首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Sepsis in human beings is a major problem involving many individuals and with a high death rate. Except for a single drug (recombinant activated protein C) that has been approved for treatment of septic patients, supportive measures represent the main clinical approach. There are many models of experimental sepsis, mostly in rodents. A commonly used model is cecal ligation and puncture (CLP). In this model, robust activation of complement occurs together with up-regulation of C5a receptors (C5aR, C5L2) in a variety of different organs (lungs, kidneys, liver, heart). In septic human beings there is abundant evidence for complement activation. Interception of C5a or its receptors in the CLP model greatly improves survival in septic rodents. There is compelling evidence that CLP causes an intense pro-inflammatory state and that C5a interaction with its receptors can be linked to apoptosis of the lymphoid system and cells of the adrenal medulla, loss of innate immune functions of blood neutrophils, consumptive coagulopathy and cardiac dysfunction. These findings may have implications for therapeutic interventions in human beings with sepsis.  相似文献   

2.
IL-6 is known to be an important pro- and anti-inflammatory cytokine, which is up-regulated during sepsis. Our previous work has suggested a role for IL-6 in the up-regulation of C5aR in sepsis. We reported earlier that interception of C5a or C5aR results in improved outcomes in experimental sepsis. Using the cecal ligation/puncture (CLP) model in mice, we now demonstrate that treatment with anti-IL-6 Ab (anti-IL-6) results in significantly improved survival, dependent on the amount of Ab infused. CLP animals showed significantly increased binding of 125I-labeled anti-C5aR to organs when compared to either control mice at 0 h or CLP animals infused with normal rabbit 125I-labeled IgG. Binding of 125I-labeled anti-C5aR to lung, liver, kidney, and heart was significantly decreased in anti-IL-6-treated animals 6 h after CLP. RT-PCR experiments with mRNA isolated from various organs obtained 3, 6, and 12 h after CLP demonstrated increased C5aR mRNA expression during the onset of sepsis, which was greatly suppressed in CLP mice treated with anti-IL-6. These data suggest that IL-6 plays an important role in the increased expression of C5aR in lung, liver, kidney, and heart during the development of sepsis in mice and that interception of IL-6 leads to reduced expression of C5aR and improved survival.  相似文献   

3.
Complement, NKT, and NK cells play critical roles in the first line defense against pathogens. Functional roles for both C5a receptors, that is, complement receptor C5a (C5aR) and C5a receptor-like 2 (C5L2), in sepsis have been demonstrated. However, the role of C5a in innate lymphocyte activation during sepsis remains elusive. In this article, we show that naive NKT and NK cells already express high levels of C5aR and minor levels of C5L2 mRNA, but no protein. Upon Escherichia coli-induced sepsis, we found C5aR surface expression on subpopulations of NKT and NK cells, suggesting rapid translation into C5aR protein on bacterial encounter. Importantly, significantly increased survival in the absence of C5aR, NKT, and NK cells, but not of C5L2, was associated with reduced IFN-γ and TNF-α serum levels. Sepsis induction in C5aR(+)/C5aR(-) mixed bone marrow chimeras identified cognate engagement of C5aR on NKT cells as an important factor for the recruitment of NKT cells. Furthermore, we found synergistic interaction between C5aR and TLRs enhancing the production of TNF-α and IFN-γ from NKT and NK cells in cocultures with dendritic cells. Our results identify C5aR activation as a novel pathway driving detrimental effects of NKT and NK cells during early experimental sepsis.  相似文献   

4.
Angiotensin-converting enzyme (ACE, kininase II, dipeptidyl carboxypeptidase, EC 3.4.15.1) was characterized in the adrenal medulla of male Sprague-Dawley rats. Rat adrenal medulla and lung ACE were similar in their susceptibility to Cl- activation and to the inhibition by EDTA, captopril, bacitracin and thiorphan, suggesting that rat adrenal medulla and lung ACE have similar properties. Changes in right adrenal weight and in adrenomedullary ACE activity 5 and 12 days following left unilateral adrenalectomy (UADX) were examined. Compensatory adrenocortical hypertrophy 12 days following UADX was associated with a significant increase in adrenal medullary ACE activity. This change was due not to a modified affinity of ACE for the substrate but to an alteration in ACE maximal velocity or number of available molecules. UADX had no effect on adrenocortical ACE activity. When UADX was combined with right splanchnic denervation, the increase in adrenomedullary ACE activity was blocked. The results support the existence of a functional ACE in adrenal medulla that is under neuronal control.  相似文献   

5.
Complement-induced impairment of innate immunity during sepsis   总被引:6,自引:0,他引:6  
This study defines the molecular basis for defects in innate immunity involving neutrophils during cecal ligation/puncture (CLP)-induced sepsis in rats. Blood neutrophils from CLP rats demonstrated defective phagocytosis and defective assembly of NADPH oxidase, the latter being due to the inability of p47(phox) to translocate from the cytosol to the cell membrane of neutrophils after cell stimulation by phorbol ester (PMA). The appearance of these defects was prevented by in vivo blockade of C5a in CLP rats. In vitro exposure of neutrophils to C5a led to reduced surface expression of C5aR and defective assembly of NADPH oxidase, as defined by failure in phosphorylation of p47(phox) and its translocation to the cell membrane, together with failure in phosphorylation of p42/p44 mitogen-activated protein kinases. These data identify a molecular basis for defective innate immunity involving neutrophils during sepsis.  相似文献   

6.
Deficiency of 21-hydroxylase (21-OH), one of the most common genetic defects in humans, causes low glucocorticoid and mineralocorticoid production by the adrenal cortex, but the effect of this disorder on the adrenomedullary system is unknown. Therefore, we analyzed the development, structure, and function of the adrenal medulla in 21-OH-deficient mice, an animal model resembling human congenital adrenal hyperplasia. Chromaffin cells of 21-OH-deficient mice exhibited ultrastructural features of neuronal transdifferentiation with reduced granules, increased rough endoplasmic reticulum and small neurite outgrowth. Migration of chromaffin cells in the adrenal to form a central medulla was impaired. Expression of phenylethanolamine-N-methyltransferase (PNMT) was reduced to 27 +/- 9% (P<0.05), as determined by quantitative TaqMan polymerase chain reaction, and there was a significant reduction of cells staining positive for PNMT in the adrenal medulla of the 21-OH-deficient mice. Adrenal contents of epinephrine were decreased to 30 +/- 2% (P<0. 01) whereas norepinephrine and dopamine levels were reduced to 57 +/- 4% (P<0.01) and 50 +/- 9% (P<0.05), respectively. 21-OH-deficient mice demonstrate severe adrenomedullary dysfunction, with alterations in chromaffin cell migration, development, structure, and catecholamine synthesis. This hitherto unrecognized mechanism may contribute to the frequent clinical, mental, and therapeutic problems encountered in humans with this genetic disease.  相似文献   

7.
Induction of adrenal ornithine decarboxylase (ODC) was studied in rats that had previously undergone hemisection of the spinal cord at the C5–C6 level. Control rats were sham-operated. In the latter, the stress of immobilization produced symmetrical increases in ODC of the adrenal medulla. In rats with cord hemisection a quantitatively similar increase was observed only on the intact side, the response of adrenomedullary ODC of the lesioned side being significantly smaller. Induction of adrenomedullary ODC in hemisected rats by administration of apomorphine or of 2-deoxyglucose resulted in the same pattern of response as after immobilization. Induction of adrenocortical ODC by immobilization or apomorphine was not affected by cord hemisection. The results demonstrate the existence of both ipsilateral and contralateral components of descending spinal pathways for the induction of adrenomedullary ODC, the ipsilateral fibres exerting a preponderant effect.  相似文献   

8.
9.
Vasoactive intestinal peptide (VIP) was found in the adrenal gland of ovine fetuses at 130-135 days gestation and was shown to stimulate catecholamine secretion. VIP was demonstrated by immunocytochemistry using the indirect antibody-enzyme method. VIP-immunoreactive nerve fibers were observed in the capsule, zona glomerulosa and inner layer of the cortex as well as in the medulla; furthermore small clusters of VIP-containing cell bodies were found at the corticomedullary border. To study the direct effect of VIP on catecholamine release, fetal adrenal medulla was dispersed into single cells and incubated in vitro with VIP for 6 hours. Catecholamine release into the medium was measured at 1, 3 and 6 hours. At 6 hours of incubation, VIP stimulated total catecholamine release from fetal adrenomedullary cells in a dose-dependent manner at concentrations ranging from 10(-8) to 10(-4) M. The release of norepinephrine and epinephrine, but not dopamine, was significantly enhanced. The presence of VIP in the fetal adrenal cortex and medulla, and the ability of VIP to stimulate catecholamine release from fetal adrenomedullary cells in vitro suggest that VIP may be an important modulator of medullary catecholamine secretion during fetal life.  相似文献   

10.
The presence of the complement-derived anaphylatoxin peptides, C3a and C5a, in the lung can induce respiratory distress characterized by contraction of the smooth muscle walls in bronchioles and pulmonary arteries and aggregation of platelets and leukocytes in pulmonary vessels. C3a and C5a mediate these effects by binding to their specific receptors, C3aR and C5aR, respectively. The cells that express these receptors in the lung have not been thoroughly investigated, nor has their expression been examined during inflammation. Accordingly, C3aR and C5aR expression in normal human and murine lung was determined in this study by immunohistochemistry and in situ hybridization. In addition, the expression of these receptors was delineated in mice subjected to LPS- and OVA-induced models of inflammation. Under noninflamed conditions, C3aR and C5aR protein and mRNA were expressed by bronchial epithelial and smooth muscle cells of both human and mouse lung. C3aR expression increased significantly on both bronchial epithelial and smooth muscle cells in mice treated with LPS; however, in the OVA-challenged animals only the bronchial smooth muscle cells showed increased C3aR expression. C5aR expression also increased significantly on bronchial epithelial cells in mice treated with LPS, but was not elevated in either cell type in the OVA-challenged mice. These results demonstrate the expression of C3aR and C5aR by cells endogenous to the lung, and, given the participation of bronchial epithelial and smooth muscle cells in the pathology of diseases such as sepsis and asthma, the data suggest a role for these receptors during lung inflammation.  相似文献   

11.
12.
13.
Protective effects of C5a blockade in sepsis.   总被引:21,自引:0,他引:21  
Sepsis in humans is a difficult condition to treat and is often associated with a high mortality rate. In this study, we induced sepsis in rats using cecal ligation and puncture (CLP). In rats depleted of the complement factor C3, CLP led to very short survival times (about 4 days). Of the rats that underwent CLP ('CLP rats') that were C3-intact and treated with preimmune IgG, most (92%) were dead by 7 days. Blood neutrophils from these rats contained on their surfaces the powerful complement activation product C5a. This group had high levels of bacteremia, and their blood neutrophils when stimulated in vitro had greatly reduced production of H2O2, which is known to be essential for the bactericidal function of neutrophils. In contrast, when companion CLP rats were treated with IgG antibody against C5a, survival rates were significantly improved, levels of bacteremia were considerably reduced, and the H2O2 response of blood neutrophils was preserved. Bacterial colony-forming units in spleen and liver were very high in CLP rats treated with preimmune IgG and very low in CLP rats treated with IgG antibody against C5a, similar to values obtained in rats that underwent 'sham' operations (without CLP). These data indicate that sepsis causes an excessive production of C5a, which compromises the bactericidal function of neutrophils. Thus, C5a may be a useful target for the treatment of sepsis.  相似文献   

14.
The brain is one of the first organs affected during sepsis development resulting in apoptosis for a short-term and cognitive impairment for a long-term. Despite its importance, the mechanisms of brain dysfunction during sepsis are not fully elucidated. Thus, we here, in an animal model of sepsis, evaluated apoptosis in the dentate gyrus cell layer of the hippocampus to document the involvement of caspase-3 in the pathogenesis of neuronal apoptosis. Wistar rats sham-operated or submitted to the cecal ligation and perforation (CLP) procedure were killed at 12, 24, 48 h, and 10 days after surgery for the determination of caspase-3 and apoptosis rate. In a separate cohort of animals, a caspase-3-specific inhibitor was administered and animals were killed at 12 h after sepsis. An increase in the number of apoptotic cells 12, 24, and 48 h by histopathological evaluations and an increase of caspase-3 apoptotic cells 12 and 24 h after sepsis induction were observed. The caspase-3 inhibitor decreases the number of apoptotic cells by histopathological evaluations but not by immunohistochemistry evaluations. Caspase-3 is involved in part in apoptosis in the dentate gyrus cell layer of the hippocampus in septic rats submitted by CLP.  相似文献   

15.
Splanchnic denervation of the left adrenal gland was made in adult pigeons of both sexes. Denervation of the adrenal medulla alone did not produce any appreciable change in adrenomedullary catecholamine fluorescence in pigeon. Reserpine, at the doses of 0.05 mg, 0.2 mg and 0.8 mg/100 gm body weight was injected in both innervated and denervated pigeons. Reserpine, at all doses, induced catecholamine fluorescence depletion from the innervated pigeon adrenal medulla. Denervation failed to affect reserpine-induced epinephrine depletion while it prevented reserpine-induced norepinephrine depletion only at a low dose of reserpine.  相似文献   

16.
Apoptosis is a process by which cells undergo a form of non-necrotic cellular suicide. Although it is a programmed process, apoptosis can be induced by various stressors. During sepsis, apoptosis has been regarded as an important cause of cell death in the immune system, leading to unresponsiveness to treatment. This study was designed to investigate how prior heat shock induction can influence the rate of apoptosis in animals that have experienced sepsis. Sprague-Dawley rats were used, and experimental sepsis was induced by cecal ligation and puncture (CLP). Animals in the heated group were anesthetized and received heat shock by whole-body hyperthermia. They were sacrificed 9 h and 18 h after CLP as early and late sepsis, respectively. Apoptosis was evaluated by "DNA ladder" detection in agarose electrophoresis and Tdt-mediated dUTP nick end-labeling (TUNEL) assay. Hsp72 was detected by Western blot analysis. The results showed that the DNA ladder was detected most clearly in the thymus at the late phase of sepsis with time course dependence, while it showed less clearly in heat shock treated animals. Histopathological study by TUNEL assay obtained similar results in the thymus, where the cortex was more susceptible to apoptosis than the medulla. The Western blot analysis showed that the heat shock induced Hsp72 concomitant with an increase in Bcl-2:Bax ratio. In conclusion, heat shock pretreatment prevents rats from sepsis-induced apoptosis that may account for the better outcome of experimental sepsis. An increase in the Bcl-2:Bax ratio may in part explain the molecular mechanism of the effect of heat shock pretreatment.  相似文献   

17.
The aim of the present study was to acertain the seasonal pattern of adrenomedullary hormones and of glycemia in Lissemys turtles. Both the norepinephrine and epinephrine concentrations as well as blood glucose levels varied seasonally which began to rise from February, became maximum during April-May (early summer), declined during June-September (late summer) and were extremely low subsequently (October-January). The seasonal adrenomedullary hormonal and glycemic cycles however do not coincide with the annual ovarian cycle, thereby indicating that the adrenomedullary and glycemic cycles are out of phase with the ovarian cycle in turtles. The possible mechanisms of seasonality of the adrenal medulla and glycemia are discussed.  相似文献   

18.
C5a is a potent anaphylatoxin that modulates inflammation through the C5aR1 and C5aR2 receptors. The molecular interactions between C5a–C5aR1 receptor are well defined, whereas C5a–C5aR2 receptor interactions are poorly understood. Here, we describe the generation of a human antibody, MEDI7814, that neutralizes C5a and C5adesArg binding to the C5aR1 and C5aR2 receptors, without affecting complement–mediated bacterial cell killing. Unlike other anti–C5a mAbs described, this antibody has been shown to inhibit the effects of C5a by blocking C5a binding to both C5aR1 and C5aR2 receptors. The crystal structure of the antibody in complex with human C5a reveals a discontinuous epitope of 22 amino acids. This is the first time the epitope for an antibody that blocks C5aR1 and C5aR2 receptors has been described, and this work provides a basis for molecular studies aimed at further understanding the C5a–C5aR2 receptor interaction. MEDI7814 has therapeutic potential for the treatment of acute inflammatory conditions in which both C5a receptors may mediate inflammation, such as sepsis or renal ischemia–reperfusion injury.  相似文献   

19.
Gut-derived norepinephrine (NE) has been shown to play a critical role in producing hepatocellular dysfunction in early sepsis, but it is not known whether alpha2-adrenoceptor activation mediates this dysfunction. We infused normal male adult rats with NE, NE plus the specific alpha2-adrenergic antagonist rauwolscine (RW), or vehicle (normal saline) for 2 h. Hepatocellular function was determined by in vivo indocyanine green (ICG) clearance. An isolated perfused liver preparation was also used to assess hepatocellular function by in vitro ICG clearance; NE alone or with RW was added to the perfusate. Rats were subjected to sepsis by cecal ligation and puncture (CLP). At 1 h after CLP, RW was infused for 15 min. At 5 h after CLP, we measured hepatocellular function and serum tumor necrosis factor-alpha (TNF-alpha) levels. Intraportal NE infusion in normal rats produced hepatocellular dysfunction, which was prevented by RW and NE infusion. This is confirmed by findings with the isolated perfused liver preparation. RW administration in early sepsis maintained hepatocellular function and downregulated TNF-alpha production at 5 h after CLP. These results suggest that NE-induced hepatocellular dysfunction in early sepsis is mediated by alpha2-adrenoceptor activation, which appears to upregulate TNF-alpha production. Modulation of hepatic responsiveness to NE by alpha2-adrenergic antagonists should provide a novel approach for maintaining cell and organ functions during sepsis.  相似文献   

20.
Recent studies from our laboratory demonstrated that mucosal lymphoid tissue such as Peyer's patch cells and lamina propria (LP) B lymphocytes from mice shows evidence of increased apoptosis after sepsis that is associated with localized inflammation/activation. The mechanism for this is poorly understood. Endotoxin as well as Fas/Fas ligand (FasL) have been shown to augment lymphocyte apoptosis; however, their contribution to the increase of apoptosis in LP B-cells during sepsis is not known. To study this, sepsis was induced by cecal ligation and puncture (CLP) in endotoxin-tolerant C3H/HeJ or FasL-deficient C3H/HeJ-FasL(gld) (FasL(-)) mice and LP lymphocytes were isolated 24 h later. Phenotypic, apoptotic, and functional indexes were assessed. The number of LP B cells decreased markedly in C3H/HeJ mice but not in FasL-deficient animals at 24 h after CLP. This was associated with comparable alteration in apoptosis and Fas antigen expression in the B cells of these mice. Septic LP lymphocytes also showed increased IgA production, which was absent in the FasL-deficient CLP mice. Furthermore, Fas ligand deficiency appeared to improve survival of septic challenge. These data suggest that the increase in B cell apoptosis in septic animals is partially due to a Fas/FasL-mediated process but not endotoxin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号