首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The broad dynamic range of protein abundances, which can vary from about 10(6) for cells to 10(10) for tissues in complex proteomes, continues to challenge proteomics research. Proteome analysis, in particular organelle proteomics, using current approaches, requires extensive fractionation, separation, and enrichment. Over the years, organelle separation was achieved through the use of differential and density-gradient ultracentrifugation. However, the traditional fixed-volume process is a time-consuming and labor-intensive method, especially with large quantities of sample. Here, we present a novel tool for subcellular fractionation of biologically complex mixtures: continuous-flow ultracentrifugation of tissue homogenates to obtain both organelle separation and extensive organelle enrichment at the same time. In this study, rat liver tissues from two different age groups (3-8 wk and greater than 1 y old) were homogenized by blending. After removing nuclei, the resulting homogenates were further fractionated at the subcellular level by the use of sucrose gradient continuous-flow ultracentrifugation. Each organelle's enriched fractions were identified by Western blot analysis. To study the possible effects of aging on the endoplasmic reticulum and Golgi apparatus, we compared the organelle protein profiles of the two groups of rat liver tissues using two-dimensional gel electrophoresis, digitized imaging of two-dimensional gel electrophoresis, and mass spectrometry. Significant differences in the protein profiles of both organelles were observed between the two groups of rat tissues. The technique described here for fractionation and enrichment of organelles demonstrated a useful tool for proteomics research, including identification of low-abundance proteins and post-translational modifications.  相似文献   

2.
Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver.  相似文献   

3.
Summary— A review of the proteinaceous machinery involved in protein sorting pathways and protein folding and assembly in mitochondria and peroxisomes is presented. After considering the various sorting pathways and targeting signals of mitochondrial and peroxisomal proteins, we make a comparative dissection of the protein factors involved in: i) the stabilization of cytosolic precursor proteins in a translocation competent conformation; ii) the membrane import apparatus of mitochondria and peroxisomes; iii) the processing of mitochondrial precursor proteins, and the eventual processing of certain peroxisomal precursor, in the interior of the organelles; and iv) the requirement of molecular chaperones for appropriate folding and assembly of imported proteins in the matrix of both organelles. Those aspects of mitochondrial biogenesis that have developed rapidly during the last few years, such as the requirement of molecular chaperones, are stressed in order to stimulate further parallel investigations aimed to understand the origin, biochemistry, molecular biology and pathology of peroxisomes. In this regard, a brief review of findings from our group and others is presented in which the role of the F1-ATPase α-subunit is pointed out as a molecular chaperone of mitochondria and chloroplasts. In addition, data are presented that could question our previous indication that the immunoreactive protein found in the rat liver peroxisomes is due to the presence of the F1-ATPase α-subunit.  相似文献   

4.
Mitochondrial alterations in human gastric carcinoma cell line   总被引:1,自引:0,他引:1  
We compared mitochondrial function, morphology, and proteome in the rat normal gastric cell line RGM-1 and the human gastric cancer cell line AGS. Total numbers and cross-sectional sizes of mitochondria were smaller in AGS cells. Mitochondria in AGS cells were deformed and consumed less oxygen. Confocal microscopy indicated that the mitochondrial inner membrane potential was hyperpolarized and the mitochondrial Ca2+ concentration was elevated in AGS cells. Interestingly, two-dimensional electrophoresis proteomics on the mitochondria-enriched fraction revealed high expression of four mitochondrial proteins in AGS cells: ubiquinol-cytochrome c reductase, mitochondrial short-chain enoyl-coenzyme A hydratase-1, heat shock protein 60, and mitochondria elongation factor Tu. The results provide clues as to the mechanism of the mitochondrial changes in cancer at the protein level and may serve as potential cancer biomarkers in mitochondria. two-dimensional gel electrophoresis proteomics; biomarker; cancer  相似文献   

5.
Ultracentrifugation on a density gradient remains the only reliable way to obtain highly pure mitochondria preparations. However, it is not readily available for any laboratory and has a serious disadvantage of providing low mitochondria yield, which can be critical when working with limited starting material. Here we describe a combined method for isolation of mitochondria for proteomic studies that includes cell disruption by sonication, differential centrifugation, and magnetic separation. Our method provides remarkable enrichment of mitochondrial proteins as compared to differential centrifugation, magnetic separation, or their combination, and it enables the strongest depletion of cytoplasmic components, as assessed by two-dimensional electrophoresis, mass spectrometry, and Western blot. It also doubles the yield of mitochondria. However, our method should not be used for functional studies as most of the isolated organelles demonstrate disturbed structure in electron microphotographs.  相似文献   

6.
MitoTracker Green (MTG) is a mitochondrial-selective fluorescent label commonly used in confocal microscopy and flow cytometry. It is expected that this dye selectively accumulates in the mitochondrial matrix where it covalently binds to mitochondrial proteins by reacting with free thiol groups of cysteine residues. Here we demonstrate that MTG can be used as a protein labeling reagent that is compatible with a subsequent analysis by capillary electrophoresis with laser-induced fluorescence detection (CE-LIF). Although the MTG-labeled proteins and MTG do not seem to electrophoretically separate, an enhancement in fluorescence intensity of the product indicates that only proteins with free thiol groups are capable of reacting with MTG. In addition we propose that MTG is a partially selective label towards some mitochondrial proteins. This selectivity stems from the high MTG concentration in the mitochondrial matrix that favors alkylation of the available thiol groups in this subcellular compartment. To that effect we treated mitochondria-enriched fractions that had been prepared by differential centrifugation of an NS-1 cell lysate. This fraction was solubilized with an SDS-containing buffer and analyzed by CE-LIF. The presence of a band with fluorescence stronger than MTG alone also indicated the presence of an MTG-protein product. Confirming that MTG is labeling mitochondrial proteins was done by treating the solubilized mitochondrial fraction with 5-furoylquinoline-3-carboxaldehyde (FQ), a fluorogenic reagent that reacts with primary amino groups, and analysis by CE-LIF using two separate detection channels: 520 nm for MTG-labeled species and 635 nm for FQ-labeled species. In addition, these results indicate that MTG labels only a subset of proteins in the mitochondria-enriched fraction.  相似文献   

7.
The analysis of complex cellular proteomes by means of two-dimensional gel electrophoresis (2-DE) is significantly limited by the power of resolution of this technique. Although subcellular fractionation can be a fundamental first step to increase resolution, it frequently leads to preparations contaminated with other cellular structures. Here, we chose mitochondria of Saccharomyces cerevisiae to demonstrate that an integrated zone-electrophoretic purification step (ZE), with a free-flow electrophoresis device (FFE), can assist in overcoming this problem, while significantly improving their degree of purity. Whereas mitochondrial preparations isolated by means of differential centrifugation include a considerable degree of non-mitochondrial proteins (16%), this contamination could be effectually removed by the inclusion of a ZE-FFE purification step (2%). This higher degree of purity led to the identification of many more proteins from ZE-FFE purified mitochondrial protein extracts (n = 129), compared to mitochondrial protein extracts isolated by differential centrifugation (n = 80). Moreover, a marked decrease of degraded proteins was found in the ZE-FFE purified mitochondrial protein extracts. It is noteworthy that even at a low 2-DE resolution level, a four-fold higher number (17 versus 4) of presumably low abundance proteins could be identified in the ZE-FFE purified mitochondrial protein extracts. Therefore these results represent a feasible approach for an in-depth proteome analysis of mitochondria and possibly other organelles.  相似文献   

8.
UGO1 encodes an outer membrane protein required for mitochondrial fusion   总被引:1,自引:0,他引:1  
Membrane fusion plays an important role in controlling the shape, number, and distribution of mitochondria. In the yeast Saccharomyces cerevisiae, the outer membrane protein Fzo1p has been shown to mediate mitochondrial fusion. Using a novel genetic screen, we have isolated new mutants defective in the fusion of their mitochondria. One of these mutants, ugo1, shows several similarities to fzo1 mutants. ugo1 cells contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. ugo1 mutants lose mitochondrial DNA (mtDNA). In zygotes formed by mating two ugo1 cells, mitochondria do not fuse and mix their matrix contents. Fragmentation of mitochondria and loss of mtDNA in ugo1 mutants are rescued by disrupting DNM1, a gene required for mitochondrial division. We find that UGO1 encodes a 58-kD protein located in the mitochondrial outer membrane. Ugo1p appears to contain a single transmembrane segment, with its NH(2) terminus facing the cytosol and its COOH terminus in the intermembrane space. Our results suggest that Ugo1p is a new outer membrane component of the mitochondrial fusion machinery.  相似文献   

9.
The preparative isolation of mitochondria from Chinese hamster ovary cells   总被引:1,自引:0,他引:1  
A "hybrid" discontinuous gradient consisting of 6% Percoll overlaid on metrizamide separated mitochondria from other organelles in a Chinese hamster ovary cell postnuclear supernatant in a single 15-min centrifugation. The mitochondrial preparation contained about 25% of the mitochondrial marker, cytochrome-c oxidase, in a form that was about 90% latent. Based on the postnuclear supernatant, cytochrome-c oxidase activity was enriched approximately 45-fold. Trace amounts of lysosomal, rough endoplasmic reticular, Golgi, peroxisomal, plasma membrane, and cytosolic markers were found in the preparation. Electron microscopy revealed that the preparation consisted almost exclusively of mitochondria with only minor amounts of contaminating organelles. Analysis of the mitochondrial preparation by sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the mitochondrial preparation had a unique protein profile compared to the postnuclear supernatant and other gradient interfaces. Separation of the mitochondria into membrane and lumenal (matrix) fractions by treatment with 100 mM Na2CO3, pH 11.5, also indicated that the mitochondria were intact; they were rich in lumenal proteins. The data indicate that the mitochondria represent maximally about 2.2% of Chinese hamster ovary cell postnuclear supernatant protein. These isolated mitochondria should prove useful for problems in molecular cell biology.  相似文献   

10.
Oxygen uptake with succinate or palmitoyl-CoA as substrates can be measured in rat liver mitochondria that have been isolated by sucrose density gradient centrifugation providing the fractions are diluted with a 30 mM phosphate buffer rather than with an isotonic medium. Separate assay procedures were used to measure peroxisomal and mitochondrial β-oxidation of palmitoyl-CoA in the fractions of a sucrose gradient used to separate these organelles. A preliminary estimate of the ratio of palmitoyl-CoA oxidation by the mitochondrial fraction relative to the surviving peroxisomes from livers of male rats was 3.2.  相似文献   

11.
The orchestration of mitochondria within the cell represents a critical aspect of cell biology. At the center of this process is the outer mitochondrial membrane protein, Miro. Miro coordinates diverse cellular processes by regulating connections between organelles and the cytoskeleton that range from mediating contacts between the endoplasmic reticulum and mitochondria to the regulation of both actin and microtubule motor proteins. Recently, a number of cell biological, biochemical, and protein structure studies have helped to characterize the myriad roles played by Miro. In addition to answering questions regarding Miro's function, these studies have opened the door to new avenues in the study of Miro in the cell. This review will focus on summarizing recent findings for Miro's structure, function, and activity while highlighting key questions that remain unanswered.  相似文献   

12.
Fungal hydrogenosomes contain mitochondrial heat-shock proteins   总被引:3,自引:0,他引:3  
At least three groups of anaerobic eukaryotes lack mitochondria and instead contain hydrogenosomes, peculiar organelles that make energy and excrete hydrogen. Published data indicate that ciliate and trichomonad hydrogenosomes share common ancestry with mitochondria, but the evolutionary origins of fungal hydrogenosomes have been controversial. We have now isolated full-length genes for heat shock proteins 60 and 70 from the anaerobic fungus Neocallimastix patriciarum, which phylogenetic analyses reveal share common ancestry with mitochondrial orthologues. In aerobic organisms these proteins function in mitochondrial import and protein folding. Homologous antibodies demonstrated the localization of both proteins to fungal hydrogenosomes. Moreover, both sequences contain amino-terminal extensions that in heterologous targeting experiments were shown to be necessary and sufficient to locate both proteins and green fluorescent protein to the mitochondria of mammalian cells. This finding, that fungal hydrogenosomes use mitochondrial targeting signals to import two proteins of mitochondrial ancestry that play key roles in aerobic mitochondria, provides further strong evidence that the fungal organelle is also of mitochondrial ancestry. The extraordinary capacity of eukaryotes to repeatedly evolve hydrogen-producing organelles apparently reflects a general ability to modify the biochemistry of the mitochondrial compartment.  相似文献   

13.
Nogo is a potent inhibitor of regeneration following spinal cord injury. To develop a better understanding of the mechanisms responsible for regenerative failure we used a yeast two-hybrid approach to try and identify proteins that interact with Nogo. We identified a novel mitochondrial protein designated Nogo-interacting mitochondrial protein (NIMP) in a screen of an adult human brain cDNA library. This interaction was confirmed by co-immunoprecipitation in both brain tissue (endogenous) and transfected HEK293T cells (overexpressed). In support of these studies we demonstrate that Nogo interacts with the UQCRC1 and UQCRC2 components of complex III, within the mitochondrial respiratory chain. The mitochondrial localization of NIMP was evidenced by confocal image analysis and western blot analysis of isolated mitochondria. NIMP is highly conserved and ubiquitously expressed in mitochondria-enriched tissues. Within the CNS, NIMP-like immunoreactivity is present in neurons and astrocytes. These data suggest that NIMP is a novel mitochondrial protein that interacts with Nogo. The interaction of Nogo with mitochondrial proteins may provide insight into the mechanisms for Nogo-induced inhibition of neurite growth.  相似文献   

14.
Movement and positional control of mitochondria and other organelles are coordinated with cell cycle progression in the budding yeast, Saccharomyces cerevisiae. Recent studies have revealed a checkpoint that inhibits cytokinesis when there are severe defects in mitochondrial inheritance. An established checkpoint signaling pathway, the mitotic exit network (MEN), participates in this process. Here, we describe mitochondrial motility during inheritance in budding yeast, emerging evidence for mitochondrial quality control during inheritance, and organelle inheritance checkpoints for mitochondria and other organelles.  相似文献   

15.
In eukaryotic cells, proteins are targeted to their final subcellular locations with precise timing. A key underlying mechanism is the active transport of cognate mRNAs, which in many systems can be linked intimately to membrane trafficking. A prominent example is the long‐distance endosomal transport of mRNAs and their local translation. Here, we describe current highlights of fundamental mechanisms of the underlying transport process as well as of biological functions ranging from endosperm development in plants to fungal pathogenicity and neuronal processes. Translation of endosome‐associated mRNAs often occurs at the cytoplasmic surface of endosomes, a process that is needed for membrane‐assisted formation of heteromeric protein complexes and for accurate subcellular targeting of proteins. Importantly, endosome‐coupled translation of mRNAs encoding mitochondrial proteins, for example, seems to be particularly important for efficient organelle import and for regulating subcellular mitochondrial activity. In essence, these findings reveal a new mechanism of loading newly synthesised proteins onto endocytic membranes enabling intimate crosstalk between organelles. The novel link between endosomes and mitochondria adds an inspiring new level of complexity to trafficking and organelle biology.  相似文献   

16.
Visualizing mitochondrial fusion in real time, we identified two classes of fusion events in mammalian cells. In addition to complete fusion, we observed transient fusion events, wherein two mitochondria came into close apposition, exchanged soluble inter‐membrane space and matrix proteins, and re‐separated, preserving the original morphology. Transient fusion exhibited rapid kinetics of the sequential and separable mergers of the outer and inner membranes, but allowed only partial exchange of integral membrane proteins. When the inner membrane fusion protein Opa1 level was lowered or was greatly elevated, transient fusions could occur, whereas complete fusions disappeared. Furthermore, transient fusions began from oblique or lateral interactions of mitochondria associated with separate microtubules, whereas complete fusions resulted from longitudinal merging of organelles travelling along a single microtubule. In contrast to complete fusion, transient fusions both required and promoted mitochondrial motility. Transient fusions were also necessary and sufficient to support mitochondrial metabolism. Thus, Opa1 expression and cytoskeletal anchorage govern a novel form of fusion that has a distinct function in mitochondrial maintenance.  相似文献   

17.
A new technique for single-step subcellular fractionation of adipose tissue homogenates by analytical sucrose density gradient centrifugation in a vertical pocket reorientating rotor is described. The density gradient distributions of mitochondrial and peroxisomal marker enzymes in brown and white adipose tissue of control and cold exposed rats are compared. The equilibrium density of brown fat mitochondria was found to be significantly increased compared with white fat mitochondria. GDP binding activity was localized solely to the mitochondria in both control and cold-adapted brown adipose tissue. Brown and white fat mitochondria fractions were isolated by differential centrifugation and the specific activities of various enzymes in the homogenate and mitochondrial preparations determined. The specific activity of creatine kinase in brown adipose tissue was found to be ten-fold higher than in white fat and subcellular fractionation studies showed the activity to have an exclusively cytosolic distribution in both tissues. GDP binding activity and some of the mitochondrial enzymes showed, in brown adipose, a striking increase in total activity in cold adapted rats compared to control animals. For some enzyme activities there was a small increase when expressed per mg tissue or per mg mitochondrial protein. When expressed per mg DNA i.e. per cell, there was a reduced specific activity of the mitochondrial and peroxisomal enzymes in both brown and white adipose tissue on cold adaptation.  相似文献   

18.
Ru Y  Yin L  Sun H  Yin S  Pan Q  Wei H  Wu L  Liu S 《Analytical biochemistry》2012,421(1):219-226
Mitochondrial preparation is a key technique in the study of mitochondria. Growing evidence has demonstrated that mitochondrial proteins are tissue or cell type dependent. Locating the proteins in the global presence of mitochondrial membranes is a primary consideration in adopting antibodies for affinity enrichment of mitochondria on a micro scale. Two proteins located on the outer membrane of mitochondria, cytochrome b5 type B (CYB5B) and synaptojanin-2-binding protein (SYNJ2BP), were selected as candidates based on a survey of databases and the literature. The polyclonal antibodies against the truncated CYB5B and SYNJ2BP exhibited specific recognition to mitochondria and wider sensitivity to several tested mouse tissues and cell lines, whereas the antibody 22-kDa translocase of the outer mitochondrial membrane (TOM22) nearly missed detection of mitochondria in the liver and responded minimally to mitochondria from H9C2 and L-02 cells. Through the affinity enrichment for cellular mitochondria using magnetic beads coated with anti-CYB5B or anti-SYNJ2BP, we found that the anti-CYB5B beads could enrich mitochondria more efficiently even on a scale of 10,000 cultured cells. For the integrity and protein components, the enriched mitochondria on anti-CYB5B were carefully examined and were accepted in further functional study. We propose that an anti-CYB5B immunomagnetic approach is feasible in the micropreparation of mitochondria from cultured cells.  相似文献   

19.
The subcellular distribution of pyruvate-degrading enzymes has been determined in Chlamydomonas reinhardtii (Dangeard) by protoplast induction with autolysine, dig-itonin lysis and further fractionation by differential centrifugation using a Percoll cushion. Mitochondrial and plastidic fractions contained intact and physiologically competent organelles - RC 1.7, ADP/O 2.7 and rate of malate oxidation 76 nmol O, (mg protein)-1min-1 for mitochondria, CO2; fixation 46.8 μmol (mg Chi)-1 h-1 for chloroplasts.
Results from protoplast fractionation were further confirmed by the determination of enzyme activities within trypsin-treated organelles. Mitochondria (formate fermentation) and chloroplasts (chlorofermentation) were shown to possess the capacity for anaerobic pyruvate degradation. Pyruvate dehydrogenase (NAD+, EC 1.2.4.1), pyruvate formate-lyase (EC 2.3.1.54) and lactate dehydrogenase (NADH, EC 1.1.1.27) showed equal distribution between mitochondria and chloroplasts, whereas activities of phosphotransacetylase (EC 2.3.1.8) and acetate kinase (EC 2.7.2.1) were only detectable in the mitochondrial fraction. NADH- and NADPH-dependent activities of both alcohol dehydrogenase (EC 1.1.1.1) and aldehyde dehydrogenase (acylating, EC 1.2.1.10) were localized in the mitochondrial and cytoplasmic or the plastidic and cytoplasmic fractions, respectively, whereas pyruvate decarboxylase (EC 4.1.1.1) was only detected in the cytoplasmic fraction.  相似文献   

20.
We present biochemical evidence for the occurrence of a 250-kD multifunctional acetyl-coenzyme A carboxylase in barley (Hordeum vulgare) mitochondria. Organelles from 6-d-old barley seedlings were purified by differential centrifugation and Percoll density gradient centrifugation. Upon analysis by two-dimensional Blue-native (BN)/SDS-PAGE, an abundant 250-kD protein can be visualized, which runs at 500 kD on the native gel dimension. A similar 500-kD complex is present in etioplasts from barley. The mitochondrial 250-kD protein is biotinylated as indicated by specific reaction with an antibody directed against biotin. Peptide sequence analysis by electrospray ionization tandem mass spectrometry of the 250-kD proteins from both organellar fractions revealed amino acid sequences that are 100% identical to plastidic acetyl-coenzyme A carboxylase from wheat (Triticum aestivum). The 500-kD complex was also detected in wheat mitochondria, but is absent in mitochondrial fractions from Arabidopsis. Specific acetyl-coenzyme A carboxylation activity in barley mitochondria is higher than in etioplasts, suggesting an important role of mitochondria in fatty acid biosynthesis. Functional implications are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号