首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Asian soybean rust (ASR), caused by Phakopsora pachyrhizi, is one of the most important foliar diseases affecting soybean production worldwide. This study aimed to investigate the photosynthetic performance (leaf gas exchange, chlorophyll (Chl) a fluorescence images and photosynthetic pigment pools) of soybean plants sprayed with Acibenzolar‐S‐Methyl (ASM) and the fungicide epoxiconazole + pyraclostrobin (Epo+Pyr) and further inoculated with P. pachyrhizi. The ASR symptoms progressed much faster on the leaves of plants from the control treatment (water spray) in comparison with the ASM and Epo+Pyr treatments. In general, the values for the leaf gas exchange parameters net carbon assimilation rate (A), stomatal conductance to water vapour (gs), internal CO2 concentration (Ci) and transpiration rate (E) increased for the infected plants sprayed with ASM or Epo+Pyr in comparison with plants from the control treatment. The values for the initial fluorescence (Fo), maximal fluorescence (Fm), maximal photosystem II quantum efficiency (Fv/Fm), effective photosystem II quantum yield (Y(II)) and quantum yield of regulated energy dissipation (Y(NPQ)) were consistently higher for the ASM and Epo+Pyr treatments in comparison with the control treatment at advanced stages of fungal infection. By contrast, the values for quantum yield of non‐regulated energy dissipation (Y(NO) were significantly lower for the ASM and Epo+Pyr treatments. The concentrations of total Chl a+b and carotenoids significantly increased for infected plants sprayed with ASM and Epo+Pyr in comparison with plants from the control treatment. The results of this study demonstrated that the spray of soybean plants with either ASM or Epo+Pyr contributed to reduce the negative effect of ASR on the photosynthesis of soybean plants.  相似文献   

2.
Four hundred and twenty-two spring wheat germplasm (Triticum aestivum L.) lines belonging to Indian, CIMMYT and Chinese wheat programme were evaluated for their tolerance against natural epiphytotic conditions of spot blotch caused by Bipolaris sorokiniana at the hot spot location, Pusa, Bihar, India. Of the 422 entries screened, none of the genotype showed immunity to the disease, whereas 52 were resistant, 180 moderately susceptible, 171 susceptible and 19 highly susceptible. Indian germplasm lines tended to be more susceptible than lines originated from CIMMYT and China. Chirya 3, Chirya 7 and Mayoor from CIMMYT showed high degree of resistance to the disease both under field and polyhouse conditions. On the basis of the disease severity under field conditions, 20 promising resistant genotypes and 10 highly susceptible lines were isolated for further testing under artificial epiphytotic conditions in polyhouse for genetic analysis and their potential for spot blotch resistance breeding.  相似文献   

3.
With the enhancement of aluminum stress, the content of chlorophyll in wheat seedlings (Triticum aestivum L.) decreased dramatically. At 0.2 mM AlCl3, the chlorophyll content halved. The aluminum-induced decrease in chlorophyll content could be alleviated by exogenous nitric oxide donor, sodium nitroprusside (SNP) in a dose-dependent manner. Treatment with SNP dramatically promoted the activities of superoxide dismutase, catalase, ascorbate peroxidase and increased the proline content, whereas it decreased hydrogen peroxide and malondialdehyde and maintained the level of soluble protein as compared with water controls. Therefore, NO donor enhanced the antioxidant capacity in wheat seedlings under aluminum stress.  相似文献   

4.
Bipolaris sorokiniana is the causal agent of multiple diseases on wheat and barley and is the primary constraint to cereal production throughout South Asia. Despite its significance, the molecular basis of disease is poorly understood. To address this, the genomes of three Australian isolates of B. sorokiniana were sequenced and screened for known pathogenicity genes. Sequence analysis revealed that the isolate BRIP10943 harboured the ToxA gene, which has been associated previously with disease in the wheat pathogens Parastagonospora nodorum and Pyrenophora tritici‐repentis. Analysis of the regions flanking ToxA within B. sorokiniana revealed that it was embedded within a 12‐kb genomic element nearly identical to the corresponding regions in P. nodorum and P. tritici‐repentis. A screen of 35 Australian B. sorokiniana isolates confirmed that ToxA was present in 12 isolates. Sequencing of the ToxA genes within these isolates revealed two haplotypes, which differed by a single non‐synonymous nucleotide substitution. Pathogenicity assays showed that a B. sorokiniana isolate harbouring ToxA was more virulent on wheat lines that contained the sensitivity gene when compared with a non‐ToxA isolate. This work demonstrates that proteins that confer host‐specific virulence can be horizontally acquired across multiple species. This acquisition can dramatically increase the virulence of pathogenic strains on susceptible cultivars, which, in an agricultural setting, can have devastating economic and social impacts.  相似文献   

5.
Leaf cell protoplasts were isolated from wheat seedlings ( Triticum aestivum L. cv. Urquie) after orthophosphate (Pi) treatment of the plant to determine the capacity for intracellular phosphate accumulation. Seedlings were treated with Pi concentrations near the phytotoxic level to maximize the Pi concentration in the leaf prior to protoplast isolation 1 day later. Both foliar and root treatment of seedlings with Pi increased the phosphate content of leaf protoplasts by approximately 20 μmol (mg chlorophyll)−1 over Pi levels in untreated controls. Phosphate-loaded protoplasts from treated seedlings had similar photosynthetic rates and starch content but 50% more soluble reducing sugar than protoplasts from untreated seedlings. Protoplast dark respiration decreased after treatments which increased protoplast potassium content. The results suggest that similar amounts of Pi can be accumulated by leaf cells of wheat after foliar or root application of Pi to the seedling without hindering Pi-sensitive processes such as photosynthesis and starch synthesis.  相似文献   

6.
Rates of net photosynthesis (A), transpiration (E) and leaf conductance to water vapour transfer (gH2O) were measured on leaves of Lupinus angustifolius L. cv. Ritson's and L. cosentinii Guss. cv. Eregulla throughout development and on flag leaves of wheat ( Triticum aestivum L. cvs Gutha, Gamenya and Warigal) after full expansion. Plants were grown in large containers of soil, in a naturally-lit, temperature controlled glasshouse. Throughout most of their life, lupin leaves had higher photosynthetic rates and leaf conductances than found for wheat. During leaf ageing in lupins, photosynthesis and conductance changed proportionately such that leaf intercellular CO2 concentration was maintained relatively constant at about 200 ppm. Under continuously cloudy conditions, leaf conductance at midday of lupins and wheat was higher than at similar photon flux densities at other times of day on cloudless days. On cloudy days the relationship between gH2O and photon flux density in lupins was very different from that derived from diurnal measurements on clear days. The potentially low water use efficiency under cloud, evident as decreases in the A/gH2O ratio, was rarely realised in practise due to a reduction in leaf-to-air water vapour concentration difference on cloudy days. The possible reasons for the high conductance on cloudy days are discussed.  相似文献   

7.
Changes in photosystem II function during senescence of wheat leaves   总被引:6,自引:0,他引:6  
Analyses of chlorophyll fluorescence were undertaken to investigate the alterations in photosystem II (PSII) function during senescence of wheat ( Triticum aestivum L. cv. Shannong 229) leaves. Senescence resulted in a decrease in the apparent quantum yield of photosynthesis and the maximal CO2 assimilation capacity. Analyses of fluorescence quenching under steady‐state photosynthesis showed that senescence also resulted in a significant decrease in the efficiency of excitation energy capture by open PSII reaction centers (F'v/F'm) but only a slight decrease in the maximum efficiency of PSII photochemistry (F'v/F'm). At the same time, a significant increase in non‐photochemical quenching (qN) and a considerable decrease in photochemical quenching (qP) were observed in senescing leaves. Rapid fluorescence induction kinetics indicated a decrease in the rate of QA reduction and an increase in the proportion of QB‐non‐reducing PSII reaction during senescence. The decrease in both F'v/F'm and qP explained the decrease in the actual quantum yield of PSII electron transport ((φPSII). We suggest that the modifications in PSII function, which led to the down‐regulation of photosynthetic electron transport, would be in concert with the lower demand for ATP and NADPH in the Calvin cycle which is often inhibited in senescing leaves.  相似文献   

8.
9.
通过防雨棚小区栽培,控制土壤供水系数(Kw)分别为0.8、0.6、0.4、0.2,以自然状况下的小区为对照(CK),研究土壤水分条件对冬小麦生育后期叶片气体交换及叶绿素荧光参数的影响。结果表明:Kw为0.6处理的冬小麦叶片叶绿素含量与0.8处理接近,且显著高于其他处理(P<0.05);Kw为0.6处理对冬小麦叶片的气孔导度和蒸腾速率有轻度抑制,但其光合速率却高于0.8处理,而Kw为0.2处理的光合速率、气孔导度及蒸腾速率均为最低;气孔限制值在Kw为0.4处理下最高,其次为0.2处理,0.8处理下最低;冬小麦叶片的表观量子效率在Kw为0.4处理下最高,光补偿点总体上随着土壤水分含量的降低呈下降趋势,而光饱和点及最大光合速率则以Kw为0.6处理最高,其次为0.8处理,0.2处理最低;冬小麦叶片的天线转化效率Fv’/Fm’、电子传递速率ETR、实际量子效率ФPSII及光化学猝灭qP均以Kw为0.6处理最高,其次为0.8处理,0.2处理下最低;在Kw为0.2处理下,冬小麦光合作用主要受非气孔因素限制,而在0.4处理下,则主要受气孔因素限制。  相似文献   

10.
When intact corn leaves were provided millimolar concentrations of d-mannose through the transpiration stream photosynthesis was inhibited; 5.7 millimolar resulted in a 50% inhibition of the carbon exchange rate. This inhibition was partially reversible by the addition of orthophosphate to the feeding solution. Mannose metabolism by corn leaves was limited in that it did not act as a resource for sucrose or starch synthesis. Mannose 6-phosphate accumulated in the leaf tissues and was slowly metabolized by a pathway involving mannose 1-phosphate. Correlated with the mannose-6-phosphate accumulation were decreases in ATP, orthophosphate, sucrose, and phosphoenolpyruvate and increases in starch and maltose. When provided in the transpiration stream mannose had access to both mesophyll and bundle sheath cells. Mannose feeding led to oscillations in steady state chlorophyll fluorescence emission (680 nanometers) and an elimination of the Kautsky effect during fluorescence induction. Pyridoxal 5-phosphate and 2,4-dinitrophenol were found to be inhibitors of CO2 exchange when provided in the transpiration stream of intact corn leaves. However, Pyridoxal 5-phosphate induced a quenching of steady state fluorescence while 2,4-dinitrophenol led to an increase in fluorescence emission.  相似文献   

11.
The effects of osmotic dehydration in wheat leaves ( Triticum aestivum L. cv. Longchun No. 10) on the photochemical function and protein metabolism of PSII were studied with isolated thylakoid and PSII membranes. The results indicated that PSII was rather resistant to water stress as mild water deficit in leaves did nut significantly affect its activity. However, extreme stress conditions such as 40% decrease in relative water content (RWC) or 1.8 MPa in water potential (Ψ) caused ca 50% reduction in O2 evolution and ca 25% inhibition of DCIP (2.6-dichlorophenol indophenol) photoreduction of PSII. In addition, it was found that the inhibited DCIP photoreduction of PSII could not be reversed by DPC (2.2-diphenylcarbazide), a typical electron donor to PSII, suggesting that water stress did not affect electron donation to PSII. Urea-SDS-PAGE and western blot analysis showed that the steady slate levels of major PSII proteins, including the D1 and D2 proteins in the PSII reaction center, declined on a chlorophyll basis with increasing water stress, possibly as a result of increased degradation. In vitro translation experiments and quantitative analysis of chloroplast RNAs indicated that the potential synthesis of chloroplast proteins from their mRNAs was impaired by water stress. From the results it is concluded that the effects of water stress on PSII protein metabolism, especially on the reaction center proteins, may account for the damage to PSII photochemistry.  相似文献   

12.
Seven-day-old seedlings of winter wheat (Triticum aestivum L.) in a growth chamber were exposed to ultraviolet-B (UV-B) irradiation for 20 days with daily biologically effective (BE) UV-B irradiation (UV-BBE) at low (4.2 kJ m−2 day−1, LUVB) and high (7.0 kJ m−2 day−1, HUVB) levels. The UV-B irradiated seedlings and the control without UV-B irradiation were then subjected to freezing stress at −6 °C for 6 h and recovered to 20 °C with gradually increased temperature, to investigate the effects of UV-B irradiation on freezing tolerance. During the UV-B exposure, both LUVB and HUVB irradiated seedlings had lower half lethal temperature (LT50) values in comparison with the control, and LUVB more effectively decreased the LT50 values than HUVB. Moreover, foliar concentrations of thiobarbituric acid reactive substances (TBARS) in the UV-B irradiated seedlings were lower than that of control after recovery from freezing stress. Hydrogen peroxide (H2O2) rapidly increased after UV-B exposure, as did activity of superoxide dismutase (SOD). After recovery from freezing stress, activities of catalase (CAT), guaiacol peroxidase (GPX) and glutathione reductase (GR) increased in both LUVB and HUVB leaves, whereas activities of ascorbate peroxidase (APX) and monodehydroascorbate reductase (MDHAR) significantly increased only in the LUVB leaves. Furthermore, the ascorbic acid (AsA) concentration and reduced-to-oxidized ascorbate ratio (AsA/DHA) increased in the LUVB leaves both at the end of UV-B exposure and after recovery from freezing stress. However, the reduced glutathione (GSH) concentration, together with reduced-to-oxidized glutathione ratio (GSH/GSSG) increased in both LUVB and HUVB leaves after recovery from freezing stress. UV-B irradiation increased freezing tolerance in winter wheat seedlings, and this response appears to involve the scavenging enzymes and compounds in the antioxidant defense systems, particularly the ascorbate–glutathione cycle.  相似文献   

13.
Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (; F/Fm), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 mol m–2 s–1) than in the gap site (5 mol m–2 s–1), whereas that in N. heimii was lower in the open site (2 mol m–2 s–1) than in the gap site (4 mol m–2 s–1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plants regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.  相似文献   

14.
We investigated the diurnal fluctuation in the composition of the light harvesting chlorophyll a/b antenna of photosystem II in young wheat (Triticum aestivum) leaves grown under periodic day/night irradiation. By means of gel electrophoresis of the polypeptides of thylakoid membranes, we determined the amount of 25 kDa and 27 kDa polypeptides, which are the main components of the peripheral and inner antenna subpopulations, respectively. Our data show a preferential fluctuation in the amount of the 25 kDa protein relative to the 27 kDa polypeptide, in parallel to the fluctuation in the amount of chlorophyll a/b antenna of photosystem II, which suggests that the peripheral antenna plays a role in the diurnal adjustment of the antenna size.  相似文献   

15.
Photosynthesis, respiration and chlorophyll fluorescence parameters were determined in peach ( Prunus persica L. cv. Dixired) leaves naturally infected by Taphrina deformans (Berk.) Tul. and in healthy leaves (controls), in two successive springs. A drastic decrease in net photosynthesis and an evident increase in respiration in curled leaves were noted. The instantaneous PSII fluorescence yield, with no (F0) and with (F0) quenching component, and steady state fluorescence yield (under actinic light, Fs) were essentially unchanged. Maximal fluorescence in dark-adapted (Fm) and illuminated (F'm) leaves and the corresponding variable fluorescence (Fv and Fv) clearly decreased. The indicators of PSII quantum yield (Fv/Fm) in dark-adapted leaves, and the potential PSII excitation capture efficiency (F'v/F'm) and the quantum yield of PSII (qp [F'v/F'm]) in the light were also significantly lower in curled leaves. Decreasing tendencies were also noted for the PSII photochemical yield (photochemical quenching, qp) and in the energy status of the chloroplast (non-photochemical quenching, qN, and Stern-Vollmer value, NPQ) although the differences were not always significant. In curled leaves the main alteration documented is the imbalance between the drastic inhibition of CO2 fixation and the moderate decrease in photochemical reactions (i.e. Fv/Fm and ΔF/F'm), indicating changes in the energy flux.  相似文献   

16.
8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较   总被引:58,自引:1,他引:58  
郑淑霞  上官周平 《生态学报》2006,26(4):1080-1087
在自然条件下,测定了8种阔叶树种叶片的气体交换参数和叶绿素荧光参数并对其进行比较.结果表明,8种阔叶树种紫玉兰、广玉兰、玉兰、美人梅、铁杆梅、腊梅、红碧桃和紫薇的叶片净光合速率(Pn)、蒸腾速率(Tr)、气孔导度(gs)、瞬时水分利用效率(WUE)和潜在水分利用效率(WUEi)的种间差异达极显著水平(p〈0.01),指示了不同树种间的光合能力及水分利用能力差别较大.8种阔叶树种叶片的初始荧光(Fo)、可变荧光(Fv)、最大荧光(Fm)和PSⅡ电子传递量子效率(ФPSⅡ)的种间差异极为显著(p〈0.01),PSⅡ最大光能转换效率(Fv/Fm)、可变荧光与初始荧光之比(Fv/Fo)和非光化学猝灭系数(NPQ)的种间差异也达显著水平(p〈0.05),说明各树种叶片的PSⅡ原初光能转换效率和潜在活性、PSⅡ电子传递量子效率以及PSⅡ的潜在热耗散能力差别较大,而实际光下最大荧光(F′m)和PSⅡ光能捕获效率(F′v/F′m)的种间差异不显著.3种木兰科植物的Pn、Tr、WUE和WUEi平均值均高于3种蔷薇科植物,说明木兰科植物的光合能力较强,对吸收的光能和水分的利用较高.蔷薇科植物的Fv/Fm、Fv/Fo、ФPSⅡ、F′v/F′m和光化学猝灭系数(qp)平均值均高于木兰科植物,而木兰科植物NPQ较高,表明其PSⅡ的潜在热耗散能力较强,可有效地避免过剩光能对光合机构的损伤.研究还表明3种木兰科植物和3种蔷薇科植物之间的叶绿素荧光参数差异不大,说明同一科属植物叶片的光合能力较为相近.相关分析表明,8种阔叶树种叶片的Pn与Tr、Tr与gs、Fv/Fm与Fv/Fo、ФPSⅡ与F′v/F′m、qp与NPQ均呈极显著正相关(p〈0.01),Pn与gs呈显著正相关(p〈0.05),而Tr、gs与WUE、WUEi,Pn与ФPSⅡ,ФPSⅡ与NPQ,F′v/F′m 与 qp、NPQ均呈极显著负相关(p〈0.01).  相似文献   

17.
Several parameters of amino acid metabolism were studied in detached primary leaves of wheat (Triticum aestivum L. cv. Castell) during a 14 day incubation period in the dark. Protein loss was accompanied by a 5-fold increase in the total amount of free amino acids during the first 4 days of the incubation period with asparagine being the most important. Beyond this stage a pronounced intracellular accumulation of ammonium occured. A gradual decrease in the levels of free amino acids and ammonium at the later stages of senescence could in part be accounted for by leakage from the leaves. Additionally, some nitrogen was lost due to ammonia volatilization. The rapid decay of the glutamine synthetase (GS; EC 6.3.1.2)-glutamate synthase (Fd-GOGAT; EC 1.4.7.1) system and the fast decline of glutamate-pyruvate transaminase (GPT; EC 2.6.1.2) activity appear to be predominant features of senescence in the dark. Decreasing Fd-GOGAT activity was slightly compensated by a small and temporary increase in the activity of NADH-GOGAT (EC 1.4.1.14). Glutamateoxalocetate transaminase (GOT: EC 2.6.1.1) activity, although declining continuously, proved to be much more persistent. Changes in glutamate dehydrogenase (GDH; EC 1.4.1.3) activity closely resembled the profile of ammonium evolution in the leaves and NADP-isocitrate dehydrogenase (IDH; EC 1.1.1.42) activity revealed a temporary maximum during the period of rapid increase in GDH activity. Increased activity of GDH could also be induced by exogenous ammonium. Ammonium accumulation could, at least partly, be caused by increased asparaginase (EC 3.5.1.1) activity which accompanied the rapid conversion of asparagine to aspartic acid. Asparagine aminotransferase (EC 2.6.1.14) activity declined sharply from the beginning of the senescence period. Although the activity profile of glutaminase (EC 3.5.1.2) was similar to that of asparaginase, glutamine was of little importance quantitatively and an analogous relationship between glutamine and glutamic acid could not be detected.  相似文献   

18.
As chloroform has proved to be carcinogenic we were looking for an alternative solvent system for chloroform:methanol widely used in plant lipid investigations. The lipids from leaves of wheat ( Triticum aestivum L. cv. Vakka) and from protonemata of the moss Ceratodon purpureus (Hedw.) Brid. were extracted with two petroleum ether:methanol solvent systems. The polar lipids were separated by two-dimensional thin-layer chromatography and the amounts of each lipid class were compared with those obtained from chloroform:methanol (2:1, v/v) extractions. The significantly higher amounts of phosphatidylinositol observed in petroleum ether:methanol (1:1, v/v) extraction suggest that the small amounts reported earlier in plants may be an artefact relating to the solvent system used. As petroleum ether:methanol (1:1, v/v) proved to be at least as good a solvent system as chloroform:methanol (2:1, v/v) we propose it as an alternative extractant for plant polar lipids.  相似文献   

19.
The activities of several enzymes related to amino acid metabolism were investigated in senescing detached wheat leaves ( Triticum aestivum L. cv. Diplomat) in light and darkness and after kinetin treatment. Glutamine synthetase and glutamate synthase activities rapidly declined in darkness. In light, the decline of glutamate synthase activity was retarded, while the activity of glutamine synthetase remained high and even increased transitorily. Kinetin treatment counteracted the decline of the activities of both enzymes. The activity of glutamate dehydrogenase markedly increased during senescence, particularly in light, and kinetin treatment lowered its activity. The activities of glutamate-oxaloacetate and glutamate-pyruvate amino-transferases and of NADP-dependent isocitrate dehydrogenase also increased in detached wheat leaves in light. Kinetin treatment prevented the rise of these enzyme activities. In darkness, the activities of glutamate-oxaloacetate aminotransferase and NADP-dependent isocitrate dehydrogenase decreased slowly while the decline of glutamate-pyruvate aminotransferase activity was more rapid. The activity of NAD-dependent malate dehydrogenase decreased both in light and, more rapidly, in darkness. The pattern of changes of the enzyme activities provides an explanation for the amino acid transformations and the flow of amino nitrogen into transport metabolites in senescing leaves.  相似文献   

20.
The field performance of a viral gene in two Swiss wheat ( Triticum aestivum ) varieties showed 10% increased fungal resistance against Tilletia caries (stinking smut). To the best of our knowledge, this is the first report of improved resistance against any fungus in the field achieved by genetic engineering in wheat. The genetically modified wheat lines previously showed a c . 30% decrease in symptoms of T. caries in the glasshouse (Clausen, M., Kräuter, R., Schachermayr, G., Potrykus, I. and Sautter, C. (2000) Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol . 18 , 446–449), depending on the fungal strain inoculated. A glasshouse experiment run in parallel to the field test, and using the same collection of T. caries , gave the same results. In a dose–response experiment with isolated fungal strains, in which the infection pressure was varied via the spore concentration, the transgene behaved as a quantitative resistance gene and shifted the S-shaped dose–response curve towards higher resistance. The transgene was shown to be highly specific for fungi of the order Ustilaginales. Tests of the transgene using cell cultures of eukaryotes, including hamster and human, showed no significant side-effects with respect to biosafety. Endogenous pathogen-related genes were also activated on fungal infection in the presence of the kp4 transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号