首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
Saccharomyces cerevisiae Piflp helicase is the founding member of the Pifl subfamily that isconserved from yeast to human.The potential human homolog of the yeast PIFI gene has been cloned fromthe cDNA library of the Hek293 cell line.Here,we described a purification procedure of glutathione S-transferase(GST)-fused N terminal truncated human Pifl protein(hPif1ΔN)from yeast and characterizedthe enzymatic kinetics of its ATP hydrolysis activity.The ATPase activity of human Pif1 is dependent ondivalent cation,such as Mg~(2 ),Ca~(2 )and single-stranded DNA.Km for ATP for the ATPase activity isapproximately 200 μM.As the ATPase activity is essential for hPifl's helicase activity,these results willfacilitate the further investigation on hPif1.  相似文献   

3.
The aim of this study was the expression and production in Escherichia coli of the nucleotide-binding domains (NBDs) of the human ABCA1 transporter, in a soluble, non-denatured form. To increase the protein solubility, and avoid expression in E. coli inclusion bodies, we extended the length of the expressed NBD domains, to include proximal domains. The corresponding cDNA constructs were used to express the N-terminal His-tagged WT and mutant proteins, which were purified by Ni(2+)-affinity chromatography. Optimal expression of soluble proteins was obtained for constructs including the NBD, the downstream 80-residue domain, and about 20 upstream residues. The size homogeneity of WT and mutant NBDs was determined by Dynamic Light Scattering, and ATP-binding constants and ATPase activities were measured. The NBD1 and NBD2 domains bound ATP with comparable affinity. The ATPase activity of WT His-NBD1 was about three times higher than that of NBD2 and amounted to 5913 compared to 1979 nmol Pi/micromol NBD/min for WT His-NBD2. All engineered mutants had comparable ATPase activity to the corresponding WT protein. The optimisation of the length of the expressed proteins, based upon the boundary prediction of NBDs and neighbour domains, enables the expression and purification of soluble ABCA1 NBDs, with high ATPase activity. This approach should prove useful for the study of the structural and functional properties of the NBDs and other domains of the ABC transporters.  相似文献   

4.
ATP-binding cassette protein G1 (ABCG1) is important for the formation of HDL. However, the biochemical properties of ABCG1 have not been reported, and the mechanism of how ABCG1 is involved in HDL formation remains unclear. We established a procedure to express and purify human ABCG1 using the suspension-adapted human cell FreeStyle293-F. ABCG1, fused at the C terminus with green fluorescent protein and Flag-peptide, was solubilized with n-dodecyl-β-D-maltoside and purified via a single round of Flag-M2 antibody affinity chromatography. The purified ABCG1 was reconstituted in liposome of various lipid compositions, and the ATPase activity was analyzed. ABCG1 reconstituted in egg lecithin showed ATPase activity (150 nmol/min/mg), which was inhibited by beryllium fluoride. The ATPase activity of ABCG1, reconstituted in phosphatidylserine liposome, was stimulated by cholesterol and choline phospholipids (especially sphingomyelin), and the affinity for cholesterol was increased by the addition of sphingomyelin. These results suggest that ABCG1 is an active lipid transporter and possesses different binding sites for cholesterol and sphingomyelin, which may be synergistically coupled.  相似文献   

5.
The human transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the endoplasmic reticulum lumen. The functional unit of TAP is a heterodimer composed of the TAP1 and TAP2 subunits, both of which are members of the ABC-transporter family. ABC-transporters are ATP-dependent pumps, channels, or receptors that are composed of four modules: two nucleotide-binding domains (NBDs) and two transmembrane domains (TMDs). Although the TMDs are rather divergent in sequence, the NBDs are conserved with respect to structure and function. Interestingly, the NBD of TAP1 contains mutations at amino acid positions that have been proposed to be essential for catalytic activity. Instead of a glutamate, proposed to act as a general base, TAP1 contains an aspartate and a glutamine instead of the conserved histidine, which has been suggested to act as the linchpin. We used this degeneration to evaluate the individual contribution of these two amino acids to the ATPase activity of the engineered TAP1-NBD mutants. Based on our results a catalytic hierarchy of these two fundamental amino acids in ATP hydrolysis of the mutated TAP1 motor domain was deduced.  相似文献   

6.
The human multidrug resistance protein, or P-glycoprotein (Pgp), exhibits a high-capacity drug-dependent ATP hydrolytic activity that is a direct reflection of its drug transport capability. This activity is readily measured in membranes isolated from cultured insect cells infected with a baculovirus carrying the humanmdrl cDNA. The drug-stimulated ATPase activity is a useful alternative to conventional screening systems for identifying high-affinity drug substrates of the Pgp with potential clinical value as chemosensitizers for tumor cells that have become drug resistant. Using this assay system, a variety of drugs have been directly shown to interact with the Pgp. Many of the drugs stimulate the Pgp ATPase activity, but certain drugs bind tightly to the drug-binding site of the Pgp without eliciting ATP hydrolysis. Either class of drugs may be useful as chemosensitizing agents. The baculovirus/insect cell Pgp ATPase assay system may also facilitate future studies of the molecular structure and mechanism of the Pgp.  相似文献   

7.
8.
Cellular localization and trafficking of the human ABCA1 transporter   总被引:16,自引:0,他引:16  
ABCA1, the ATP-binding cassette protein mutated in Tangier disease, mediates the efflux of excess cellular sterol to apoA-I and thereby the formation of high density lipoprotein. The intracellular localization and trafficking of ABCA1 was examined in stably and transiently transfected HeLa cells expressing a functional human ABCA1-green fluorescent protein (GFP) fusion protein. The fluorescent chimeric ABCA1 transporter was found to reside on the cell surface and on intracellular vesicles that include a novel subset of early endosomes, as well as late endosomes and lysosomes. Studies of the localization and trafficking of ABCA1-GFP in the presence of brefeldin A or monensin, agents known to block intracellular vesicular trafficking, as well as apoA-I-mediated cellular lipid efflux, showed that: (i) ABCA1 functions in lipid efflux at the cell surface, and (ii) delivery of ABCA1 to lysosomes for degradation may serve as a mechanism to modulate its surface expression. Time-lapse fluorescence microscopy revealed that ABCA1-GFP-containing early endosomes undergo fusion, fission, and tubulation and transiently interact with one another, late endocytic vesicles, and the cell surface. These studies establish a complex intracellular trafficking pathway for human ABCA1 that may play important roles in modulating ABCA1 transporter activity and cellular cholesterol homeostasis.  相似文献   

9.
A DNA-stimulated ATP-gamma-phosphohydrolase of molecular weight 75000 was purified from Escherichia coli cells. The ATPase, a globular molecule (identical probably with an ATPase described previously by Richet and Kohiyama in 1976) shows specificity for adenine nucleotides, it prefers single-stranded DNA as the cofactor, it exhibits a complicated mode of response to variations of the cofacter concentration and it is devoid of nuclease activity. Preparations derived from rep3 mutant cells yield widely varying amounts of an apparently normal ATPase.  相似文献   

10.
MDR1 (multidrug resistance 1)/P-glycoprotein is an ATP-driven transporter which excretes a wide variety of structurally unrelated hydrophobic compounds from cells. It is suggested that drugs bind to MDR1 directly from the lipid bilayer and that cholesterol in the bilayer also interacts with MDR1. However, the effects of cholesterol on drug-MDR1 interactions are still unclear. To examine these effects, human MDR1 was expressed in insect cells and purified. The purified MDR1 protein was reconstituted in proteoliposomes containing various concentrations of cholesterol and enzymatic parameters of drug-stimulated ATPase were compared. Cholesterol directly binds to purified MDR1 in a detergent soluble form and the effects of cholesterol on drug-stimulated ATPase activity differ from one drug to another. The effects of cholesterol on K(m) values of drug-stimulated ATPase activity were strongly correlated with the molecular mass of that drug. Cholesterol increases the binding affinity of small drugs (molecular mass <500 Da), but does not affect that of drugs with a molecular mass of between 800 and 900 Da, and suppresses that of valinomycin (molecular mass >1000 Da). V(max) values for rhodamine B and paclitaxel are also increased by cholesterol, suggesting that cholesterol affects turnover as well as drug binding. Paclitaxel-stimulated ATPase activity of MDR1 is enhanced in the presence of stigmasterol, sitosterol and campesterol, as well as cholesterol, but not ergosterol. These results suggest that the drug-binding site of MDR1 may best fit drugs with a molecular mass of between 800 and 900 Da, and that cholesterol may support the recognition of smaller drugs by adjusting the drug-binding site and play an important role in the function of MDR1.  相似文献   

11.
12.
Keratinocytes require abundant cholesterol for cutaneous permeability barrier function; hence, the regulation of cholesterol homeostasis is of great importance. ABCA1 is a membrane transporter responsible for cholesterol efflux and plays a pivotal role in regulating cellular cholesterol levels. We demonstrate that ABCA1 is expressed in cultured human keratinocytes (CHKs) and murine epidermis. Liver X receptor (LXR) activation markedly stimulates ABCA1 mRNA and protein levels in CHKs and mouse epidermis. In addition to LXR, activators of peroxisome proliferator-activated receptor (PPAR)alpha, PPARbeta/delta, and retinoid X receptor (RXR), but neither PPARgamma nor retinoic acid receptor, also increase ABCA1 expression in CHKs. Increases in cholesterol supply induced by LDL or mevalonate stimulate ABCA1 expression, whereas inhibiting cholesterol synthesis with statins or cholesterol sulfate decreases ABCA1 expression in CHKs. After acute permeability barrier disruption by either tape-stripping or acetone treatment, ABCA1 expression declines, and this attenuates cellular cholesterol efflux, making more cholesterol available for regeneration of the barrier. In addition, during fetal epidermal development, ABCA1 expression decreases at days 18-22 of gestation (term = 22 days), leaving more cholesterol available during the critical period of barrier formation. Together, our results show that ABCA1 is expressed in keratinocytes, where it is negatively regulated by a decrease in cellular cholesterol levels or altered permeability barrier requirements and positively regulated by activators of LXR, PPARs, and RXR or increases in cellular cholesterol levels.  相似文献   

13.
L de Meis 《FEBS letters》1987,213(2):333-336
The ATPase activity of soluble F1 ATPase of mitochondria is activated by Pi. The concentration of Pi required for half-maximal activation decreases from a value higher than 50 mM to about 1 mM Pi when one of the organic solvents dimethyl sulfoxide (15 to 30%), methanol (7.5 to 15%) or ethylene glycol (10 to 30%) is added to the assay medium. This effect is observed in the presence of MgCl2 but not in the presence of CaCl2.  相似文献   

14.
15.
16.
ATP-binding cassette transporter A1 (ABCA1) is critical for the generation of nascent high-density lipoprotein (HDL) and plays important roles in cholesterol homeostasis. ABCA1 has two large extracellular domains (ECDs), which may interact directly with apolipoprotein A-I (apoA-I). However, the molecular mechanisms underlying HDL formation and the importance of ABCA1–apoA-I interactions in HDL formation remain unclear. We investigated the ABCA1–apoA-I interaction in photo-activated crosslinking experiments using sulfo-SBED–labeled apoA-I. ApoA-I bound to cells expressing ABCA1, but not to untransfected cells or cells expressing non-functional ABCA1. Binding was inhibited by sulfo-SBED–labeled apoA-I, and crosslinking of sulfo-SBED–labeled apoA-I with ABCA1 was inhibited by non-labeled apoA-I, suggesting that sulfo-SBED–labeled apoA-I specifically binds and crosslinks with functional ABCA1. Proteolytic digestion of crosslinked ABCA1 revealed that apoA-I bound the N-terminal half of ABCA1, and that the first ECD of ABCA1 is an apoA-I binding site.

Abbreviations: ABC: ATP-binding cassette; apoA-I: apolipoprotein A-I; ATP: adenosine triphosphate; CHAPS: 3-(3-cholamidepropyl)dimethylammonio-1- propanesulphonate; DTT: dithiothreitol; ECD: extra cellular domain; EDTA: ethylenediaminetetraacetic acid; GFP: green fluorescent protein; HA: hemagglutinin; HDL: high density lipoprotein; HEK: human embryonic kidney; HEPES: 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid; sulfo-SBED: (sulfosuccinimidyl-2-[6-(biotinamido)-2-(p-azidobenzamido)hexanoamido] ethyl-1,3?-dithiopropionate; NHS-ester, N-hydroxysuccinimide-ester  相似文献   


17.
A previously unreported single-stranded DNA-dependent nucleoside 5'-triphosphatase with DNA unwinding activity has been purified from extracts of Escherichia coli lacking the F factor. Fractions of the purified enzyme contain a major polypeptide of Mr = 75,000 which contains the active site(s) for both ATP hydrolysis and helicase activity. This is consistent with the results of gel filtration chromatography which indicate a native molecular mass of 75 kDa. The 75-kDa helicase has a preference for ATP (dATP) as a substrate in the hydrolysis reaction and requires the presence of a single-stranded DNA cofactor. The helicase reaction catalyzed by the enzyme has been characterized using an in vitro strand displacement assay. The 75-kDa helicase displaces a 71-nucleotide DNA fragment in an enzyme concentration-dependent and time-dependent reaction. The helicase reaction depends on the presence of a hydrolyzable nucleoside 5'-triphosphate (NTP) suggesting that NTP hydrolysis is required for the unwinding activity. In addition, the enzyme can displace a 343-nucleotide DNA fragment albeit less efficiently. The direction of the unwinding reaction is 3' to 5' with respect to the strand of DNA on which the enzyme is bound. The molecular size of this helicase and the direction of the unwinding reaction are similar to both helicase II and Rep protein. However, the 75-kDa helicase has been shown to be distinct from both helicase II and Rep protein using immunological, physical, and genetic criteria. The discovery of a new helicase brings the total number of helicases found in E. coli cell extracts (lacking F factor) to five.  相似文献   

18.
ABCA1 plays a key role in cellular cholesterol and phospholipid traffic. To explore the biochemical properties of this membrane protein we applied a Baculovirus-insect cell expression system. We found that human ABCA1 in isolated membranes showed a specific, Mg(2+)-dependent ATP binding but had no measurable ATPase activity. Nevertheless, conformational changes in ABCA1 could be demonstrated by nucleotide occlusion, even without arresting the catalytic cycle by phosphate-mimicking anions. Addition of potential lipid substrates or lipid acceptors (apolipoprotein A-I) did not modify the ATPase activity or nucleotide occlusion by ABCA1. Our data indicate that ATP hydrolysis by ABCA1 occurs at a very low rate, suggesting that ABCA1 may not function as an effective active transporter as previously assumed. In the light of the observed conformational changes we propose a regulatory function for human ABCA1.  相似文献   

19.
Monoclonal antibodies (mAbs) have been made against each of the five subunits of ECF1 (alpha, beta, gamma, delta, and epsilon), and these have been used in topology studies and for examination of the role of individual subunits in the functioning of the enzyme. All of the mAbs obtained reacted with ECF1, while several failed to react with ECF1F0, including three mAbs against the gamma subunit (gamma II, gamma III, and gamma IV), one mAb against delta, and two mAbs against epsilon (epsilon I and epsilon II). These topology data are consistent with the gamma, delta, and epsilon subunits being located at the interface between the F1 and F0 parts of the complex. Two forms of ECF1 were used to study the effects of mAbs on the ATPase activity of the enzyme: ECF1 with the epsilon subunit tightly bound and acting to inhibit activity and ECF1* in which the delta and epsilon subunits had been removed by organic solvent treatment. ECF1* had an ATPase activity under standard conditions of 93 mumol of ATP hydrolyzed min-1 mg-1, cf. an activity of 7.5 units mg-1 for our standard ECF1 preparation and 64 units mg-1 for enzyme in which the epsilon subunit had been removed by trypsin treatment. The protease digestion of ECF1* reduced activity to 64 units mg-1 in a complicated process involving an inhibition of activity by cleavage of the alpha subunit, activation by cleavage of gamma, and inhibition with cleavage of the beta subunit. mAbs to the gamma subunit, gamma II and gamma III, activated ECF1 by 4.4- and 2.4-fold, respectively, by changing the affinity of the enzyme for the epsilon subunit, as evidenced by density gradient centrifugation experiments. The gamma-subunit mAbs did not alter the ATPase activity of ECF1*- or trypsin-treated enzyme. The alpha-subunit mAb (alpha I) activated ECF1 by a factor of 2.5-fold and ECF1F0 by 1.3-fold, but inhibited the ATPase activity of ECF1* by 30%.  相似文献   

20.
ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in apoA-I lipidation, a key step in reverse cholesterol transport. cAMP induces apoA-I binding activity and promotes cellular cholesterol efflux. We investigated the role of the cAMP/protein kinase A (PKA) dependent pathway in the regulation of cellular cholesterol efflux. Treatment of normal fibroblasts with 8-bromo-cAMP (8-Br-cAMP) increased significantly apoA-I-mediated cholesterol efflux, with specificity for apoA-I, but not for cyclodextrin. Concomitantly, 8-Br-cAMP increased ABCA1 phosphorylation in a time-dependent manner. Maximum phosphorylation was reached in <10 min, representing a 260% increase compared to basal ABCA1 phosphorylation level. Forskolin, a known cAMP regulator, increased both cellular cholesterol efflux and ABCA1 phosphorylation. In contrast, H-89 PKA inhibitor reduced cellular cholesterol efflux by 70% in a dose-dependent manner and inhibited almost completely ABCA1 phosphorylation. To determine whether naturally occurring mutants of ABCA1 may affect its phosphorylation activity, fibroblasts from subjects with familial HDL deficiency (FHD, heterozygous ABCA1 defect) and Tangier disease (TD, homozygous/compound heterozygous ABCA1 defect) were treated with 8-Br-cAMP or forskolin. Cellular cholesterol efflux and ABCA1 phosphorylation were increased in FHD but not in TD cells. Taken together, these findings provide evidence for a link between the cAMP/PKA-dependent pathway, ABCA1 phosphorylation, and apoA-I mediated cellular cholesterol efflux.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号