首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
To understand the biology of the interactome, the covisualization of protein interactions and other protein-related data is required. In this study, we have adapted a 3-D network visualization platform, GEOMI, to allow the coanalysis of protein-protein interaction networks with proteomic parameters such as protein localization, abundance, physicochemical parameters, post-translational modifications, and gene ontology classification. Working with Saccharomyces cerevisiae data, we show that rich and interactive visualizations, constructed from multidimensional orthogonal data, provide insights on the complexity of the interactome and its role in biological processes and the architecture of the cell. We present the first organelle-specific interaction networks, that provide subinteractomes of high biological interest. We further present some of the first views of the interactome built from a new combination of yeast two-hybrid data and stable protein complexes, which are likely to approximate the true workings of stable and transient aspects of the interactome. The GEOMI tool and all interactome data are freely available by contacting the authors.  相似文献   

2.
3.
We explored properties of whole brain networks based on multivariate spectral analysis of human functional magnetic resonance imaging (fMRI) time-series measured in 90 cortical and subcortical subregions in each of five healthy volunteers studied in the (no-task) resting state. We note that undirected graphs representing conditional independence between multivariate time-series can be more readily approached in the frequency domain than the time domain. Estimators of partial coherency and normalized partial mutual information phi, an integrated measure of partial coherence over an arbitrary frequency band, are applied. Using these tools, we replicate the prior observations that bilaterally homologous brain regions tend to be strongly connected and functional connectivity is generally greater at low frequencies [0.0004, 0.1518 Hz]. We also show that long-distance intrahemispheric connections between regions of prefrontal and parietal cortex were more salient at low frequencies than at frequencies greater than 0.3 Hz, whereas many local or short-distance connections, such as those comprising segregated dorsal and ventral paths in posterior cortex, were also represented in the graph of high-frequency connectivity. We conclude that the partial coherency spectrum between a pair of human brain regional fMRI time-series depends on the anatomical distance between regions: long-distance (greater than 7 cm) edges represent conditional dependence between bilaterally symmetric neocortical regions, and between regions of prefrontal and parietal association cortex in the same hemisphere, are predominantly subtended by low-frequency components.  相似文献   

4.
Peng WM  Yu LL  Bao CY  Liao F  Li XS  Zuo MX 《Cell research》2002,12(3-4):223-228
The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronal precursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursors in adult mice, we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricle of the mouse brain in different development stages. The preliminary results indicated that the grafted cells were able to survive and migrate into multiple regions of the recipient brain, including SVZ, the third ventricle, thalamus, superior colliculus, inferior colliculus, cerebellum and olfactory bulb etc; and the amount of survival cells in different brain regions was correlated with the development stage of the recipient brain. Immunohistochemical studies showed that most of the grafted cells migrating into the specific target could express neuronal or astrocytic marker. Our results revealed that the neuronal precursors in adult SVZ still retained immortality and ability of proliferation, which is likely to be induced by some environmental factors.  相似文献   

5.
The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronal precursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursors in adult mice, we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricle of the mouse brain in different development stages. The preliminary results indicated that the grafted cells were able to survive and migrate into multiple regions of the recipient brain, including SVZ, the third ventricle, thalamus, superior colliculus, inferior colliculus, cerebellum and olfactory bulb etc; and the amount of survival cells in different brain regions was correlated with the development stage of the recipient brain. Immunohistochemical studies showed that most of the grafted cells migrating into the specific target could express neuronal or astrocytic marker. Our results revealed that the neuronal precursors in adult SVZ still retained immortality and ability of prolife  相似文献   

6.
The subventricular zone (SVZ), lining the lateral ventricle in forebrain, retains a population of neuronalprecursors with the ability of proliferation in adult mammals. To test the potential of neuronal precursorsin adult mice, we transplanted adult SVZ cells labeled with fluorescent dye PKH26 into the lateral ventricleof the mouse brain in different development stages. The preliminary results indicated that the graftedcells were able to survive and migrate into multiple regions of the recipient brain, including SVZ, the thirdventricle, thalamus, superior colliculus, inferior colliculus, cerebellum and olfactory bulb etc; and the amountof survival cells in different brain regions was correlated with the development stage of the recipient brain.Immunohistochemical studies showed that most of the grafted cells migrating into the specific target couldexpress neuronal or astrocytic marker. Our results revealed that the neuronal precursors in adult SVZstill retained immortality and ability of proliferation, which is likely to be induced by some environmentalfactors.  相似文献   

7.
Rich clubs arise when nodes that are ‘rich’ in connections also form an elite, densely connected ‘club’. In brain networks, rich clubs incur high physical connection costs but also appear to be especially valuable to brain function. However, little is known about the selection pressures that drive their formation. Here, we take two complementary approaches to this question: firstly we show, using generative modelling, that the emergence of rich clubs in large-scale human brain networks can be driven by an economic trade-off between connection costs and a second, competing topological term. Secondly we show, using simulated neural networks, that Hebbian learning rules also drive the emergence of rich clubs at the microscopic level, and that the prominence of these features increases with learning time. These results suggest that Hebbian learning may provide a neuronal mechanism for the selection of complex features such as rich clubs. The neural networks that we investigate are explicitly Hebbian, and we argue that the topological term in our model of large-scale brain connectivity may represent an analogous connection rule. This putative link between learning and rich clubs is also consistent with predictions that integrative aspects of brain network organization are especially important for adaptive behaviour.  相似文献   

8.
The structural organization of the brain is important for normal brain function and is critical to understand in order to evaluate changes that occur during disease processes. Three-dimensional (3D) imaging of the mouse brain is necessary to appreciate the spatial context of structures within the brain. In addition, the small scale of many brain structures necessitates resolution at the ~10 μm scale. 3D optical imaging techniques, such as optical projection tomography (OPT), have the ability to image intact large specimens (1 cm(3)) with ~5 μm resolution. In this work we assessed the potential of autofluorescence optical imaging methods, and specifically OPT, for phenotyping the mouse brain. We found that both specimen size and fixation methods affected the quality of the OPT image. Based on these findings we developed a specimen preparation method to improve the images. Using this method we assessed the potential of optical imaging for phenotyping. Phenotypic differences between wild-type male and female mice were quantified using computer-automated methods. We found that optical imaging of the endogenous autofluorescence in the mouse brain allows for 3D characterization of neuroanatomy and detailed analysis of brain phenotypes. This will be a powerful tool for understanding mouse models of disease and development and is a technology that fits easily within the workflow of biology and neuroscience labs.  相似文献   

9.
A single episode of ethanol intoxication triggers widespread apoptotic neurodegeneration in the infant rat or mouse brain. The cell death process occurs over a 6-16 h period following ethanol administration, is accompanied by a robust display of caspase-3 enzyme activation, and meets ultrastructural criteria for apoptosis. Two apoptotic pathways (intrinsic and extrinsic) have been described, either of which may culminate in the activation of caspase-3. The intrinsic pathway is regulated by Bax and Bcl-XL and involves Bax-induced mitochondrial dysfunction and release of cytochrome c as antecedent events leading to caspase-3 activation. Activation of caspase-8 is a key event preceding caspase-3 activation in the extrinsic pathway. In the present study, following ethanol administration to infant mice, we found no change in activated caspase-8, which suggests that the extrinsic pathway is not involved in ethanol-induced apoptosis. We also found that ethanol triggers robust caspase-3 activation and apoptotic neurodegeneration in C57BL/6 wildtype mice, but induces neither phenomenon in homozygous Bax-deficient mice. Therefore, it appears that ethanol-induced neuroapoptosis is an intrinsic pathway-mediated phenomenon involving Bax-induced disruption of mitochondrial membranes and cytochrome c release as early events leading to caspase-3 activation.  相似文献   

10.
11.

Background  

Researchers in systems biology use network visualization to summarize the results of their analysis. Such networks often include unconnected components, which popular network alignment algorithms place arbitrarily with respect to the rest of the network. This can lead to misinterpretations due to the proximity of otherwise unrelated elements.  相似文献   

12.
Foetal mouse brain cells were cultured as described previously [Sotelo, Gibbs, Gajdusek, Toh & Wurth (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 653-657] without added insulin and without foetal calf serum after 12 days in culture. Examination by phase-contrast microscopy showed that these modifications did not appear to affect growth and development of the cells adversely. Silver impregnation of the cultures and indirect immunofluorescence following reaction with tetanus toxin showed that a high proportion of the cells resembled neurones. Analysis of concentrated culture medium by radioimmunoassay and high-pressure liquid chromatography (h.p.l.c.) revealed that the cells produced two main forms of immunoreactive insulin which differed from authentic pancreatic insulin in retention time. Immunoreactive somatostatin was also produced in culture and this was resolved into at least three forms by h.p.l.c. Immunoreactive insulin was also extracted from whole rat brain by using two published procedures. The method of Havrankova, Schmechel, Roth & Brownstein [Proc. Natl. Acad. Sci. U.S.A. (1978) 75, 5737-5741] consistently gave greater yields of insulin than did that of Eng & Yalow [Diabetes (1980) 29, 105-109] and the concentration was about three times that of plasma. The extracted insulin was further characterized by h.p.l.c. in each case and was found to behave like authentic pancreatic insulin. The production of insulin and somatostatin by foetal mouse brain cells in culture suggests that they may be a useful model system for studies of neuropeptide biosynthesis.  相似文献   

13.
In the CNS, histamine is a neurotransmitter that is inactivated by histamine N-methyltransferase (HNMT), a soluble enzyme localized to the cytosol of neurons and endothelial cells. However, it has not been established how extracellular histamine, a charged molecule at physiological pH, reaches intracellular HNMT. Present studies investigated two potential routes of histamine inactivation in mouse brain nerve terminal fractions (synaptosomes): (i) histamine uptake and (ii) histamine metabolism by HNMT. Intact synaptosomes demonstrated a weak temperature-dependent histamine uptake (0.098 pmol/min-mg protein), but contained a much greater capacity to metabolize histamine by HNMT (1.4 pmol/min-mg protein). Determination of the distribution of HNMT within synaptosomes revealed that synaptosomal membranes (devoid of soluble HNMT) contribute HNMT activity equivalent to intact synaptosomes (14.3 +/- 2.2 and 18.2 +/- 4.3 pmol/min-tube, respectively) and suggested that histamine-methylating activity is associated with the membrane fraction. Additional experimental findings that support this hypothesis include: (i) the histamine metabolite tele-methylhistamine (tMH) was found exclusively in the supernatant fraction following an HNMT assay with intact synaptosomes; (ii) the membrane-bound HNMT activity was shown to increase 6.5-fold upon the solubilization of the membranes with 0.1% Triton X-100; and (iii) HNMT activity from the S2 fraction, ruptured synaptosomes, and synaptosomal membranes displayed different stability profiles when stored over 23 days at - 20 degrees C. Taken together, these studies demonstrate functional evidence for the existence of membrane-bound HNMT. Although molecular studies have not yet identified the nature of this activity, the present work suggests that levels of biologically active histamine may be controlled by an extracellular process.  相似文献   

14.
The three-dimensional structure of the Golgi apparatus was studied in goblet cells in lectin-stained sections of the mouse descending colon by using a confocal laser scanning microscope. In the lower part of the crypt, the Golgi apparatus formed a dome- or globe-like structure in the supranuclear region. The wall of the dome had some holes, one of which usually faced toward the nucleus and others toward the apical cytoplasm. Mucous granules seemed to be initially released into the interior of the dome and transported toward the apical cytoplasm through the holes. In the upper part of the crypt, on the other hand, the Golgi apparatus formed a cup- or funnel-like structure with a larger opening toward the cell apex and a smaller opening toward the nucleus. A large mass of mucous granules occupied the inside of the cup to the apical cytoplasm. It is thought that the accumulation of mucous granules enlarges holes at the ceiling of the dome to form a large opening, which makes the configuration of the Golgi apparatus cup-shaped.  相似文献   

15.
16.
17.
The microheterogeneity of the alpha and beta isoforms of tubulin in brain cells in culture was studied. The cells were prepared from two precise regions of the embryonic mouse brain (ED15), the striatum and the mesencephalon. It was possible to maintain virtually pure cultures of neuronal or glial cells up to 1 and 4 weeks in vitro, respectively. The tubulin heterogeneity of striatal and mesencephalic neurons was found to be very similar after a few days in culture. More precise examination of pure neurons from the striatum revealed that their tubulin content after 7 days in vitro exhibited the same degree of complexity as a control extract from a 4 day-old mouse brain. In fact, we could detect the presence of at least six alpha and nine beta tubulin isoforms. Among these isoforms a specific family of beta proteins (beta' tubulin) and the more acidic alpha proteins were present. Since these isoforms have, up to now, been found only in tubulin extracts prepared from the nervous system, our experiments suggest that they belong to the neuronal subpopulation of this tissue. This point is reinforced by their complete absence from the tubulin proteins extracted from pure glial cells even after several weeks in vitro. These results lead us to propose that brain tubulin microheterogeneity is associated with the presence of neurons and not of glia and may, therefore, play a specific role in maintaining neuronal shape and function.  相似文献   

18.
The establishment of neuronal cell lines from the central nervous system is greatly facilitated by the use of the ethyl mercurial compound, thimerosal. When used as a selecting agent in primary cultures this drug eliminates fibroblasts and other non-neuronal cells. The selectivity of the drug was established using several well-characterized clonal cell lines of different origin.Two idependently-derived clones selected by this method were characterized by several criteria, including morphology and electrical excitability.  相似文献   

19.
Neuronal activity can rapidly flip-flop between stable states. Although these semi-stable states can be generated through interactions of neuronal networks, it is now known that they can also occur in vivo through intrinsic ionic currents.  相似文献   

20.
At present, resting state functional MRI (rsfMRI) is increasingly used in human neuropathological research. The present study aims at implementing rsfMRI in mice, a species that holds the widest variety of neurological disease models. Moreover, by acquiring rsfMRI data with a comparable protocol for anesthesia, scanning and analysis, in both rats and mice we were able to compare findings obtained in both species. The outcome of rsfMRI is different for rats and mice and depends strongly on the applied number of components in the Independent Component Analysis (ICA). The most important difference was the appearance of unilateral cortical components for the mouse resting state data compared to bilateral rat cortical networks. Furthermore, a higher number of components was needed for the ICA analysis to separate different cortical regions in mice as compared to rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号