首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A multiplex nested PCR assay was developed by optimizing reaction components and reaction cycling parameters for simultaneous detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma (Group 16Sr V‐C) causing little leaf and bunchy top in white jute (Corchorus capsularis). Three sets of specific primers viz. a CoGMV specific (DNA‐A region) primer, a 16S rDNA universal primer pair P1/P7 and nested primer pair R16F2n/R2 for phytoplasmas were used. The concentrations of the PCR components such as primers, MgCl2, Taq DNA polymerase, dNTPs and PCR conditions including annealing temperature and amplification cycles were examined and optimized. Expected fragments of 1 kb (CoGMV), 674 bp (phytoplasma) and 370 bp (nested R16F2n/R2) were successfully amplified by this multiplex nested PCR system ensuring simultaneous, sensitive and specific detection of the phytoplasma and the virus. The multiplex nested PCR provides a sensitive, rapid and low‐cost method for simultaneous detection of jute little leaf phytoplasma and CoGMV. Based on BLASTn analyses, the phytoplasma was found to belong to the Group 16Sr V‐C.

Significance and Impact of the Study

Incidence of phytoplasma diseases is increasing worldwide and particularly in the tropical and subtropical world. Co‐infection of phytoplasma and virus(s) is also common. Therefore, use of single primer PCR in detecting these pathogens would require more time and effort, whereas multiplex PCR involving several pairs of primers saves time and reduces cost. In this study, we have developed a multiplex nested PCR assay that provides more sensitive and specific detection of Corchorus golden mosaic virus (CoGMV) and a phytoplasma in white jute simultaneously. It is the first report of simultaneous detection of CoGMV and a phytoplasma in Corchorus capsularis by multiplex nested PCR.  相似文献   

2.
A multiplex loop‐mediated isothermal amplification (mLAMP) assay was developed for the identification of three species of whitefly, Trialeurodes vaporariorum, Bemisia tabaci Middle East‐Asia Minor 1 (MEAM1) and Mediterranean (MED), major pests in the greenhouse. Each of the specific LAMP primer sets was designed based on the mitochondrial cytochrome oxidase I (mtCOI) gene sequence. The mLAMP reactions using primer mixtures labelled with fluorescent dye were performed at 63°C for 60 min and centrifuged with polyethyleneimine. Thus, T. vaporariorum, MEAM1 and MED were clearly identified by the colour precipitates under UV light. The mLAMP procedure described in this study is cost‐effective and can be performed in the field not only in the laboratory, because this method is a single analysis and does not need a special gene amplification device.  相似文献   

3.
Pear trees showing pear decline disease symptoms were observed in pear orchards in the centre and north of Iran. Detection of phytoplasmas using universal primer pair P1A/P7A followed by primer pair R16F2n/R16R2 in nested PCR confirmed association of phytoplasmas with diseased pear trees. However, PCR using group‐specific primer pairs R16(X)F1/R16(X)R1 and rp(I)F1A/rp(I)R1A showed that Iranian pear phytoplasmas are related to apple proliferation and aster yellows groups. Moreover, PCR results using primer pair ESFYf/ESFYr specific to 16SrX‐B subgroup indicated that ‘Ca. Phytoplasma prunorum’ is associated with pear decline disease in the north of Iran. RFLP analyses using HaeIII, HhaI, HinfI, HpaII and RsaI restriction enzymes confirmed the PCR results. Partial 16S rRNA, imp, rp and secY genes sequence analyses approved that ‘Ca. Phytoplasma pyri’ and ‘Ca. Phytoplasma asteris’ cause pear decline disease in the centre of Iran, whereas ‘Ca. Phytoplasma prunorum’ causes disease in the north of Iran. This is the first report of the association of ‘Ca. Phytoplasma asteris’ and ‘Ca. Phytoplasma prunorum’ with pear decline disease worldwide.  相似文献   

4.
Bunchy top disease caused by the banana bunchy top virus (BBTV) is a serious disease in hill banana. Detection of the BBTV infection in the planting material could help in the effective management of the disease. An attempt was made to develop a sensitive polymerase chain reaction (PCR) and multiplex PCR-based method for detection of BBTV in hill banana. DNA was isolated from the experimental plants at third and sixth months after planting. Multiplex PCR was done with Coat Protein (CP) and Replicase (Rep) gene-specific primer, and banana ethylene insensitive like protein (EISL) primer as internal control to identify failure in PCR reaction. This study revealed that multiplex PCR is effective for BBTV screening in hill banana with the advantage of overcoming the false positive in PCR amplification.  相似文献   

5.
A polymerase chain reaction (PCR) method was performed for rapid and sensitive detection of pathogenic Vibrio trachuri isolated from cultured Japanese horse mackerel. A set of primers was selected from the base sequence of the Pst I fragment of T9210 chromosomal DNA and used for PCR detection of T9210. This PCR specifically amplified the DNAs from V. trachuri T9210, T9213, and T9216 but not of those other bacterial strains. PCR using a Pst I-1 primer set made it possible to detect 100 fg of T9210 DNA. The PCR method reported here may be useful for detection and identification of V. trachuri pathogenic to Japanese horse mackerel.  相似文献   

6.
Aims: Polymerase chain reaction (PCR) is the most rapid and sensitive method for diagnosing mycobacterial infections and identifying the aetiological Mycobacterial species in order to administer the appropriate therapy and for better patient management. Methods and Results: Two hundred and thirty‐five samples from 145 clinically suspected cases of tuberculosis were processed for the detection of Mycobacterial infections by ZN (Ziehl Neelsen) smear examination, L‐J & BACTECTM MGIT‐960 culture and multiplex PCR tests. The multiplex PCR comprised of genus‐specific primers targeting hsp65 gene, Mycobacterium tuberculosis complex‐specific primer targeting cfp10 (Rv3875, esxB) region and Mycobacterium avium complex‐specific primer pairs targeting 16S–23S Internal Transcribed Spacer sequences. The multiplex PCR developed had an analytical sensitivity of 10 fg (3–4 cells) of mycobacterial DNA. The multiplex PCR test showed the highest (77·24%) detection rate, while ZN smear examination had the lowest (20%) detection rate, which was bettered by L‐J culture (34·4%) and BACTECTM MGIT‐960 culture (50·34%) methods. The mean isolation time for M. tuberculosis was 19·03 days in L‐J culture and 8·7 days in BACTECTM MGIT‐960 culture. Using the multiplex PCR, we could establish M. tuberculosis + M. avium co‐infection in 1·3% HIV‐negative and 2·9% HIV‐positive patients. The multiplex PCR was also highly useful in diagnosing mycobacteraemia in 38·09% HIV‐positive and 15·38% HIV‐negative cases. Conclusions: The developed in‐house multiplex PCR could identify and differentiate the M. tuberculosis and M. avium complexes from other Mycobacterial species directly from clinical specimens. Significance and Impact of the Study: The triplex PCR developed by us could be used to detect and differentiate M. tuberculosis, M. avium and other mycobacteria in a single reaction tube.  相似文献   

7.
Detection of Microbial Pathogens in Shellfish with Multiplex PCR   总被引:16,自引:0,他引:16  
Multiplex PCR amplification of uidA, cth, invA, ctx, and tl genes was developed enabling simultaneous detection in shellfish of Escherichia coli, an indicator of fecal contamination and microbial pathogens, Salmonella typhimurium, Vibrio vulnificus, V. cholerae, and V. parahaemolyticus, respectively. Each of the five pairs of oligonucleotide primers was found to support PCR amplifications of only its targeted gene. The optimized multiplex PCR reaction utilized a PCR reaction buffer containing 2.5 mM MgCl2 and primer annealing temperature of 55°C. Oyster tissue homogenate seeded with these microbial pathogens was subjected to DNA purification by the Chelex™ 100 (BioRad) method. The sensitivity of detection for each of the microbial pathogens was ≤101–102 cells following a “double” multiplex PCR amplification approach. Amplified target genes in a multiplex PCR reaction were subjected to a colorimetric GeneComb™ (BioRad) DNA-DNA hybridization assay. This assay was rapid and showed sensitivity of detection comparable to the agarose gel electrophoresis method. The colorimetric GeneComb™ assay avoids use of hazardous materials inherent in conventional gel electrophoresis and radioactive-based hybridization methods. Multiplex PCR amplification, followed by colorimetric GeneComb™ DNA-DNA hybridization, has been shown to be an effective, sensitive, and rapid method to detect microbial pathogens in shellfish. Received: 17 November 1997 / Accepted: 17 February 1998  相似文献   

8.
The objective of this study was to develop multiplex PCR detection method for five Pythium species associated with turfgrass diseases, Pythium aphanidermatum, Pythium arrhenomanes, Pythium graminicola, Pythium torulosum and Pythium vanterpoolii. Species‐specific primers and two common primers were designed based on the sequences of the internal transcribed spacer region of ribosomal DNA. Another primer set by which all organisms would be amplified in 18S rDNA was used as a positive control. When these total nine primers were applied to the multiplex PCR, all species were individually discriminated in the mixture of five species culture DNA. Furthermore, all five Pythium species were detected in naturally infected plants using the multiplex PCR.  相似文献   

9.
We constructed primers for multiplex polymerase chain reaction (PCR) to detect verotoxin-producing Escherichia coli (VTEC) O157:H7. The multiplex PCR primers were designed from the sequence of the flagellin structural gene of Escherichia coli flagellar type H7 (GenBank under accession number L07388), and from the sequence of the rfbE gene of Escherichia coli O157:H7 (GenBank under accession number S83460). In addition to these primers, we used a primer pair reported by Karch and Meyer (J. Clin, Microbiol. 27: 2751-2757, 1989) to amplify various VT genes from VTEC. All of the examined specimens (18 isolates) of VT-producing E. coli O157:H7 showed a positive result by the multiplex PCR test with the three sets of primers. The sensitivity of detection for VT-producing E. coli O157:H7 was shown to be at least 3,000 cells per PCR tube.  相似文献   

10.
11.
Aim: The aim of this study was to develop a multiplex real‐time PCR assay for the identification and discrimination of Erysipelothrix rhusiopathiae, tonsillarum and Erysipelothrix sp. strain 2 for direct detection of Erysipelothrix spp. from animal specimens. Methods and Results: A primer set and three species‐specific probes with different end labelling were designed from the noncoding region downstream of the 5S rRNA coding region. The sensitivity, specificity and repeatability of the assay were validated by analysing 27 Erysipelothrix spp. reference serotype strains and ten septicemia‐associated non‐Erysipelothrix spp. bacterial isolates. Cross‐reactivity with Erysipelothrix sp. strain 1 was not observed with any of the primer probe combinations. The detection limit was determined to be <10 colony forming units and as low as one genome equivalent per PCR . Further evaluation of the Erysipelothrix spp. multiplex PCR was performed by comparing an enrichment isolation culture method and a conventional differential PCR on 15 samples from pigs experimentally inoculated with Erysipelothrix spp. and 22 samples from pigs with suspected natural infection. Conclusion: The multiplex real‐time PCR assay was found to be simple, rapid, reliable, specific and highly sensitive. Significance and Impact of the Study: The developed real‐time multiplex PCR assay does not require cumbersome and lengthy cultivation steps prior to DNA extraction, obtained comparable results to enrichment isolation, and will be useful in diagnostic laboratories for rapid detection of Erysipelothrix spp.  相似文献   

12.
Aims: To develop a highly sensitive and rapid protocol for simultaneous detection and differentiation of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) in pepper and tomato. In this study, we use the multiplex PCR technique to detect dual infection of these two viruses. Methods and Results: A multiplex RT–PCR method consisting of one‐tube reaction with two primer pairs targeted to replicase genes was developed to simultaneously detect TMV and ToMV in seed samples of pepper and tomato. Specific primers were designed from conserved regions of each of the virus genomes, and their specificity was confirmed by sequencing PCR products. RT–PCR detected up to 10?6 dilution of total RNA extracted from infected leaves. Multiplex RT–PCR revealed the presence of both TMV and ToMV in three of 18 seed samples of tomato and one of 18 seed samples of pepper. Conclusions: The multiplex PCR assay was a cost effective, quick diagnostic technique, which was helpful in differentiating TMV and ToMV accurately. Significance and Impact of the Study: The multiplex PCR assay described in this study is a valuable tool for plant pathology and basic research studies. This method may facilitate better recognition and distinction of TMV and ToMV in both pepper and tomato.  相似文献   

13.
We investigated the use of multiplex polymerase chain reaction (FCR) techniques coupled with Southern analysis to detect xenobiotic-degrading organisms that had been added to three soils. Two soils highly contaminated with petroleum hydrocarbons and a less contaminated control soil were amended with tenfold dilutions of Pseudomonas putida mt-2 (pWWO), P. oleovorans (OCT), and Alcaligenes eutrophus JMP134 (pJP4), or, for controls, phosphate buffer alone. Total DNA was then isolated from the soils and purified using a sequential precipitation and dissolution purification procedure. This DNA was subjected to multiplex polymerase chain reaction (PCR) using primers that amplify regions of xylM (PCR product = 631 bp), alkB (546 bp) and tfdA (710 bp), which are found on pWWO, OCT and pJP4, respectively. The sizes of the amplified DNA fragments were designed to permit simultaneous amplification and detection of the target genes. Ethidium bromide-stained gels of the initial PCR reaction indicated detectable amplification of between 10* to 10* cells per gram soil, depending on the soil and the target gene. Southern analysis of the PCR amplified DNA improved detection limits to between 1 and 10 cells of each target species per gram of soil, and confirmed the identity of the PCR products. For some samples that were initially resistant to PCR, dilution of the environmental DNA resulted in positive PCR results. This treatment presumably overcame the inhibition of the PCR by diluting coextracted contaminants in the environmental DNA. A second PCR on an aliquot (1 μL) of the first reaction increased the ethidium bromide-based detection limits for one of the soils to six cells per gram of soil; it did not increase the detection limits for the other soils. Therefore, the DNA extraction procedure and multiplex PCR permitted the simultaneous detection of three types of biodegradarJve cells, at a lower detection limit of = > 10 cells per gram of highly contaminated, organic soil. However, due to kinetic limitations of multiplex PCR, the amplified signals did not follow a close dose response to the numbers of added target cells.  相似文献   

14.
Apple chlorotic leaf spot virus (ACLSV), Apple stem pitting virus (ASPV), Apple stem grooving virus (ASGV) and Apple mosaic virus are economically important viruses infecting fruit tree species worldwide. To evaluate the occurrence of these pome fruit viruses in Latvia, a large‐scale survey was carried out in 2007. Collected samples were tested for infection by DAS ELISA and multiplex RT‐PCR. The accuracy of the detection of the viruses in multiplex RT‐PCR was confirmed by sequencing amplified PCR fragments. The results showed a wide occurrence of viruses in apple and pear commercial orchards established from non‐tested planting material. More than 89% of the tested apple trees and more than 60% of pear trees were infected with one or more pome fruit viruses. Analyses showed that the high occurrence of viruses in several apple cultivars is due to the propagation of infected clonal rootstocks and scions from infected mother trees. Sequence analyses targeting the 3′‐terminal region of the tested viruses showed various degrees of genetic diversity within respective virus isolates. This is the first report of the occurrence of ACLSV, ASGV and ASPV in apple and pear trees in Latvia and demonstrates their genetic diversity in different host genotypes.  相似文献   

15.
Salmonid fish is one of the allergenic items that are recommended to be labeled in the Japanese allergen-labeling system. This study develops a salmonid-specific polymerase chain reaction (PCR) method. A new primer pair, SKE-F/SKE-R, was designed to specifically detect the salmonid fish gene encoding mitochondrial DNA cytochrome b. Genomic DNAs extracted from 58 kinds of seafood and 11 kinds of processed food were individually subjected to PCR by using the primer pair, and a salmonid-specific fragment of 212 bp was only amplified in the salmonid samples and salmonid-containing processed foods. The detection limit of the PCR method was as low as 0.02 fg/µL of salmonid fish DNA (corresponding to 10 copies). There is no ELISA method for salmonid fish, making our PCR method the only reliable measure for detecting salmonid fish in processed foods.  相似文献   

16.
A one‐step multiplex RT‐PCR method has been developed for the simultaneous detection of four viruses frequently occurring in tobacco (Cucumber mosaic virus, Tobacco mosaic virus, Tobacco etch virus and Potato virus Y). Four sets of specific primers were designed to work with the same reaction reagents and cycling conditions, resulting in four distinguishable amplicons representative of the four viruses independently. This one‐step multiplex RT‐PCR is consistently specific using different combinations of virus RNA as templates, and no non‐specific band was observed. It has high sensitivity compared to single RT‐PCR. Moreover, field samples in China can be tested by this method for virus detection. Our results show that one‐step multiplex RT‐PCR is a high‐throughput, specific, sensitive method for tobacco virus detection.  相似文献   

17.
Aims: The gram‐positive bacterial genus Lactococcus has been taxonomically classified into seven species (Lactococcus lactis, Lactococcus garvieae, Lactococcus piscium, Lactococcus plantarum, Lactococcus raffinolactis, Lactococcus chungangensis and Lactococcus fujiensis). This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of the seven lactococcal species, as well as to differentiate the two industrially important dairy subspecies, L. lactis subsp. lactis and L. lactis subsp. cremoris. Methods and Results: A multiplex PCR primer set was designed based on the nucleotide sequences of the 16S rRNA gene of the seven lactococcal species. The specificity of the established one‐step multiplex PCR scheme was verified using more than 200 bacterial strains, in which a complete sequence match was confirmed by partial sequencing of their 16S rRNA gene. Conclusions: The one‐step multiplex PCR enables the identification and speciation of bacterial strains belonging to the genus Lactococcus and the differentiation of strains of L. lactis subsp. lactis and L. lactis subsp. cremoris. Significance and Impact of the Study: This work provides an efficient method for identification of lactococcal strains of industrial importance.  相似文献   

18.
For molecular sexing of the naked mole-rat (Heterocephalus glaber), we designed a PCR primer set to amplify part of the Y-linked DBY gene. When this primer set was applied to the samples of known sex with the 16S rRNA gene (16S rDNA) primers as control, PCR products were successfully obtained as two DNA bands in males, a male-specific 163 bp DBY band and a 446 bp band of 16S rDNA shared with females, whereas females showed only the common band. This result shows that this multiplex PCR assay is useful for sex identification of H. glaber.  相似文献   

19.
Species identification has been the core issue in all approaches of conservation of endangered wild life. In this regard molecular techniques for species authentication have proved indispensable. A novel multiplex PCR assay for the identification of three Indian snake species Python morulus, Ptyas mucosus, and Naja naja is successfully demonstrated using 16S rRNA gene. Three reverse primers and a common forward primer were designed to generate three different size species-specific PCR fragments. Absence of any PCR amplification in non-target species proves the specificity of the primers. These four primers were combined in a multiplex assay to enable identification of three snake species in a single reaction. The assay described here shows its utility in identifying unknown snake specimen and in case of samples yielding low quality DNA. This multiplex PCR technique using novel primers is an unprecedented approach offered for forensic identification of exhibits originating from three Indian snake species. It is expected that this endeavor will help strengthening conservation efforts for these species.  相似文献   

20.
Aims: To establish a multiplex PCR method for simultaneous and rapid detection of Spiroplasma eriocheiris and white spot syndrome virus (WSSV) in Procambarus clarkii with recommendations for application to other crustacea. Methods and Results: Three primer sets were mixed at a ratio of 1 : 3 : 1 to amplify specific fragments of the S. eriocheiris, WSSV, P. clarkii crayfish (control organism) genomes, respectively. S. eriocheiris and WSSV were used to challenge the susceptible crustacea in the experimental groups. Total DNA of the samples was purified and detected by multiplex PCR. The PCR‐amplified products produced four groups of results as follows. One fragment of 1195 bp, amplified by the primer set ITS‐crayfish/28S‐crayfish, served as an internal control, showed no pathogen detection, thus confirming the specificity of our positive tests. Two groups represented by: (i) samples challenged by S. eriocheiris alone, or (ii) challenged by WSSV alone, yielded two fragments each; i.e. those from S. eriocheiris (271 bp) plus the internal control and those from WSSV (530 bp) plus the internal control. Finally, for the fourth group, in cases of double challenged treatments, all three amplified products were detected simultaneously. Conclusions: Simultaneous and rapid detection of two pathogens in P. clarkii is important to maintain productive and healthy crayfish in aquaculture. The direct detection of S. eriocheiris and WSSV from P. clarkii is practicable with multiplex PCR. Significance and Impact of the Study: This study shows that the two pathogens are simultaneously and rapidly detected in P. clarkii by multiplex PCR, thus increasing the efficiency of pathogen detection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号