首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Granulation tissue fibroblasts (myofibroblasts) develop several ultrastructural and biochemical features of smooth muscle (SM) cells, including the presence of microfilament bundles and the expression of alpha-SM actin, the actin isoform typical of vascular SM cells. Myofibroblasts have been proposed to play a role in wound contraction and in retractile phenomena observed during fibrotic diseases. We show here that the subcutaneous administration of transforming growth factor- beta 1 (TGF beta 1) to rats results in the formation of a granulation tissue in which alpha-SM actin expressing myofibroblasts are particularly abundant. Other cytokines and growth factors, such as platelet-derived growth factor and tumor necrosis factor-alpha, despite their profibrotic activity, do not induce alpha-SM actin in myofibroblasts. In situ hybridization with an alpha-SM actin probe shows a high level of alpha-SM actin mRNA expression in myofibroblasts of TGF beta 1-induced granulation tissue. Moreover, TGF beta 1 induces alpha-SM actin protein and mRNA expression in growing and quiescent cultured fibroblasts and preincubation of culture medium containing whole blood serum with neutralizing antibodies to TGF beta 1 results in a decrease of alpha-SM actin expression by fibroblasts in replicative and non-replicative conditions. These results suggest that TGF beta 1 plays an important role in myofibroblast differentiation during wound healing and fibrocontractive diseases by regulating the expression of alpha-SM actin in these cells.  相似文献   

2.
Clinical and experimental investigations have shown that, during wound healing and fibrocontractive diseases, fibroblasts acquire, more or less permanently according to the situation, morphological and biochemical features of smooth muscle (SM) cells including the expression of alpha-SM actin. Primary and passaged cultures of rat and human fibroblasts contain a subpopulation of cells expressing alpha-SM actin. These cells could derive from SM cells and/or pericytes present in the tissue from which cultures have been produced or represent bona fide fibroblasts. We have investigated the presence of alpha-SM actin in fibroblast cultures, clones, and subclones. In all cases the fibroblastic populations studied showed a proportion of alpha-SM actin expressing cells. Even after cloning, we never obtained populations negative for alpha-SM actin. We conclude that alpha-SM actin expression in fibroblastic cultures is not due to contaminant cells but is a feature of fibroblasts themselves. Our results support the view that fibroblastic cells are a heterogeneous population. It has been previously shown that gamma-interferon (gamma-IFN) decreases alpha-SM actin expression in SM cells. In rat and human fibroblasts, gamma-IFN decreases alpha-SM actin protein and mRNA expression as well as proliferation. The properties of this cytokine make it a good candidate for exerting an anti-fibrotic activity in vivo.  相似文献   

3.
We have examined alpha-smooth muscle actin (alpha-SM actin) protein and mRNA levels in proliferating and density-arrested rabbit vascular smooth muscle cells (SMC) and also studied overall polypeptide synthesis in these cells by two-dimensional (2-D) gel electrophoresis. Of the approximately 1,000 cellular polypeptides resolved by 2-D gel analysis, we consistently detected increased expression of 12 polypeptides in growth-arrested SMC. These polypeptides, with apparent molecular weights of 24,000 to 55,000 exhibited relative increases of between fourfold to greater than tenfold. Three of these polypeptides were expressed at undetectable levels in proliferating SMC. We also detected 12 secreted polypeptides that were expressed at higher levels in growth-arrested SMC. More changes were associated with the secreted polypeptides, since they represented approximately 4% of the total resolved secreted polypeptides, while only 1% of the cellular polypeptides were increased in high-density growth-arrested cells. Under these conditions we observed no change in relative alpha-SM actin protein content as determined by 2-D gel analysis and Western blots. This was corroborated by high levels of alpha-SM actin mRNA levels in both proliferating and high-density growth-arrested SMC. These results indicate rabbit vascular SMC maintain a high level of expression of a smooth muscle differentiation marker (alpha-SM actin) in a proliferation- and density-independent manner. We also examined polypeptide synthesis in SMC isolated by enzymatic digestion of the aorta vs. cells isolated by the explant method. We found that although overall protein patterns were remarkably similar, several differences were observed. These differences were not due to increased contamination by fibroblasts, since both enzymatically- and explant-derived SMC contained high levels of alpha-SM actin as determined by immunofluorescence and by Northern analysis.  相似文献   

4.
Dynamic remodeling of the actin cytoskeleton plays an essential role in the migration and proliferation of vascular smooth muscle cells. It has been suggested that actin remodeling may also play an important functional role in nonmigrating, nonproliferating differentiated vascular smooth muscle (dVSM). In the present study, we show that contractile agonists increase the net polymerization of actin in dVSM, as measured by the differential ultracentrifugation of vascular smooth muscle tissue and the costaining of single freshly dissociated cells with fluorescent probes specific for globular and filamentous actin. Furthermore, induced alterations of the actin polymerization state, as well as actin decoy peptides, inhibit contractility in a stimulus-dependent manner. Latrunculin pretreatment or actin decoy peptides significantly inhibit contractility induced by a phorbol ester or an alpha-agonist, but these procedures have no effect on contractions induced by KCl. Aorta dVSM expresses alpha-smooth muscle actin, beta-actin, nonmuscle gamma-actin, and smooth muscle gamma-actin. The incorporation of isoform-specific cell-permeant synthetic actin decoy peptides, as well as isoform-specific probing of cell fractions and two-dimensional gels, demonstrates that actin remodeling during alpha-agonist contractions involves the remodeling of primarily gamma-actin and, to a lesser extent, beta-actin. Taken together, these results show that net isoform- and agonist-dependent increases in actin polymerization regulate vascular contractility.  相似文献   

5.
It is well known that arterial smooth muscle cells (SMC) of adult rats, cultured in a medium containing fetal calf serum (FCS), replicate actively and lose the expression of differentiation markers, such as desmin, smooth muscle (SM) myosin and alpha-SM actin. We report here that compared to freshly isolated cells, primary cultures of SMC from newborn animals show no change in the number of alpha-SM actin containing cells and a less important decrease in the number of desmin and SM myosin containing cells than that seen in primary cultures of SMC from adult animals; moreover, contrary to what is seen in SMC cultured from adult animals, they show an increase of alpha-SM actin mRNA level, alpha-SM actin synthesis and expression per cell. These features are partially maintained at the 5th passage, when the cytoskeletal equipment of adult SMC has further evolved toward dedifferentiation. Cloned newborn rat SMC continue to express alpha-SM actin, desmin and SM myosin at the 5th passage. Thus, newborn SMC maintain, at least in part, the potential to express differentiated features in culture. Heparin has been proposed to control proliferation and differentiation of arterial SMC. When cultured in the presence of heparin, newborn SMC show an increase of alpha-SM actin synthesis and content but no modification of the proportion of alpha-SM actin total (measured by Northern blots) and functional (measured by in vitro translation in a reticulocyte lysate) mRNAs compared to control cells cultured for the same time in FCS containing medium. This suggests that heparin action is exerted at a translational or post-translational level. Cultured newborn rat aortic SMC furnish an in vitro model for the study of several aspects of SMC differentiation and possibly of mechanisms leading to the establishment and prevention of atheromatous plaques.  相似文献   

6.
The in vitro study of mammalian hematopoiesis is hindered by the lack of immortalized human stromal cell lines that support hematopoiesis. We have immortalized human stromal vascular smooth muscle cells characterized by the expression of the alpha-smooth muscle (alpha-SM) actin. This marker is usually down-regulated as a result of oncogenic transformation. To correct this dedifferentiation, we placed the expression of human papilloma virus 16 E6/E7 oncogenes under the control of the tissue-specific alpha-SM actin promoter. The immortalization event is rare and requires polyclonal culture, but the corresponding established line retains alpha-SM actin expression. Moreover, when compared with other lines derived from the same cells from vectors made with the same oncogenes but driven by either an internal SV40 promoter or the viral long terminal repeat, this line is less transformed as shown by anchorage-independent growth assay. We show therefore that the use of a physiological promoter allows the production of human cell lines with a conserved phenotype.  相似文献   

7.
The relationship between growth and cytodifferentiation was studied in cultured rat aortic smooth muscle cells (SMCs) using expression of the smooth muscle (SM)-specific isoactins (Vanderkerckhove, J., and K. Weber, 1979, Differentiation, 14:123-133) as a marker for differentiation in these cells. Isoactin expression was evaluated by: (a) measurements of fractional isoactin content and synthesis ([35S]methionine incorporation) by densitometric evaluation of two-dimensional isoelectric focusing sodium dodecyl sulfate gels, and (b) immunocytological examination using SM-specific isoactin antibodies. Results showed the following: (a) Loss of alpha-SM isoactin was not a prerequisite for initiation of cellular proliferation in primary cultures of rat aortic SMCs. (b) alpha-SM isoactin synthesis and content were low in subconfluent log phase growth cells but increased nearly threefold in density-arrested postconfluent cells. Conversely, beta-nonmuscle actin synthesis and content were higher in rapidly dividing subconfluent cultures than in quiescent postconfluent cultures. These changes were observed in primary and subpassaged cultures. (c) alpha-SM actin synthesis was increased by growth arrest of sparse cultures in serum-free medium (SFM; Libby, P., and K. V. O'Brien, 1983, J. Cell. Physiol., 115:217-223) but reached levels equivalent to density-arrested cells only after extended periods in SFM (i.e., greater than 5 d). (d) SFM did not further augment alpha-SM actin synthesis in postconfluent SMC cultures. (e) Serum stimulation of cells that had been growth-arrested in SFM resulted in a dramatic decrease in alpha-SM actin synthesis that preceded the onset of cellular proliferation. These findings demonstrate that cultured vascular SMCs undergo differential expression of isoactins in relation to their growth state and indicate that growth arrest promotes cytodifferentiation in these cells.  相似文献   

8.
9.
The blocking effect of the NH2-terminal decapeptide of alpha-smooth muscle (SM) actin AcEEED-STALVC on the binding of the specific monoclonal antibody anti-alpha SM-1 (Skalli, O., P. Ropraz, A. Trzeviak, G. Benzonana, D. Gillessen, and G. Gabbiani. 1986. J. Cell Biol. 103:2787-2796) was compared with that of synthetic peptides modified by changing the acetyl group or by substituting an amino acid in positions 1 to 5. Using immunofluorescence and immunoblotting techniques, anti-alpha SM-1 binding was abolished by the native peptide and by peptides with a substitution in position 5, indicating that AcEEED is the epitope for anti-alpha SM-1. Incubation of anti-alpha SM- 1 (or of its Fab fragment) with arterial SM actin increased polymerization in physiological salt conditions; the antibody binding did not hinder the incorporation of the actin antibody complex into the filaments. This action was not exerted on skeletal muscle actin. After microinjection of the alpha-SM actin NH2-terminal decapeptide or of the epitopic peptide into cultured aortic smooth muscle cells, double immunofluorescence for alpha-SM actin and total actin showed a selective disappearance of alpha-SM actin staining, detectable at approximately 30 min. When a control peptide (e.g. alpha-skeletal [SK] actin NH2-terminal peptide) was microinjected, this was not seen. This effect is compatible with the possibility that the epitopic peptide traps a protein involved in alpha-SM actin polymerization during the dynamic filament turnover in stress fibers. Whatever the mechanism, this is the first evidence that the NH2 terminus of an actin isoform plays a role in the regulation of polymerization in vitro and in vivo.  相似文献   

10.
The muscularization of non-muscular pulmonary arterioles is an important pathological feature of hypoxic pulmonary vascular remodeling. However, the origin of the cells involved in this process is still not well understood. The present study was undertaken to test the hypothesis that transforming growth factor-β1 (TGF-β1) can induce transdifferentiation of fibroblasts into myofibroblasts, which might play a key role in the muscularization of non-muscular pulmonary arterioles. It was found that mean pulmonary arterial pressure increased significantly after 7 d of hypoxia. Pulmonary artery remodeling index and fight ventricular hypertrophy became evident after 14 d of hypoxia. The distribution of nonmuscular, partially muscular, and muscular vessels was significantly different after 7 d of hypoxia. Immunocytochemistry results demonstrated that the expression of α-smooth muscle actin was increased in intra-acinar pulmonary arteries with increasing hypoxic time. TGF-β1 mRNA expression in pulmonary arterial walls was increased significantly after 14 d of hypoxia, but showed no obvious changes after 3 or 7 d of hypoxia. In pulmonary tunica adventitia and tunica media, TGF-β1 protein staining was poorly positive in control rats, but was markedly enhanced after 3 d of hypoxia, reaching its peak after 7 d of hypoxia. The myofibroblast phenotype was confirmed by electron microscopy, which revealed microfilaments and a well-developed rough endoplasmic reticulum. Taken together, our results suggested that TGF-β1 induces transdifferentiation of fibroblasts into myofibroblasts, which is important in hypoxic pulmonary vascular remodeling.  相似文献   

11.
Actin and tropomyosin variants in smooth muscles. Dependence on tissue type   总被引:12,自引:0,他引:12  
Actin was found to be the major source of myofibrillar protein heterogeneity in smooth muscles. Three isoelectric variants, alpha-smooth muscle (alpha-SM), beta-non-muscle (beta-NM), and gamma-actins (gamma-SM and gamma-NM) were measured in 15 different smooth muscles, alpha-SM and gamma-actin contents displayed an inverse relationship in a given smooth muscle, some of which contained primarily alpha-SM actin while gamma-actins dominated in others. alpha-SM actin and gamma-actin distributions were tissue-specific, independent of species. A greater proportion of alpha-SM actin appears to be associated with tissues having a high degree of tonic activity. beta-Nonmuscle actin was a significant, and relatively constant, component of all smooth muscle tissues. The high NM-actin content of these tissues may reflect the importance of proliferative, synthetic, or secretory activities in smooth muscle, because the alpha-SM actin disappeared in tissue culture with a time course paralleling the modulation of phenotype from a contractile to a proliferative cell. Two tropomyosin subunits were present in approximately equal amounts in all smooth muscle tissues studied. One tropomyosin subunit exhibited identical mobility on two-dimensional gel electrophoresis, while the other was characterized by some species-specific variation which was unrelated to actin variant distribution. No variants of the 20,000-dalton regulatory light chain of myosin were observed. These results suggest that SM-specific actin variants are associated with functional diversity among smooth muscles.  相似文献   

12.
Lin F  Wang N  Zhang TC 《IUBMB life》2012,64(9):717-723
Epithelial-mesenchymal transition is an important developmental process, participates in tumor's formation, invasion, and metastasis and has been extensively studied. Recently, endothelial-mesenchymal transition (EndMT), a newly recognized type of cellular transdifferentiation, has been demonstrated to participate in a number of diseases by causing morphology changes and pathological processes. Previous studies showed that EndMT was a critical process of embryonic cardiac development. Not only that recent advances also suggested that EndMT occurred postnatally in cancer and cardiac fibrosis and emerged as a possible source of cancer-associated fibroblasts (CAFs). CAFs were found to acquire properties that promoted tumor development and metastasis formation. Resident endothelial cells undergoing EndMT lose their endothelial markers, acquire a mesenchymal or myofibroblastic phenotype, express mesenchymal cell products such as α-smooth muscle actin and type I collagen and develop invasive and migratory abilities. EndMT-derived cells are believed to function as fibroblasts in damaged tissue and may therefore have an important role in pathological process. However, little is known about the signaling mechanisms that cause endothelial cells to transform into mesenchymal cells. Transforming growth factor-β, Notch, or other signaling pathways could direct or interact to mediate EndMT. Therefore, to explore the signaling mechanisms of EndMT may provide novel therapeutic strategies for treating cancer. ? 2012 IUBMB IUBMB Life, 64(9): 717-723, 2012.  相似文献   

13.
Hypoxia, leukocytes, and the pulmonary circulation.   总被引:2,自引:0,他引:2  
Data are rapidly accumulating in support of the idea that circulating monocytes and/or mononuclear fibrocytes are recruited to the pulmonary circulation of chronically hypoxic animals and that these cells play an important role in the pulmonary hypertensive process. Hypoxic induction of monocyte chemoattractant protein-1, stromal cell-derived factor-1, vascular endothelial growth factor-A, endothelin-1, and tumor growth factor-beta(1) in pulmonary vessel wall cells, either directly or indirectly via signals from hypoxic lung epithelial cells, may be a critical first step in the recruitment of circulating leukocytes to the pulmonary circulation. In addition, hypoxic stress appears to induce release of increased numbers of monocytic progenitor cells from the bone marrow, and these cells may have upregulated expression of receptors for the chemokines produced by the lung circulation, which thus facilitates their specific recruitment to the pulmonary site. Once present, macrophages/fibrocytes may exert paracrine effects on resident pulmonary vessel wall cells stimulating proliferation, phenotypic modulation, and migration of resident fibroblasts and smooth muscle cells. They may also contribute directly to the remodeling process through increased production of collagen and/or differentiation into myofibroblasts. In addition, they could play a critical role in initiating and/or supporting neovascularization of the pulmonary artery vasa vasorum. The expanded vasa network may then act as a conduit for further delivery of circulating mononuclear cells to the pulmonary arterial wall, creating a feedforward loop of pathological remodeling. Future studies will need to determine the mechanisms that selectively induce leukocyte/fibrocyte recruitment to the lung circulation under hypoxic conditions, their direct role in the remodeling process via production of extracellular matrix and/or differentiation into myofibroblasts, their impact on the phenotype of resident smooth muscle cells and adventitial fibroblasts, and their role in the neovascularization observed in hypoxic pulmonary hypertension.  相似文献   

14.
In search of early structural markers of arteriogenesis, we studied the expression of gap junction proteins as well as of contractile and cytoskeletal proteins in smooth muscle cells (SMCs) during coronary collateral vessel growth induced by chronic occlusion of the left circumflex artery (LCx) in the dog heart. We used confocal microscopy with antibodies against connexin37 (Cx37), alpha-smooth muscle actin (alpha-SM actin), calponin, desmin and vinculin. The quantitative confocal analysis of immunofluorescence intensity showed that (1) in normal vessels (NV), Cx37 was present in endothelium only, not in SMC. Calponin, alpha-SM actin, desmin and vinculin were evenly expressed in SMC. (2) In early growing V (EV) with minimal intima formation, alpha-SM actin, calponin and vinculin showed little change in SMC, but desmin was 3.3 times lower than in NV, and Cx37 was induced (NV 0 arbitrary units/microm2, EV 50.3). (3) In actively growing V (AV), alpha-SM actin, calponin and vinculin were 3-, 3.3- and 2.9-fold lower, respectively, in the neointima as compared to the media. However, Cx37 was 48.2 AU/microm2 in the media and 15.8 AU/microm2 in the neointima. Desmin was almost absent in the neointima and 5-fold reduced in the media. SMC, strongly positive for alpha-SM actin and calponin, expressed Cx37. Our findings indicate that induction of Cx37 and reduction of desmin precede the phenotypic changes of SMCs, which are characterized by down-regulation of alpha-SM actin, calponin and vinculin, and the formation of a neointima. An altered expression of Cx37 and desmin, therefore, are early markers for arteriogenesis in dog heart.  相似文献   

15.
The distribution of smooth muscle (SM) and non muscle myosins was compared with that of alpha-SM actin in various normal and pathological tissues and in cultured cells by means of indirect immunofluorescence using a monoclonal antibody specific for alpha-SM actin [anti-alpha sm-1, Skalli et al., 1986b] and two polyclonal antibodies raised against bovine aortic myosin (ABAM) and human platelet myosin (AHPM), respectively. In normal tissues ABAM stained vascular and parenchymal smooth muscle cells (SMC), myoepithelial cells and myoid cells of the testis in a pattern similar to that reported by other authors with antisera raised against non vascular SM myosin. Cells stained with ABAM were always positive for anti-alpha sm-1. In human and experimental atheromatous plaques, most cells were positive for AHPM; a variable proportion was also stained for ABAM plus anti-alpha sm-1. Myofibroblasts from rat granulation tissue, Dupuytren's nodule and stroma from breast carcinoma were constantly positive for AHPM and negative for ABAM; however, myofibroblasts from Dupuytren's nodule and breast carcinoma were anti-alpha sm-1 positive. Early primary cultures of rat aortic SMC were positive for ABAM and anti-alpha sm-1 and became negative for ABAM and positive for AHPM after a few days in culture. They remained positive for AHPM and anti-alpha sm-1 after passages; the staining of AHPM and anti-alpha sm-1 appeared to be colocalized along the same stress fibers. These results may be relevant for the understanding of SMC function and adaptation, and show that in non malignant SMC proliferation, alpha-SM actin represents a more general marker of SM origin than SM myosin.  相似文献   

16.
We have previously demonstrated that alpha-smooth muscle (alpha-SM) actin is predominantly distributed in the central region and beta-non-muscle (beta-NM) actin in the periphery of cultured rabbit aortic smooth muscle cells (SMCs). To determine whether this reflects a special form of segregation of contractile and cytoskeletal components in SMCs, this study systematically investigated the distribution relationship of structural proteins using high-resolution confocal laser scanning fluorescent microscopy. Not only isoactins but also smooth muscle myosin heavy chain, alpha-actinin, vinculin, and vimentin were heterogeneously distributed in the cultured SMCs. The predominant distribution of beta-NM actin in the cell periphery was associated with densely distributed vinculin plaques and disrupted or striated myosin and alpha-actinin aggregates, which may reflect a process of stress fiber assembly during cell spreading and focal adhesion formation. The high-level labeling of alpha-SM actin in the central portion of stress fibers was related to continuous myosin and punctate alpha-actinin distribution, which may represent the maturation of the fibrillar structures. The findings also suggest that the stress fibers, in which actin and myosin filaments organize into sarcomere-like units with alpha-actinin-rich dense bodies analogous to Z-lines, are the contractile structures of cultured SMCs that link to the network of vimentin-containing intermediate filaments through the dense bodies and dense plaques.  相似文献   

17.
Frozen or paraffin-embedded human and rat lung specimens were stained with antibodies against total actin, alpha-smooth muscle (SM) actin, vimentin, desmin, or gelsolin. Alveolar interstitial myofibroblasts [i.e., contractile interstitial cells (CIC)] were labeled by total actin antibody but not by alpha-SM actin antibody. They stained for vimentin and gelsolin and, in rat lungs, most of them for desmin. Pericytes located around venules at the junction of three alveolar septa were always positive for alpha-SM actin and never for desmin. Tissue samples were also immunostained by an alpha-SM actin antibody and studied by electron microscopy. With this technique we confirmed that cells, identified as pericytes on the basis of their location, were intensely labeled by alpha-SM actin antibodies, whereas alveolar myofibroblasts were not. We conclude that in the lung interstitium pericytes and alveolar myofibroblasts have distinct cytoskeletal features, alpha-SM actin antibody staining being a simple method to distinguish between them. Furthermore, it appears that alveolar myofibroblasts have a peculiar pattern of cytoskeletal protein composition which, in the rat, is similar to that previously described for stromal cells in uterine submucosa, liver sinusoids (Ito cells), or the core of intestinal villi.  相似文献   

18.
The mechanisms contributing to airway wall remodeling in asthma are under investigation to identify appropriate therapeutic targets. Bronchial myofibroblasts would represent an important target because they play a crucial role in the genesis of subepithelial fibrosis, a characteristic feature of the remodeling process, but their origin is poorly understood. We hypothesized that they originate from fibrocytes, circulating cells with the unique characteristic of expressing the hemopoietic stem cell Ag CD34 and collagen I. In this study we show that allergen exposure induces the accumulation of fibrocyte-like cells in the bronchial mucosa of patients with allergic asthma. These cells are CD34-positive; express collagen I and alpha-smooth muscle actin, a marker of myofibroblasts; and localize to areas of collagen deposition below the epithelium. By tracking labeled circulating fibrocytes in a mouse model of allergic asthma, we provide evidence that fibrocytes are indeed recruited into the bronchial tissue following allergen exposure and differentiate into myofibroblasts. We also show that human circulating fibrocytes acquire the myofibroblast phenotype under in vitro stimulation with fibrogenic cytokines that are produced in exaggerated quantities in asthmatic airways. These results indicate that circulating fibrocytes may function as myofibroblast precursors and may contribute to the genesis of subepithelial fibrosis in asthma.  相似文献   

19.
epithelial–mesenchymal transition (EMT) has been considered to be involved in organ fibrogenesis. However, there is few direct evidence of this process in the pathophysiology of pulmonary fibrosis in vivo. Therefore, we tried to verify the involvement of this process in the development of pulmonary fibrosis. Since the co-expressions of epithelial and mesenchymal markers are thought to be a marker of EMT, we performed dual-immuunohistochemistry to assess the co-expressions of these proteins in lung tissues from bleomycin-induced pulmonary fibrosis in mice, and from patients with idiopathic pulmonary fibrosis, and nonspecific interstitial pneumonia. Double positive cells for epithelial markers including E-cadherin, T1α, or aquaporin 5, and a mesenchymal markers α-smooth muscle actin or vimentin were not found in bleomycin-induced pulmonary fibrosis in mice. Double positive cells for E-cadherin, ICAM-1, LEA, CD44v9, or SP-A and α-smooth muscle actin or vimentin were not found in lung tissues from normal lung parenchyma, idiopathic pulmonary fibrosis and nonspecific interstitial pneumonia. These results offer at least two possibilities. One is that EMT does not occur in IPF or bleomycin-induced pulmonary fibrosis in mice. Another is that EMT may occur in pulmonary fibrosis but the time during this transition in which cells express detectable levels of epithelial and mesenchymal markers is too small to be detected by double immunohistochemistry.  相似文献   

20.

Background

We previously observed that allergen-exposed mice exhibit remodeling of large bronchial-associated blood vessels. The aim of the study was to examine whether vascular remodeling occurs also in vessels where a spill-over effect of bronchial remodeling molecules is less likely.

Methods

We used an established mouse model of allergic airway inflammation, where an allergic airway inflammation is triggered by inhalations of OVA. Remodeling of bronchial un-associated vessels was determined histologically by staining for α-smooth muscle actin, procollagen I, Ki67 and von Willebrand-factor. Myofibroblasts were defined as and visualized by double staining for α-smooth muscle actin and procollagen I. For quantification the blood vessels were divided, based on length of basement membrane, into groups; small (≤250 μm) and mid-sized (250–500 μm).

Results

We discovered marked remodeling in solitary small and mid-sized blood vessels. Smooth muscle mass increased significantly as did the number of proliferating smooth muscle and endothelial cells. The changes were similar to those previously seen in large bronchial-associated vessels. Additionally, normally poorly muscularized blood vessels changed phenotype to a more muscularized type and the number of myofibroblasts around the small and mid-sized vessels increased following allergen challenge.

Conclusion

We demonstrate that allergic airway inflammation in mice is accompanied by remodeling of small and mid-sized pulmonary blood vessels some distance away (at least 150 μm) from the allergen-exposed bronchi. The present findings suggest the possibility that allergic airway inflammation may cause such vascular remodeling as previously associated with lung inflammatory conditions involving a risk for development of pulmonary hypertension.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号