore the effect of whole plant low O2 treatments on growth and reproduction. The finding that CO2 enrichment overcomes low O2-induced sterility may help elucidate the nature of this effect.  相似文献   

8.
Aluminum (Al3+) toxicity in acidic soils limits crop productivity worldwide. In this study, we found that putrescine (PUT) significantly alleviates Al toxicity in rice roots. The addition of 0.1 mM PUT promoted root elongation and reduced the Al content in the root apices of Nipponbare (Nip) and Kasalath (Kas) rice under Al toxicity conditions. Exogenous treatment with PUT reduced the cell wall Al content by reducing polysaccharide (pectin and hemicellulose) levels and pectin methylesterase (PME) activity in roots and decreased the translocation of Al from the external environment to the cytoplasm by downregulating the expression of OsNRAT1, which responsible to encode an Al transporter protein Nrat1 (Nramp aluminum transporter 1). The addition of PUT under Al toxicity conditions significantly inhibited ethylene emissions and suppressed the expression of genes involved in ethylene biosynthesis. Treatment with the ethylene precursor 1‐aminocylopropane‐1‐carboxylic acid (ACC) significantly improved ethylene emission, inhibited root elongation, increased the Al accumulation in root tips and the root cell wall, and increased cell wall pectin and hemicellulose contents in both rice cultivars under Al toxicity conditions. The ethylene biosynthesis antagonist aminoethoxyvinylglycine (AVG, inhibitor of the ACC synthase) had the opposite effect and reduced PME activity. Together, our results show that PUT decreases the cell wall Al contents by suppressing ethylene emissions and decreases the symplastic Al levels by downregulating OsNRAT1 in rice.  相似文献   

9.
The mechanisms of Al rhizotoxicity are not known, but disruption of membrane function has been a persistent hypothesis. The objective of this study was to establish whether cells of Al-cultured wheat roots (Triticum aestivum L. cv Tyler) exhibiting severe Al toxicity symptoms were capable of vigorous proton extrusion. The membrane electrical potential difference (Em) was measured in individual cells throughout the first centimeter of root tips during perfusion with Al solutions similar to or more concentrated than those of the culture medium. For both Al-cultured and control roots the resting Em was −100 millivolts, and 1 millimolar acetic acid induced cyanide-sensitive hyperpolarizations to −180 millivolts at a maximum rate of −30 millivolts per minute. Al, like Ca2+, enhanced the negativity of the Em of cells already treated with acetic acid. Both acetic acid and fusicoccin stimulated net proton extrusion from Al-cultured and control roots, both of which also extruded protons in the absence of these stimulants. These results demonstrate that wheat roots exhibiting severe Al toxicity symptoms had an undiminished capacity to extrude protons, that the membranes were intact, and that ATP synthesis was sufficient to supply the proton-translocating ATPases.  相似文献   

10.
Fifty-two-day old plants of a salt tolerant line, S24 and a salt sensitive, Yecora Rojo were subjected for 15 days to 125 mol·m−3 NaCl in Hoagland’s nutrient solution under glass-house conditions. The dry matter of shoots and roots of the salt tolerant line was significantly greater over all time intervals in saline substrate than the salt sensitive line, Yecora Rojo. In the leaves of salt-treated former line concentration of Na+ and Cl was lower as compared to the latter line. The lower Na+ and Cl concentrations in the leaves of S24 were found to be associated with lower transport of these ions to the shoots whereas the reverse was true for Yecora Rojo. The lines did not differ in accumulation of either ion in roots. It is concluded that salt tolerance in these two genotypes of spring wheat is associated with restricted accumulation of toxic Na+ and Cl ions to the shoots or with restricted transport.  相似文献   

11.
Wheat (Triticum aestivum L.) seedlings were grown for 4 days in an acid soil horizon treated with 10 levels each of Ca(OH)2, CaSO4 and CaCl2. The treatments resulted in a wide range of Al levels and Al speciation in soil solution. Seedling root length in the Ca(OH)2 treatments was significantly related (p<0.01) to calculated Al3+ activity in soil solution. The Al–SO4 complex in soil solution had a negligible effect on the root growth of Hart wheat, thus confirming the previously reached conclusion concerning the nonphytotoxicity of Al–SO4. The short-term seedling root growth technique used in this investigation allowed for separation of Al effects on root elongation from those on plant nutrition and should be useful for studying Al toxicity relationships in soil.  相似文献   

12.
Wang Y  Stass A  Horst WJ 《Plant physiology》2004,136(3):3762-3770
The alleviating effect of silicon (Si) supply on aluminum (Al) toxicity was suggested to be based on ex or in planta mechanisms. In our experiments with the Al-sensitive maize (Zea mays) cultivar Lixis, Si treatment but not Si pretreatment ameliorated Al-induced root injury as revealed by less root-growth inhibition and callose formation. Si treatment did not affect monomeric Al concentrations in the nutrient solution, suggesting an in planta effect of Si on Al resistance. A fractionated analysis of Si and Al in the 1-cm root apices revealed that more than 85% of the root-tip Al was bound in the cell wall. Al contents in the apoplastic sap, the symplastic sap, and the cell wall did not differ between -Si and +Si plants. Si did not affect the Al-induced exudation of organic acid anions and phenols from the root apices. However, Al treatment greatly enhanced Si accumulation in the cell wall fraction, reducing the mobility of apoplastic Al. From our data we conclude that Si treatment leads to the formation of hydroxyaluminumsilicates in the apoplast of the root apex, thus detoxifying Al.  相似文献   

13.
Aluminum (Al) partitioning in intact roots of wheat (Triticum aestivum L.) cultivars that differ in sensitivity to Al was investigated. Roots of intact seedlings were exposed to Al for up to 24 hours and distribution of Al was assessed visually by hematoxylin staining or by direct measurement of concentration of Al by atomic absorption spectrophotometry or ion chromatography. Major differences in Al accumulation between Al-tolerant (Atlas 66) and Al-sensitive (Tam 105) cultivars were found in the growing regions 0 to 2 and 2 to 5 millimeters from the root apex. Al content was 9 to 13 times greater in the 0 to 2 millimeters root tips of cv Tam 105 than in the tips of cv Atlas 66 when exposed to 50 micromolar Al for 19 to 24 hours. The oxidative phosphorylation inhibitor carbonyl cyanide m-chlorophenylhydrazone and the protein synthesis inhibitor cycloheximide increased Al uptake by intact root tips of cv Atlas 66. Also, loss of Al from the roots of both cultivars was measured after the roots were “pulsed” with 50 micromolar Al for 2 hours and then placed in an Al-free nutrient solution for 6 hours. The 0 to 2 millimeter root tips of cv Tam 105 lost 30% of the absorbed Al, whereas the tips of cv Atlas 66 lost 60%. In light of these results, we conclude that the differential Al sensitivity in wheat correlates with the concentration of Al in the root meristems. The data support the hypothesis that part of the mechanism for Al tolerance in wheat is based on a metabolism-dependent exclusion of Al from the sensitive meristems.  相似文献   

14.
Summary.  In this paper we show an asymmetrical distribution of apoplastic and symplastic ascorbic acid content, peroxidase activities and hydrogen peroxide along the root axis in Allium cepa L. For most of these metabolites, a marked gradient from the root apex to the onion base was observed and was different for apoplastic and symplastic compartments. In total homogenates, ascorbic acid content was higher in the zones closer to the apex and decreased towards the root base. However, an opposite pattern was observed in the apoplastic fraction. Peroxidase activities with guaiacol, ferulic acid, ascorbic acid, and coniferyl alcohol were also different depending on the evaluated zone and the fraction used (apoplastic or symplastic). In general, each activity had a specific and unique pattern. Immunodetection of peroxidase proteins in Western blots using anti-horseradish peroxidase and anti-ascorbate peroxidase antibodies revealed different bands at the different zones of the root. Hydrogen peroxide was detected by electron microscopy and was mainly found in cell walls of epidermis (or rhizodermis), meristem, and elongating cells. The number of cell walls showing hydrogen peroxide decreased dramatically towards the root base. The results suggest that the different zones of the root show specific requirements for ascorbic acid and hydrogen peroxide. Also, each fragment of the root seems to express specific peroxidase proteins. Different processes that take place at every part of the root, as cell proliferation and elongation near the root apex and gradual lignification and differentiation towards the root base are the key to explain the results. Received May 10, 2002; accepted September 20, 2002; published online May 21, 2003 RID="*" ID="*" Correspondence and reprints: Departamento de Biología Celular, Fisiología e Inmunología, Edificio C-6, Campus de Rabanales, Universidad de Córdoba, 14014 Córdoba, Spain.  相似文献   

15.
Root elongation, hematoxylin staining, and changes in the ultrastructure of root-tip cells of an Al-tolerant maize variety (Zea mays L. C 525 M) exposed to nutrient solutions with 20 μm Al (2.1 μm Al3+ activity) for 0, 4, and 24 h were investigated in relation to the subcellular distribution of Al using scanning transmission electron microscopy and energy-dispersive x-ray microanalysis on samples fixed by different methods. Inhibition of root-elongation rates, hematoxylin staining, cell wall thickening, and disturbance of the distribution of pyroantimoniate-stainable cations, mainly Ca, was observed only after 4 and not after 24 h of exposure to Al. The occurrence of these transient, toxic Al effects on root elongation and in cell walls was accompanied by the presence of solid Al-P deposits in the walls. Whereas no Al was detectable in cell walls after 24 h, an increase of vacuolar Al was observed after 4 h of exposure. After 24 h, a higher amount of electron-dense deposits containing Al and P or Si was observed in the vacuoles. These results indicate that in this tropical maize variety, tolerance mechanisms that cause a change in apoplastic Al must be active. Our data support the hypothesis that in Al-tolerant plants, Al can rapidly cross the plasma membrane; these data clearly contradict the former conclusions that Al mainly accumulates in the apoplast and enters the symplast only after severe cell damage has occurred.It is largely recognized that root tips are the primary site of Al-induced injury in plants (Ryan et al., 1993). The accumulation of Al in root tips has been found to be significantly correlated with root-growth inhibition in maize (Zea mays L.) varieties differing in Al tolerance (Llugany, 1994; Llugany et al., 1994). In Al-sensitive maize plants an inhibition of root elongation has been observed after only 30 min of exposure to Al (Llugany et al., 1995). Such a short response time, in addition to the common belief (Kochian, 1995) that Al accumulates mainly in the apoplast and crosses the plasma membrane slowly, has led to the hypothesis that Al-induced inhibition of root elongation may be caused by toxicity mechanisms that occur in the apoplast (Rengel, 1990, 1996; Horst, 1995) and that there is no need for Al to enter the symplast to cause primary toxicity effects (Rengel, 1992). However, investigations using the highly Al-sensitive technique of secondary ion MS have shown that significant Al concentrations accumulate in the symplast of root-tip cells of soybean plants after only 30 min of exposure to Al (Lazof et al., 1994, 1996). Recent experiments on giant algae (Chara corallina) cells, where cell walls were separated from the cells by microsurgery, have also shown that Al uptake across the plasmalemma may be linear and occurs without delay (Rengel and Reid, 1997). These investigations support the view that symplastic phytotoxicity mechanisms may also be responsible for Al-induced inhibition of root elongation after short exposure times (Kochian, 1995).More information on the subcellular distribution of Al in root tips would help to establish both the relative importance of apoplastic and symplastic sites in the Al-toxicity syndrome and the role of Al compartmentation in Al resistance or tolerance. Unfortunately, ultrastructural investigations under environmentally realistic growth conditions that relate the subcellular localization of Al in root tips to root growth in Al-tolerant varieties are scarce (Delhaize et al., 1993). Major difficulties for such an approach are the low sensitivity of electron probe x-ray microanalysis for Al determination (Lazof et al., 1994, 1997) and the poor visual distinction of subcellular structures in freeze-dried samples, in combination with the extremely low Al tissue concentrations, which have been shown to cause inhibition of root elongation (Lazof et al., 1994, 1996).Using a highly sensitive monitoring technique for root growth, we have previously shown that 20 μm Al (2.1 μm Al3+ activity) causes a significant decrease in the relative root-elongation rate in the Al-tolerant maize var C 525 M after 112 min of exposure, whereas after 24 h the relative elongation rate did not differ from that of the controls (Llugany et al., 1995). In this paper we report results on the changes in the subcellular distribution of Al in root tips during the initial root-growth response (0–24 h) of var C 525 M exposed to 20 μm Al (2.1 μm Al3+ activity). Hematoxylin staining, ultrastructural observations, and EDXMA were performed on root tips after 0, 4, and 24 h of exposure of plants to control or Al-containing nutrient solutions to detect a possible relationship between changes in subcellular Al compartmentation and ultrastructural alterations, which may explain why, after a transient inhibition, the root-elongation rate recovers during the initial 24 h of exposure to Al. EDXMA with scanning TEM on glutaraldehyde-fixed, PA-stained, and freeze-substituted samples were performed. Although these techniques only allow a semiquantitative estimation of mineral contents, the better visual resolution obtained results in more reliable data on the subcellular localization than EDXMA with SEM on freeze-dried or frozen-hydrated bulk specimens (Van Steveninck and Van Steveninck, 1991).  相似文献   

16.
Background and Aims Manganese (Mn) and aluminium (Al) phytotoxicities occur mainly in acid soils. In some plant species, Al alleviates Mn toxicity, but the mechanisms underlying this effect are obscure.Methods Rice (Oryza sativa) seedlings (11 d old) were grown in nutrient solution containing different concentrations of Mn2+ and Al3+ in short-term (24 h) and long-term (3 weeks) treatments. Measurements were taken of root symplastic sap, root Mn plaques, cell membrane electrical surface potential and Mn activity, root morphology and plant growth.Key Results In the 3-week treatment, addition of Al resulted in increased root and shoot dry weight for plants under toxic levels of Mn. This was associated with decreased Mn concentration in the shoots and increased Mn concentration in the roots. In the 24-h treatment, addition of Al resulted in decreased Mn accumulation in the root symplasts and in the shoots. This was attributed to higher cell membrane surface electrical potential and lower Mn2+ activity at the cell membrane surface. The increased Mn accumulation in roots from the 3-week treatment was attributed to the formation of Mn plaques, which were probably related to the Al-induced increase in root aerenchyma.Conclusions The results show that Al alleviated Mn toxicity in rice, and this could be attributed to decreased shoot Mn accumulation resulting from an Al-induced decrease in root symplastic Mn uptake. The decrease in root symplastic Mn uptake resulted from an Al-induced change in cell membrane potential. In addition, Al increased Mn plaques in the roots and changed the binding properties of the cell wall, resulting in accumulation of non-available Mn in roots.  相似文献   

17.
Assessing the phytotoxicity of mononuclear hydroxy-aluminum   总被引:6,自引:0,他引:6  
Abstract Al3+ is an important rhizotoxic ion in acid soils around the world. Al3+ is in equilibrium with mononuclear hydroxy-Al species, such as AlOH2+ and AL(OH)2+, but the toxicity of these species has not been determined. Polynuclear Al may also coexist with Al3+, and one of these species, AlO4Al12(OH)24(H2O)1274, is very toxic. In order to determine the toxicity of mononuclear hydroxy-Al we have reanalysed the results of previously published, solution-culture experiments and have performed new experiments. Several problems are inherent in these studies. At pH values less than 5.0, the activities of the mononuclear hydroxy-Al species are low relative to Al3+, but attempts to change the ratio by raising the pH generally initiate the formation of polynuclear Al. (We discovered that mononuclear solutions are stable for many days when {Al3+}/{H+}3≤ 108.8, where braces denote activities.) We avoided, or accounted for, polynuclear Al in our studies. In addition, we used up-to-date equilibrium constants to compute Al species, very simple culture media (generally containing CaCl2, AlCl3 and HCl as the only inputs), short-term (2d) growth, and an Al-sensitive wheat variety (Triticum aestivum L. cv. Tyler) that permitted low Al levels and, consequently, higher pH values without Al polymerization. Experiments were designed in which the solutions were constant in {Al3+} and variable in mononuclear hydroxy-Al or were orthonal (factorial) in {Al3+} and {AlOH2+}. Linear and nonlinear, simple and multiple, regression analyses of these and previous experiments failed to reveal any toxicity for mononuclear hydroxy-Al to Tyler wheat.  相似文献   

18.
The effects of Al2(SO4)3·18H2O on growth of root and apical root cells were studied in seedlings of rice cultivars differing in Al resistance including I Kong Pao and Aiwu (Al-sensitive) and IRAT 112 and IR6023-10-1-1 (Al-resistant). Inhibition of root growth was a typical effect of Al, and the extent of the inhibition depended on both cultivar and Al concentration. Al impaired the activity of the root meristem as indicated by reductions in its size, mitotic activity and the diameter of the meristematic cell nucleoli. Cell size in the elongation zone of the root was also reduced by Al. The reliability of the haematoxylin staining method to classify rice cultivars according to their Al-sensitivity failed to discriminate the Al-resistant IR6023-10-1-1 cultivar from the two sensitive cultivars. The results are discussed in relation to the Al resistance mechanisms operating in rice.  相似文献   

19.
Summary In order to determine the effects of concentration on plant growth, aluminium (Al) was extracted (10–3 M CaCl2) from 4 acid brown hill soils which had been treated with superphosphate at rates equivalent to 0 to 300 kg P ha–1. The soils ranged in pH (CaCl2) from 3.5 to 4.9, and Al concentration from 0 to 0.6 mM. The effects of Al on ryegrass growth in the 4 soils in a glasshouse was compared with its effect on radicle elongation of seeds germinated in contact with CaCl2 extracts from the same soils.Ryegrass root growth in the glasshouse, and radicle elongation in the bioassay test were both unaffected by Al concentrations below 0.1 mM. Root growth was substantially reduced when Al concentration exceeded 0.1 mM and above 0.2 mM growth was almost completely inhibited. Radicle elongation rate was also reduced when the concentration of Al was greater than 0.2 mM agreeing well with the observation from the pot experiment.It is concluded that because of its speed and convenience the bioassay method offers a useful method of establishing critical levels of Al for crop plants.  相似文献   

20.
Zhang F  Zhang H  Xia Y  Wang G  Xu L  Shen Z 《Plant cell reports》2011,30(8):1475-1483
We examined ameliorative effects of salicylic acid (SA) on two cadmium (Cd)-stressed legume crops with different Cd tolerances, viz. Phaseolus aureus (Cd sensitive) and Vicia sativa (Cd tolerant). Cd at 50 μM significantly increased the production of hydrogen peroxide (H2O2) and superoxide anion (O2·−) in root apoplasts of P. aureus and V. sativa. When comparing the two species, we determined that Cd-induced production of H2O2 and O2·− was more pronounced in P. aureus root apoplasts than in V. sativa root apoplasts. V. sativa had higher activities of superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) than P. aureus in root symplasts and apoplasts. Seed-soaking pretreatment with 100 μM SA decreased Cd-induced production of H2O2 and O2·− in apoplasts of both species, and increased activities of symplastic and apoplastic SOD, symplastic APX, and apoplastic CAT under Cd stress. Hence, SA-induced Cd tolerances in P. aureus and V. sativa are likely associated with increases in symplastic and apoplastic antioxidant enzyme activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号