首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The worldwide demand for reduced and restricted use of pesticides in agriculture due to serious environmental effects, health risks and the development of pathogen resistance calls for the discovery of new bioactive compounds. In the medical field, antibiotic-resistant microorganisms have become a major threat to man, increasing mortality. Endophytes are endosymbiotic microorganisms that inhabit plant tissues without causing any visible damage to their host. Many endophytes secrete secondary metabolites with biological activity against a broad range of pathogens, making them potential candidates for novel drugs and alternative pesticides of natural origin. We isolated endophytes from wild plants in Israel, focusing on endophytes that secrete secondary metabolites with biological activity. We isolated 302 different endophytes from 30 different wild plants; 70 of them exhibited biological activity against phytopathogens. One biologically active fungal endophyte from the genus Penicillium, isolated from a squill (Urginea maritima) leaf, was further examined. Chloroform-based extraction of its growth medium was similarly active against phytopathogens. High-performance liquid chromatography separation followed by gas chromatography/mass spectrometry analysis revealed a single compound—mycophenolic acid—as the main contributor to the biological activity of the organic extract.  相似文献   

2.
An understanding of biocontrol activities is important when developing microorganism‐based alternatives to conventional fungicides. From our bacterial collection, we selected two strains (BBC023 and BBC047) for their outstanding antagonistic capacity against fungal phytopathogens and growth‐promoting abilities towards Arabidopsis thaliana. According to physiological and molecular characterizations, both strains were classified as Bacillus amyloliquefaciens and were tested against Botrytis cinerea in vitro and in a tomato. Both strains secrete lipopeptide‐like compounds that contribute to their in vitro antagonism. SEM‐images showed altered B. cinerea mycelial structures that were consistent with previous reports of the direct action of lipopeptides against fungal hyphae. The strains were applied to the roots (R), leaves (foliar ‐ F) or root/leaves (R/F) on tomato plants. All treatments significantly reduced the severity of B. cinerea infection (measured as a control index). However, only root applications (R and R/F) led to growth promotion in the tomato plants. We detected the production of indole acetic acid (IAA) and 2,3‐butanediol as growth promotion traits in the two strains. For both strains, the R/F treatment showed the highest control index, suggesting a synergic effect of direct antagonism against B. cinerea and resistance induction in the plant. In addition, in vitro antagonism of BBC023 and BBC047 against B. cinerea was similar; whereas in the F application, strain BBC047 significantly improved plant resistance and maintained a higher population density over time on tomato leaves, compared to BBC023. BBC047 was also able to produce a complex and robust biofilm in Msgg medium compared with that of BBC023. We linked the reduced biocontrol of BBC023 on leaves with its limited ability to generate robust biofilms and colonize the phylloplane. At last, we highlight the potential of the native Bacillus strains as promising alternatives for the development of bioproducts for sustainable agriculture.  相似文献   

3.
The identity of a patented endophytic bacterium was established by 16S rRNA sequence analysis as a strain of Bacillus mojavensis, a recently erected species within one of the B. subtilis subgroups. This strain of B. mojavensis is antagonistic to the fungus Fusarium moniliforme, an endophytic mycotoxin-producing pathogen of maize and other plants. There are five other species within this subgroup: Bacillus amyloliquefaciens, B. atrophaeus, B. licheniformis, Brevibacterium halotolerans, Paenibacillus lentimorbus, and P. popilliae. The objectives of this research were to screen other isolates of B. mojavensis, B. subtilis, and the other closely related Bacillus species for endophytic colonizing capacity and to determine the in vitro antagonism to F. moniliforme in an effort to survey the distribution of these traits, which are desirable biological control qualities within the Bacillaceae. Antagonism was determined on nutrient agar, and endophytic colonization was established with maize plants following recovery of rifampin-resistant mutants generated from all strains used in the study. The study established that all 13 strains of B. mojavensis, isolated from major deserts of the world, endophytically colonized maize and were antagonists to F. moniliforme. The endophytic colonization of maize by B. subtilis and other species within this subgroup of the Bacillaceae varied, as did antagonism, to F. moniliforme. Thus, this study suggests that endophytic colonization is another characteristic of the species B. mojavensis. The endophytic habit and demonstrated antagonism to the test fungus indicate that isolates of this species might prove to be important biological control organisms where the endophytic habit is desired.  相似文献   

4.
王欣禹  周勇  任安芝  高玉葆 《生态学报》2014,34(23):6789-6796
以感染内生真菌的天然禾草羊草为实验材料,通过体外纯培养条件下的内生真菌、感染内生真菌的离体叶片和在体叶片对3种病原菌的抑菌实验,以探讨内生真菌对宿主植物羊草在抗病性方面的贡献。结果表明:体外纯培养条件下,分离自羊草的内生真菌Epichlobromicola对新月弯孢(Curvularia lunata)、根腐离蠕孢(Bipolaris sorokiniana)和枝孢霉(Cladosporium sp.)这3种病原菌都具有抑制作用,抑菌率分别达56.22%,46.93%和45.15%,且内生真菌培养滤液可以有效抑制这3种病原菌的孢子萌发,平均萌发率分别为30.4%,15.7%和16.4%;宿主植物叶片在离体条件下,内生真菌感染可以有效降低羊草叶片受C.lunata和C.sp.侵染后的病斑数或病斑长度,但对B.sorokiniana不起作用,甚至提高了叶片的病斑数及病斑长度,而离体叶片提取液对不同病原菌均有不同程度的抑制作用;在体条件下,内生真菌均可以通过降低叶片病斑数来增强羊草植株对这3种病原菌的抗性。由此看来,内生真菌E.bromicola对宿主植物羊草在抗病原菌侵染方面有一定的增益作用。  相似文献   

5.
The relationship between vertically transmitted asexual fungal grass endophytes and their hosts is considered to be mutualistic. Results from agronomic field support this line of reasoning but recent studies have shown more variable results in natural systems. We investigated how high and low nutrient and water treatments affected biomass allocation patterns of endophyte‐infected and uninfected Festuca pratensis and F. rubra in greenhouse experiments over two growing seasons. Irrespective of infection status, both grass species showed improved performance on highly fertilized and watered soils. However, infected F. pratensis plants produced larger tillers than endophyte‐free plants on soil low in nutrients and water in the first growing season, although they (E+) otherwise showed decreased performance on nutrient‐poor soil. In low nutrient and water conditions, endophyte‐infected plants produced less tillers and had lower total biomass compared to uninfected plants, and displayed a negative phenotypic correlation between seed production and vegetative growth. The latter indicates costs of reproduction when the plant shares common resources with the fungal endophyte. However, endophyte infection status (E+, E?) interacted significantly with the soil fertilisation in terms of plant growth, having a stronger positive effect on growth in infected F. pratensis plants. In F. rubra, endophyte‐infected plants showed higher vegetative growth in fertilized and watered soils compared to uninfected plants. However, infected plants tended to produce fewer inflorescences. This had no effect on seed production, perhaps because seed production was partly replaced by asexual pseudovivipary. Contrary to the general assumption in the literature that fungal endophytes are plant mutualists, these findings suggest that the costs of endophytes may outweigh their benefits in resource limited conditions. However, the costs of endophyte infections appear to differ among the grass species studied; costs of endophytes were mainly detected in F. pratensis under low nutrient conditions. We propose that differences in response to endophyte infection in these species may depend on the differences in life‐history strategies and environmental requirements of these two fescue and fungal species and may change during the life span of the plant.  相似文献   

6.
Paraconiothyrium variabile, one of the specific endophytic fungi isolated from the host plant Cephalotaxus harringtonia, possesses the faculty to inhibit the growth of common phytopathogens, thus suggesting a role in its host protection. A strong antagonism between the endophyte P. variabile and Fusarium oxysporum was observed and studied using optic and electronic microscopies. A disorganization of the mycelium of F. oxysporum was thus noticed. Interestingly, the biological effect of the main secondary metabolites isolated from P. variabile against F. oxysporum did not account for this strong antagonism. However, a metabolomic approach of pure fungal strains and confrontation zones using the data analysis tool XCMS were analyzed and pointed out a competition-induced metabolite production by the endophyte in the presence of the phytopathogen. Subsequent MS/MS fragmentations permitted to identify one of the induced metabolites as 13-oxo-9,11-octadecadienoic acid and highlighted a negative modulation of the biosynthesis of beauvericin, one of the most potent mycotoxin of F. oxysporum, during the competition with the endophyte.  相似文献   

7.
The plant hormone salicylic acid (SA) is recognized as an effective defence against biotrophic pathogens, but its role as regulator of beneficial plant symbionts has received little attention. We studied the relationship between the SA hormone and leaf fungal endophytes on herbivore defences in symbiotic grasses. We hypothesize that the SA exposure suppresses the endophyte reducing the fungal‐produced alkaloids. Because of the role that alkaloids play in anti‐herbivore defences, any reduction in their production should make host plants more susceptible to herbivores. Lolium multiflorum plants symbiotic and nonsymbiotic with the endophyte Epichloë occultans were exposed to SA followed by a challenge with the aphid Rhopalosiphum padi. We measured the level of plant resistance to aphids, and the defences conferred by endophytes and host plants. Symbiotic plants had lower concentrations of SA than did the nonsymbiotic counterparts. Consistent with our prediction, the hormonal treatment reduced the concentration of loline alkaloids (i.e., N‐formyllolines and N‐acetylnorlolines) and consequently decreased the endophyte‐conferred resistance against aphids. Our study highlights the importance of the interaction between the plant immune system and endophytes for the stability of the defensive mutualism. Our results indicate that the SA plays a critical role in regulating the endophyte‐conferred resistance against herbivores.  相似文献   

8.
The root‐knot nematode, Meloidogyne graminicola, is an important pest of rice in many rice production areas worldwide. The endophyte Fusarium moniliforme strain Fe14, isolated from a disinfected root of rice, has previously shown potential antagonistic activity against M. graminicola. This study shows the effects of Fe14 on M. graminicola behaviour, infection, development and reproduction. The endophyte Fe14 colonisation significantly reduced M. graminicola penetration into rice roots by 55% and increased the male to female ratio nine times. The endophyte also delayed juvenile development into female inside the rice root. These results suggest a suboptimal performance of the giant cell and a cumulative effect of the endophyte on the long‐term root‐knot nematode population development. In split‐root assays, the application of Fe14 at the inducer side significantly reduced nematode invasion at the responder side by 38% and 60% in two independent trials. This result suggests a systemic effect of the endophyte on rice plants. The root exudates from Fe14‐treated plants were either less attractive or had repellent effect on nematode movement. The results, when compared to what was described for other endophytic Fusarium against other nematode species, may indicate a basal response mechanism initiated in the plant by endophytic Fusarium spp. The present study may give leads for unravelling the molecular mechanisms responsible for the induced systemic defence responses in plants.  相似文献   

9.
The paper describes experiments aimed at evaluating the sensitivity of different fungi, most of them plant pathogens and bacteria towards Streptomyces antimycoticus FZB53, a biocontrol agent that, when applied as a seed treatment, in previous studies has shown good activity against different seed‐borne fungal diseases. When incorporated into agar media, the filtrate from shake cultures of S. antimycoticus FZB53 inhibited the mycelial growth or spore germination, respectively, of a broad spectrum of fungi. The most sensitive of the fungi tested was Fusarium culmorum. The inhibitory activity could be removed from the culture filtrate by extraction with ethyl acetate. When ethyl acetate extracts of the pellet and supernatant obtained by centrifugation of the shake culture were added to the agar medium, inhibition of mycelial growth of F. culmorum was restored, especially with the extracts of the pelleted biomass. Autoclaving of the culture filtrate reduced the inhibition of F. culmorum but completely eliminated the inhibitory activity against Fusarium graminearum. Among the bunt fungi tested, spore germination of Tilletia tritici was more sensitive to the culture filtrate of S. antimycoticus FZB53 than spore germination of Ustilago avenae and U. tritici. Separation by thin layer chromatography (tlc) and spraying with different reagents showed that ethyl acetate extracts from shake cultures or biomass scraped from agar media contained several hydrophobic metabolites. When eluted from the tlc‐plates, the material from one of the spots had strong antifungal activity against spore germination of T. tritici and mycelial growth of F. culmorum, respectively. Ethyl acetate extracts from biomass of S. antimycoticus FZB53 prevented the growth of the tested Gram‐positive bacteria, namely Clavibacter michiganensis and different species of Bacillus. The results indicated that these bacteria were at least as sensitive towards the metabolites of S. antimycoticus FZB53 as F. culmorum. The tested Gram‐negative bacteria were not affected.  相似文献   

10.
Red fescue (Festuca rubra) is a perennial grass used as both forage and turfgrass. Asymptomatic plants of this species are systemically infected by the fungal endophyte Epichloë festucae, which has a beneficial effect on the infected plants. The aim of this study was to determine the effect of the endophyte Epichloë festucae on the allelopathic potential of F. rubra against four associated pasture species that are also considered as weeds in lawns, Trifolium pratense, Trifolium repens, Lotus corniculatus and Plantago lanceolata. Two experiments were designed to evaluate the allelopathic effect of extracts from the roots and leaves of endophyte‐infected (E+) and non‐infected (E?) plants on the germination and seedling growth of the four target species. Regardless of the endophyte status of the host plant, leaf extracts elicited a stronger reduction in germination and seedling growth than root extracts. Extracts from E+ plants reduced the speed of germination index of Trifolium spp. to a greater extent than those from E? plants. Radicle length of the target species was the parameter most affected by the presence of the endophyte in F. rubra. Root extracts from E+ plants had a greater inhibitory effect on the radicle growth of the target species than did root extracts from E? plants. A greater concentration in total phenolic compounds was found in the roots of E+ plants than of E?; however, this difference was not observed in the leaves. Thus, the allelopathic potential of F. rubra is altered in infected plants.  相似文献   

11.
Endophytic fungi belonging to the genus Neotyphodium often form symbiotic associations with grasses. The host plants usually benefit from the association with an endophyte. Presence of the symbiont may increase host resistance to infection by some pathogens. However, the exact mechanism of the lower susceptibility of endophyte‐infected plants to diseases is still unclear. Growth chamber trials were conducted to determine whether (a) tall fescue plants infected with the endophyte Neotyphodium coenophialum (E+) are more resistant to sheath and leaf spot disease caused by Rhizoctonia zeae than endophyte‐free (E?) plants, and (b) R. zeae growth inhibition is associated with endophyte presence. Tall fescue genotypes, each symbiotic with a genetically different native endophyte strain, were inoculated with isolates of R. zeae. The tillers infection by R. zeae, density of endophyte hyphae and content of total phenolic compounds in tillers were studied. Antifungal activity of the N. coenophialum towards R. zeae, Rhizoctonia solani, Bipolaris sorokiniana and Curvularia lunata was also investigated in dual‐culture assays. For Tf3, Tf4, TfA2 and TfA9 tall fescue genotypes, the E+ plants had reduced R. zeae infection. In the Tf9 and Tf8085 genotypes, R. zeae infection was similar for both E+ and E? plants. The strongest effect was observed for the Tf4 endophyte. A strongly positive correlation (r = 0.94) occurred between endophyte hyphal density and disease index across all tall fescue genotypes. Dual‐culture assays showed no inhibitory interaction between the seven endophyte strains and the R. zeae isolates; however, some endophytes inhibited R. solani, B. sorokiniana and C. lunata. Endophyte presence increased the production of phenolic compounds by the host grasses. The level of phenolics also differed significantly depending on the time of analysis after inoculation of plants by R. zeae. The results indicate that N. coenophialum can suppress disease severity caused by R. zeae infection. The mechanism of higher resistance of E+ plants is likely not based on direct inhibition such as antibiosis or competition. Thus, the induction of specific mechanisms in the host plant, for example, production of phenolic compounds, seems to be the main way of providing resistance to the grass by the endophyte.  相似文献   

12.
Bacteria predominantly use quorum sensing to regulate a plethora of physiological activities such as cell-cell crosstalk, mutualism, virulence, competence, biofilm formation, and antibiotic resistance. In this study, we investigated how certain potent endophytic bacteria harbored in Cannabis sativa L. plants use quorum quenching as an antivirulence strategy to disrupt the cell-to-cell quorum sensing signals in the biosensor strain, Chromobacterium violaceum. We used a combination of high-performance liquid chromatography high-resolution mass spectrometry (HPLC-ESI-HRMSn) and matrix-assisted laser desorption ionization imaging high-resolution mass spectrometry (MALDI-imaging-HRMS) to first quantify and visualize the spatial distribution of the quorum sensing molecules in the biosensor strain, C. violaceum. We then showed, both quantitatively and visually in high spatial resolution, how selected endophytic bacteria of C. sativa can selectively and differentially quench the quorum sensing molecules of C. violaceum. This study provides fundamental insights into the antivirulence strategies used by endophytes in order to survive in their ecological niches. Such defense mechanisms are evolved in order to thwart the plethora of pathogens invading associated host plants in a manner that prevents the pathogens from developing resistance against the plant/endophyte bioactive secondary metabolites. This work also provides evidence towards utilizing endophytes as tools for biological control of bacterial phytopathogens. In continuation, such insights would even afford new concepts and strategies in the future for combating drug resistant bacteria by quorum-inhibiting clinical therapies.  相似文献   

13.
An understanding of hereditary endophytic fungi, and the effects on grass persistence strategies (i.e. relative investment in sexual reproduction and vegetative growth) under natural conditions may help to predict how some alpine ecosystems will respond to environmental change. Grass persistence and endophyte maintenance in host populations are closely related, but could become independent due to endophyte loss mechanisms. We used native grass and endophyte populations to test the hypothesis that fungal endophytes manipulate grass persistence strategies to secure endophyte maintenance in plant populations. Two conditions were required to verify this hypothesis: 1) the fungus caused alterations in host plant strategies; and 2) plant phenotypic changes induced by the fungal endophyte increased endophyte transmission. We compared symbiotic (S) and non‐symbiotic (NS) persistence strategies of Festuca eskia (Poaceae), an alpine grass infected by the asexual form of the fungal endophyte Epichloë festucae. We characterised endophyte transmission efficiency, and described vegetative growth and sexual reproduction in a field population that naturally supports approximately 50% S plants. We built a demographic model to estimate plant vegetative growth rates. A correlation between plant persistence strategy, and fungal maintenance was evaluated by increasing soil resource levels. Under natural conditions, S and NS plants exploited different persistence strategies in the same population; S plants exhibited greater vegetative growth than their NS counterparts, while maintaining the same reproductive output. In response to higher soil resource levels, S plants shifted in persistence strategies and phenology, whereas NS plants maintained the same strategies. Therefore, results suggested the fungal endophyte fine‐tuned host persistence strategies according to soil resource level. Finally, we found no direct relationship between the changes induced by fungal endophyte and endophyte transmission. Consequently, fungal endophytes affected host persistence strategies, but did not directly increase endophyte transmission.  相似文献   

14.
The characterization of a novel Pseudomonas strain exhibiting antagonism towards many important corn fungal pathogens is presented. This strain was isolated from the caryopses of the grass Tripsacum dactyloides and was identified as Pseudomonas cepacia. The antagonistic activity is due to the production of an antifungal compound. The chromatographic properties of this partially purified compound isolated from growth medium differ from those reported previously for other pseudomonads. The suppression of the growth of economically important phytopathogens by this strain and by the partially purified compound indicates a potential biocontrol agent.  相似文献   

15.
Variation in plant communities is likely to modulate the feeding and oviposition behavior of herbivorous insects, and plant‐associated microbes are largely ignored in this context. Here, we take into account that insects feeding on grasses commonly encounter systemic and vertically transmitted (via seeds) fungal Epichloë endophytes, which are regarded as defensive grass mutualists. Defensive mutualism is primarily attributable to alkaloids of fungal origin. To study the effects of Epichloë on insect behavior and performance, we selected wild tall fescue (Festuca arundinacea) and red fescue (Festuca rubra) as grass–endophyte models. The plants used either harbored the systemic endophyte (E+) or were endophyte‐free (E?). As a model herbivore, we selected the Coenonympha hero butterfly feeding on grasses as larvae. We examined both oviposition and feeding preferences of the herbivore as well as larval performance in relation to the presence of Epichloë endophytes in the plants. Our findings did not clearly support the female's oviposition preference to reflect the performance of her offspring. First, the preference responses depended greatly on the grass–endophyte symbiotum. In F. arundinacea, C. hero females preferred E+ individuals in oviposition‐choice tests, whereas in F. rubra, the endophytes may decrease exploitation, as both C. hero adults and larvae preferred E? grasses. Second, the endophytes had no effect on larval performance. Overall, F. arundinacea was an inferior host for C. hero larvae. However, the attraction of C. hero females to E+ may not be maladaptive if these plants constitute a favorable oviposition substrate for reasons other than the plants' nutritional quality. For example, rougher surface of E+ plant may physically facilitate the attachment of eggs, or the plants offer greater protection from natural enemies. Our results highlight the importance of considering the preference of herbivorous insects in studies involving the endophyte‐symbiotic grasses as host plants.  相似文献   

16.
The isolation and characterization of fungal strains from poorly described taxa allows undercover attributes of their basic biology useful for biotechnology. Here, a wild fungal strain (CMU‐196) from recently described Paraconiothyrium genus was analyzed. CMU‐196 was identified as Paraconiothyrium brasiliense by phylogenetic analysis of the rDNA internal transcribed spacer region (ITS). CMU‐196 metabolized 57 out of 95 substrates of the Biolog FF microplates. Efficient assimilation of dextrins and glycogen indicates that CMU‐196 is a good producer of amylolytic enzymes. It showed a remarkably assimilation of α‐d ‐lactose, substrate described as inducer of cellulolytic activity but poorly assimilated by several fungi. Metabolically active mycelium of the strain decolorized broth supplemented with direct blue 71, Chicago sky blue and remazol brilliant blue R dyes. The former two dyes were also well removed from broth by mycelium inactivated by autoclaving. Both mycelia had low efficiency for removing fuchsin acid from broth and for decolorizing wastewater from the paper industry. CMU‐196 strain showed extracellular laccase activity when potato dextrose broth was supplemented with Cu+2, reaching a maximum activity of 46.8 (±0.33) U L?1. Studied strain antagonized phytopathogenic Colletotrichum spp. fungi and Phytophthora spp. oomycetes in vitro, but is less effective towards Fusarium spp. fungi. CMU‐196 antagonism includes overgrowing the mycelia of phytopathogens and growth inhibition, probably by hydrosoluble extracellular metabolites. The biotechnological potential of strain CMU‐196 here described warrants further studies to have a more detailed knowledge of the mechanisms associated with its metabolic versatility, capacity for environmental detoxification, extracellular laccase production, and antagonism against phytopathogens. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 34:846–857, 2018  相似文献   

17.
An Acinetobacter strain, given the code name LCH001 and having the potential to be an endophytic antagonist, has been isolated from healthy stems of the plant Cinnamomum camphora (L.) Presl, guided by an in vitro screening technique. The bacterium inhibited the growth of several phytopathogenic fungi such as Cryphonectria parasitica, Glomerella glycines, Phytophthora capsici, Fusarium graminearum, Botrytis cinerea, and Rhizoctonia solani. Biochemical, physiological, and 16S rDNA sequence analysis proved that it is Acinetobacter baumannii. When the filtrate from the fermentation broth of strain LCH001 was tested in vitro and in vivo, it showed strong growth inhibition against several phytopathogens including P. capsici, F. graminearum, and R. solani, indicating that suppression of the growth of the fungi was due to the presence of antifungal compounds in the culture broth. Moreover, the antifungal activity of the culture filtrate was significantly correlated with the cell growth of strain LCH001. The active metabolites in the filtrate were relatively thermally stable, but were sensitive to acidic conditions. Three antifungal compounds were isolated from the culture broth by absorption onto macropore resin, ethanol extraction, chromatography on silica gel or LH-20 columns, and crystallization. The structures of the bioactive compounds were identified by spectroscopic methods as isomers of iturin A, namely, iturin A2, iturin A3, and iturin A6. The characterization of an unusual endophytic bacterial strain LCH001 and its bioactive components may provide an alternative resource for the biocontrol of plant diseases.  相似文献   

18.
Dual biological control, of both insect pests and plant pathogens, has been reported for the fungal entomopathogens, Beauveria bassiana (Bals.-Criv.) Vuill. (Ascomycota: Hypocreales) and Lecanicillium spp. (Ascomycota: Hypocreales). However, the primary mechanisms of plant disease suppression are different for these fungi. Beauveria spp. produce an array of bioactive metabolites, and have been reported to limit growth of fungal plant pathogens in vitro. In plant assays, B. bassiana has been reported to reduce diseases caused by soilborne plant pathogens, such as Pythium, Rhizoctonia, and Fusarium. Evidence has accumulated that B. bassiana can endophytically colonize a wide array of plant species, both monocots and dicots. B. bassiana also induced systemic resistance when endophytically colonized cotton seedlings were challenged with a bacterial plant pathogen on foliage. Species of Lecanicillium are known to reduce disease caused by powdery mildew as well as various rust fungi. Endophytic colonization has been reported for Lecanicillium spp., and it has been suggested that induced systemic resistance may be active against powdery mildew. However, mycoparasitism is the primary mechanism employed by Lecanicillium spp. against plant pathogens. Comparisons of Beauveria and Lecanicillium are made with Trichoderma, a fungus used for biological control of plant pathogens and insects. For T. harzianum Rifai (Ascomycota: Hypocreales), it has been shown that some fungal traits that are important for insect pathogenicity are also involved in biocontrol of phytopathogens.  相似文献   

19.
Aim: This study aimed to evaluate the effect of bromelain, a cysteine protease isolated from pineapple (Ananas comosus), on growth of several agronomically important fungal pathogens. Methods and Results: Purification of bromelain from pineapple stems was carried out by chromatography techniques, and its antimicrobial activity was tested against the fungal pathogens Fusarium verticillioides, Fusarium oxysporum and Fusarium proliferatum by broth microdilution assay. A concentration of 0·3 μmol l?1 of bromelain was sufficient for 90% growth inhibition of F. verticillioides. The capability of bromelain to inhibit fungal growth is related to its proteolytic activity. Conclusions: The study demonstrates that stem bromelain exhibits a potent antifungal activity against phytopathogens and suggests its potential use as an effective agent for crop protection. Significance and Impact of the Study: The results support the use of a natural protease that accumulates at high levels in pineapple stems as alternative to the use of chemical fungicides for crop protection.  相似文献   

20.
Cultures of F. moniliforme var. subglutinans, F. moniliforme, F. lateritium, F. equiseti, F. semitectum and F. solani from pine and F. moniliforme and F. graminearum from southern U.S. corn were grown on rice and corn, extracted, and checked for toxicity in mice, chicken embryos, and pine seedlings, and for mutagenicity by the Ames test. While extracts from both fungal groups contained toxins, none of the extracts induced dieback in pine seedlings. Almost all of the cultures isolated from corn in contrast to those from pine, were mutagenic. Thin-layer chromatography did not detect T-2 toxin, moniliformin, or vomitoxin, indicating that these toxins do not elicit dieback symptoms in pine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号