首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One of the main challenges in biological conservation has been to understand species distribution across space and time. Over the last decades, many diversity and conservation surveys have been conducted that have revealed that habitat heterogeneity acts as a major factor that determines saproxylic assemblages. However, temporal dynamics have been poorly studied, especially in Mediterranean forests. We analyzed saproxylic beetle distribution at inter and intra-annual scales in a “dehesa” ecosystem, which is a traditional Iberian agrosilvopastoral ecosystem that is characterized by the presence of old and scattered trees that dominate the landscape. Significant differences in effective numbers of families/species and species richness were found at the inter-annual scale, but this was not the case for composition. Temperature and relative humidity did not explain these changes which were mainly due to the presence of rare species. At the intra-annual scale, significant differences in the effective numbers of families/species, species richness and composition between seasons were found, and diversity partitioning revealed that season contributed significantly to gamma-diversity. Saproxylic beetle assemblages exhibited a marked seasonality in richness but not in abundance, with two peaks of activity, the highest between May and June, and the second between September and October. This pattern is mainly driven by the seasonality of the climate in the Mediterranean region, which influences ecosystem dynamics and imposes a marked seasonality on insect assemblages. An extended sampling period over different seasons allowed an overview of saproxylic dynamics, and revealed which families/species were restricted to particular seasons. Recognizing that seasons act as a driver in modelling saproxylic beetle assemblages might be a valuable tool in monitoring and for conservation strategies in Mediterranean forests.  相似文献   

2.
Aim Insect biodiversity is often positively associated with habitat heterogeneity. However, this relationship depends on spatial scale, with most studies focused on differences between habitats at large scales with a variety of forest tree species. We examined fine‐scale heterogeneity in ground‐dwelling beetle assemblages under co‐occurring trees in the same subgenus: Eucalyptus melliodora A. Cunn. ex Schauer and E. blakelyi Maiden (Myrtaceae). Location Critically endangered grassy woodland near Canberra, south‐eastern Australia. Methods We used pitfall traps and Tullgren funnels to sample ground‐dwelling beetles from the litter environment under 47 trees, and examined differences in diversity and composition at spatial scales ranging from 100 to 1000 m. Results Beetle assemblages under the two tree species had distinctive differences in diversity and composition. We found that E. melliodora supported a higher richness and abundance of beetles, but had higher compositional similarity among samples. In contrast, E. blakelyi had a lower abundance and species richness of beetles, but more variability in species composition among samples. Main conclusions Our study shows that heterogeneity in litter habitat under co‐occurring and closely related eucalypt species can influence beetle assemblages at spatial scales of just hundreds of metres. The differential contribution to fine‐scale alpha and beta diversity by each eucalypt can be exploited for conservation purposes by ensuring an appropriate mix of the two species in the temperate woodlands where they co‐occur. This would help not only to maximize biodiversity at landscape scales, but also to maintain heterogeneity in species richness, trophic function and biomass at fine spatial scales.  相似文献   

3.
Environmental changes and human activities can have strong impacts on biodiversity and ecosystem functioning. This study investigates how, from a quantitative point of view, simultaneously both environmental and anthropogenic factors affect species composition and abundance of exploited groundfish assemblages (i.e. target and non-target species) at large spatio-temporal scales. We aim to investigate (1) the spatial and annual stability of groundfish assemblages, (2) relationships between these assemblages and structuring factors in order to better explain the dynamic of the assemblages’ structure. The Mauritanian Exclusive Economic Zone (MEEZ) is of particular interest as it embeds a productive ecosystem due to upwelling, producing abundant and diverse resources which constitute an attractive socio-economic development. We applied the multi-variate and multi-table STATICO method on a data set consisting of 854 hauls collected during 14-years (1997–2010) from scientific trawl surveys (species abundance), logbooks of industrial fishery (fishing effort), sea surface temperature and chlorophyll a concentration as environmental variables. Our results showed that abiotic factors drove four main persistent fish assemblages. Overall, chlorophyll a concentration and sea surface temperature mainly influenced the structure of assemblages of coastal soft bottoms and those of the offshore near rocky bottoms where upwellings held. While highest levels of fishing effort were located in the northern permanent upwelling zone, effects of this variable on species composition and abundances of assemblages were relatively low, even if not negligible in some years and areas. The temporal trajectories between environmental and fishing conditions and assemblages did not match for all the entire time series analyzed in the MEEZ, but interestingly for some specific years and areas. The quantitative approach used in this work may provide to stakeholders, scientists and fishers a useful assessment for the spatio-temporal dynamics of exploited assemblages under stable or changing conditions in fishing and environment.  相似文献   

4.
The relative importance of extrinsic and intrinsic causes of variability is among the oldest unresolved problems in ecology. However, the interaction between large-scale intrinsic variability in species abundance and environmental heterogeneity is still unknown. We use a metacommunity model with disturbance-recovery dynamics to resolve the interaction between scales of environmental heterogeneity, biotic processes and of intrinsic variability. We explain how population density increases with environmental variability only when its scale matches that of intrinsic patterns of abundance, through their ability to develop in heterogeneous environments. Succession dynamics reveals how the strength of local species interactions, through its control of intrinsic variability, can in turn control the scale of metapopulation response to environmental scales. Our results show that the environment and species density might fail to show any correlation despite their strong causal association. They more generally suggest that the spatial scale of ecological processes might not be sufficient to build a predictive framework for spatially heterogeneous habitats, including marine reserve networks.  相似文献   

5.
Insects are particularly vulnerable to rapid environmental changes, which are disproportionally affecting high latitudes. Increased temperature could influence insect species differentially and reshape assemblages over time. We quantified temporal assemblage turnover of Arctic Diptera (flies) in the Muscidae, one of the most diverse and abundant families of Arctic insects, using time series data from Zackenberg, north‐east Greenland. We measured temporal patterns of abundance, diversity, and composition of muscid assemblages in wet fen, mesic and arid heath habitats from yearly collections spanning 1996–2014 and tested their relationship to climate. A total of 18 385 individuals representing 16 species of muscid flies were identified. A significant decrease of 80% of total muscid abundance was observed during the study period. Species richness declined in each habitat type but this trend was not significant across habitats. The number of common and abundant species also decreased significantly over time across habitats revealing a temporal modification of species evenness. Significant temporal changes in composition observed in the wet fen and across habitats were mainly driven by a change in relative abundance of certain species rather than by species replacement. Shift in composition in each habitat and decline in muscid abundance across habitats were associated with summer temperature, which has significantly increased over the study period. However, relationships between temperature and muscid abundance at the species level were noticeable for a few species only. Significant directional change in composition was documented in the wet fen but no biotic homogenization across habitats was observed. As one of the few studies of species‐level changes in abundance, diversity and composition of an insect taxon in the Arctic over the past two decades, our study shows that habitat types may modulate insect species responses to recent climate change and that contrasting species responses can alter species assemblages within a few decades.  相似文献   

6.
In many tropical lowland rain forests, topographic variation increases environmental heterogeneity, thus contributing to the extraordinary biodiversity of tropical lowland forests. While a growing number of studies have addressed effects of topographic differences on tropical insect communities at regional scales (e.g., along extensive elevational gradients), surprisingly little is known about topographic effects at smaller spatial scales. The present study investigates moth assemblages in a topographically heterogeneous lowland rain forest landscape, at distances of less than a few hundred meters, in the Golfo Dulce region (SW Costa Rica). Three moth lineages—Erebidae–Arctiinae (tiger and lichen moths), the bombycoid complex, and Geometridae (inchworm moths)—were examined by means of automatic light traps in three different forest types: creek forest, slope forest, and ridge forest. Altogether, 6,543 individuals of 419 species were observed. Moth assemblages differed significantly between the three forest types regarding species richness, total abundance, and species composition. Moth richness and abundance increased more than fourfold and eightfold from creek over slope to ridge forest sites. All three taxonomic units showed identical biodiversity patterns, notwithstanding their strong differences in multiple eco-morphological traits. An indicator species analysis revealed that most species identified as characteristic were associated either with the ridge forest alone or with ridge plus slope forests, but very few with the creek forest. Despite their mobility, local moth assemblages are highly differentially filtered from the same regional species pool. Hence, variation in environmental factors significantly affects assemblages of tropical moth species at small spatial scales.  相似文献   

7.
The habitat heterogeneity generated and sustained by the connectivity of floodplain habitats, the seasonal flood pulse, and the variability of the physical structures typically found in floodplains of large rivers results in a variable space–time mosaic of water sources that results in a high biodiversity of the river-floodplain system. In order to assess the implications of natural connectivity and the heterogeneity on the patterns of macroinvertebrate assemblages at different spatial scales, monthly samplings in six different mesohabitats (lakes with different hydrological connection and secondary channels with permanently and intermittent flow) of the Paraná River floodplain were performed from April 2005 to March 2006. The mesohabitats had different granulometry and detritus composition of their bottom sediments. They also had different conductivity, transparency, and depth in relation to the different connectivity degrees. Mesohabitats differed in the abundance of macroinvertebrates of different taxonomic groups and diversity. The environmental variables were correlated to the patterns of macroinvertebrate abundance, with dominance of different species of annelids and mollusks at the patch, mesohabitats, and island scales. An alpha diversity gradient from the isolated lake (65 taxonomic units) to the secondary channels (25 taxonomic units) was obtained. The analyzed mesohabitats showed a high taxa turnover, with high values not only among the mesohabitats located in the different islands, but also among the mesohabitats in relation to different connectivity degrees. The mesohabitats showed negative co-occurrence of macroinvertebrate assemblages. The spatial heterogeneity, sustained by the connectivity degree, played a key role in structuring benthic assemblages at different scales, positively influencing the regional diversity.  相似文献   

8.
Besides spatial heterogeneity, another important component of the diversity of protist communities is the variation in species assemblages through time. Despite its importance, temporal turnover of benthic communities has been studied to a lesser extent than spatial heterogeneity has. In this study, we examine the desmid assemblages on small spatial scale in relation to the spatial, temporal, and environmental parameters. The samples were collected within two different types of peatland localities in the Czech Republic over 3 years. The differences in species composition between samples were mainly correlated with the geographic distance, while the effects of the environmental and temporal variables were much weaker. Since the spatial heterogeneity of the assemblages was not induced by the variation of the environmental factors or by the restricted dispersal ability at such a small spatial scale, we assume that both the temporal stability and strong spatial autocorrelation might have been the result of a priority effect, with subsequent monopolization of resources. Stochasticity in colonization can introduce noise into the match between community composition and environmental conditions, which may result in stronger effect of the spatial parameters on the community structure.  相似文献   

9.
Landscape-scale patterns of freshwater fish diversity and assemblage structure remain poorly documented in many areas of Central America, while aquatic ecosystems throughout the region have been impacted by habitat degradation and hydrologic alterations. Diadromous fishes may be especially vulnerable to these changes, but there is currently very little information available regarding their distribution and abundance in Central American river systems. We sampled small streams at 20 sites in the Sixaola River basin in southeastern Costa Rica to examine altitudinal variation in the diversity and species composition of stream fish assemblages, with a particular focus on diadromous species. A set of environmental variables was also measured in the study sites to evaluate how changes in fish assemblage structure were related to gradients in stream habitat. Overall, fish diversity and abundance declined steeply with increasing elevation, with very limited species turnover. The contribution of diadromous fishes to local species richness and abundance increased significantly with elevation, and diadromous species dominated assemblages at the highest elevation sites. Ordination of the sampling sites based on fish species composition generally arranged sites by elevation, but also showed some clustering based on geographic proximity. The dominant gradient in fish community structure was strongly correlated with an altitudinal habitat gradient identified through ordination of the environmental variables. The variation we observed in stream fish assemblages over relatively small spatial scales has significant conservation implications and highlights the ecological importance of longitudinal connectivity in Central American river systems.  相似文献   

10.
An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.  相似文献   

11.
Aims Throughout South‐East Asia, droughts associated with ENSO (El Niño Southern Oscillation) events have resulted in large‐scale fires affecting millions of hectares of rain forest. However, the long‐term impacts of these fires on the rain forest faunas are only poorly understood. Our aim was to study the recovery of rain forest butterfly assemblages following the 1997–98 ENSO event, which resulted in the largest‐scale fires in the recorded history of the region. Location A 420‐km2 area in the Balikpapan‐Samarinda region of East Kalimantan, Indonesian Borneo. Methods Four landscapes were assessed after the 1997–98 ENSO event, including one landscape that was assessed prior to the event. Comparisons of species richness, species composition and guild abundance were made among landscapes and years. The relative importance of environment, geographical distance between sampling sites, and time between sampling years was quantified during the succession phase using a variance partitioning technique. Results The fires dramatically altered the butterfly community and resulted in a major decline in observed species richness within the landscape surveyed prior to the ENSO event. Following fires in 1998, butterfly assemblages in all landscapes were dominated by large‐winged generalist species. During 1999 and 2000, assemblages became increasingly dominated by smaller specialist species. Species endemic to Borneo that were present before fires were absent in 2000, despite intensive sampling over enhanced spatial and environmental scales. Community similarity was significantly dependent upon local environmental variables, geographical distance between sampling sites, and time between sampling years. Together, these explained over 52% of the observed variation in samples. Conclusions The importance of geographical distance between sampling sites indicates that recovery was dependent upon colonization from proximate habitats. Despite an apparent trend of return to pre‐ENSO community structure, low species richness throughout the survey area indicates that full recovery had not taken place by 2000.  相似文献   

12.
Synchrony in small mammal community dynamics across a forested landscape   总被引:1,自引:0,他引:1  
Long‐term studies at local scales indicate that fluctuations in abundance among trophically similar species are often temporally synchronized. Complementary studies on synchrony across larger spatial extents are less common, as are studies that investigate the subsequent impacts on community dynamics across the landscape. We investigate the impact of species population fluctuations on concordance in community dynamics for the small mammal fauna of the White Mountain National Forest, USA. Hierarchical open population models, which account for imperfect detection, were used to model abundance of the most common species at 108 sites over a three year period. Most species displayed individualistic responses of abundance to forest type and physiographic characteristics. However, among species, we found marked synchrony in population fluctuations across years, regardless of landscape affinities or trophic level. Across the region, this population synchrony led to high within‐year concordance of community composition and aggregate properties (e.g. richness and diversity) independent of forest type and low among‐year similarity in communities, even for years with similar species richness. Results suggest that extrinsic factors primarily drive abundance fluctuations and subsequently community dynamics, although local community assembly may be modified by species dispersal abilities and biotic interactions. Concordant community dynamics across space and over time may impact the stability of regional food webs and ecosystem functions.  相似文献   

13.
Determining the relative importance of environmental forces on population dynamics is a fundamental question for ecologists. Growing concern over the ecological effects of climate change emphasizes the importance of defining whether broad-scale environmental forces uniformly act upon local populations (hierarchy theory) or cross-scale interactions influence local responses (multiscale theory). This study analyses 13 years of data on species abundances at six sites within a large harbour to determine the effect of the El Niño Southern Oscillation (ENSO). Environmental variables both directly and indirectly related to ENSO were observed to be important predictors of the temporal dynamics of abundance in many species, but the observed effects were not consistent across sites or species. While nearly all species were affected by large temporal and spatial scale variability, smaller temporal scale, location-specific environmental variables (such as wind-generated wave exposure and turbidity) were also generally important, increasing the variability explained by our models by up to 25%. As with many other broad-scale variables, generality of response to ENSO is affected by interactions across time and space with smaller scale heterogeneity. This study therefore suggests that the degree of interaction between broad-scale climatic factors, such as ENSO, with smaller scale variability, will determine the consistency of responses over large spatial scales, and control our ability to predict effects of climate change on coastal and estuarine communities.  相似文献   

14.
15.
The joint spatial and temporal fluctuations in community structure may be due to dispersal, variation in environmental conditions, ecological heterogeneity among species and demographic stochasticity. These factors are not mutually exclusive, and their relative contribution towards shaping species abundance distributions and in causing species fluctuations have been hard to disentangle. To better understand community dynamics when the exchange of individuals between localities is very low, we studied the dynamics of the freshwater zooplankton communities in 17 lakes located in independent catchment areas, sampled at end of summer from 2002 to 2008 in Norway. We analysed the joint spatial and temporal fluctuations in the community structure by fitting the two‐dimensional Poisson lognormal model under a two‐stage sampling scheme. We partitioned the variance of the distribution of log abundance for a random species at a random time and location into components of demographic stochasticity, ecological heterogeneity among species, and independent environmental noise components for the different species. Non‐neutral mechanisms such as ecological heterogeneity among species (20%) and spatiotemporal variation in the environment (75%) explained the majority of the variance in log abundances. Overdispersion relative to Poisson sampling and demographic stochasticity had a small contribution to the variance (5%). Among a set of environmental variables, lake acidity was the environmental variable that was most strongly related to decay of community similarity in space and time.  相似文献   

16.
Calcareous grasslands harbor specialized species and are cultural relics. Therefore, they are prime habitates for conservation and restoration, but negative effects of inappropriate management, eutrophication and fragmentation continue to exist. These effects also influence grasslands which serve as target for restoration. Unfortunately, monitoring of long-term vegetation dynamics in calcareous grassland is rare. Here, we studied such changes over 35 years in the nature reserve ‘Garchinger Heide’, which is well known for its high abundance of rare species. Furthermore, it has been managed for conservation for more than 100 years. Therefore, species composition, total species richness, numbers of habitat specialists, red-list species and the proportion of graminoids were examined in 42 plots with frequency recording (1984–2018), and in 40 plots based on vegetation relevés (2003–2018). Ellenberg indicator values, specific leaf area, seed mass, and canopy height were analysed to detect patterns in trait response to environmental change. Within 35 years there were considerable vegetation dynamics. Specialist plants of calcareous grassland and red list species decreased, and insect-pollinated species declined in contrast to wind-pollinated species. Ellenberg N as well as graminoid abundance, canopy height, seed mass, and multi-trait functional dispersion increased, while specific leaf area showed no such change. Our results suggest that environmental change like deposition of atmospheric nitrogen, management regime, pollinator decline or isolation could be correlated with vegetation dynamics, while these correlations would need experimental confirmation. The grassland management certainly helped achieving several conservation goals, although it was not able to stop a decrease of rare species. The results show that also in nature reserves with long-term conservation management monitoring is essential to detect vegetation dynamics and to adjust the management to these changes.  相似文献   

17.
1. Floodplain wetlands are productive components of lowland rivers and are thought to be important habitat and nurseries for many fish species. Fish assemblages inhabiting floodplain wetlands vary considerably through space and time and are largely shaped by wetting/drying cycles, although there is little understanding how many aspects of flooding (e.g. magnitude, timing, duration, frequency) influence the fish assemblages. As a consequence, decisions on flooding of wetlands by managers aimed at restoring native fish assemblages are often based on limited knowledge. 2. This study examined the importance of total duration of flooding on the temporal and spatial dynamics of wetland fish assemblages in the Murray River, in south‐eastern Australia. The study examined: (i) how the abundance of 0+ and 1+ fish varied with wetland, season and the duration of wetland filling; (ii) how environmental parameters, including food production changed in relation to the duration of wetland filling; (iii) changes in condition indices for the most abundant species and (iv) changes in species richness and total abundance over time. 3. The 0+ fish assemblage varied more through space and time than the 1+ assemblage. Longer cumulative river–wetland filling was associated with greater total abundances of newly recruited (0+) fish; this was particularly true for common carp (Cyprinus carpio, alien) and carp gudgeon (Hypseleotris spp., native). The body condition of carp gudgeon also increased with the duration of filling, even though static measures of food production declined. The small flooding events that occurred as part of this study did not translate into measurable improvements in the fish assemblage over the longer term (3 years), but did prevent wetlands from drying and thus maintained these habitats as refuges.  相似文献   

18.
Disentangling how communities of soil organisms are deterministically structured by abiotic and biotic factors is of utmost relevance, and few data sets on co‐occurrence patterns exist in soil ecology compared to other disciplines. In this study, we assessed species spatial co‐occurrence and niche overlap together with the heterogeneity of selected soil properties in a gallery forest (GF) of the Colombian Llanos. We used null‐model analysis to test for non‐random patterns of species co‐occurrence and body size in assemblages of earthworms and whether the pattern observed was the result of environmental heterogeneity or biotic processes structuring the community at small scales by means of co‐inertia analysis (CoIA). The results showed that earthworm species co‐occurred more frequently than expected by chance at short distances, and CoIA highlighted a significant specific relationship between earthworm species and soil variables. The effect of soil environmental heterogeneity on one litter‐feeding species but also the impact of soil‐feeding species on soil physical properties was revealed. Correlogram analysis on the first axis extracted in the CoIA showed the scale of the common structure shared by the fauna and soil variable tables. The earthworm community was not deterministically structured by competition and co‐occurrence of competing species was facilitated by soil environmental heterogeneity at small scales in the GF. Our results agreed with the coexistence aggregation model which suggests that spatial aggregation of competitors at patchily distributed resources (environment) can facilitate species coexistence.  相似文献   

19.
Primary production correlates with diversity in various ways. These patterns may result from the interaction of various mechanisms related to the environmental context and the spatial and temporal scale of analysis. However, empirical evidence on diversity‐productivity patterns typically considers single temporal and spatial scales, and does not include the effect of environmental variables. In a metacommunity of macrophytes in ephemeral ponds, we analysed the diversity‐productivity relationship patterns in the field, the importance of the environmental variables of pond size and heterogeneity on such relationship, and the variation of these patterns at local (community level) and landscape scales (metacommunity level) across 52 ponds on twelve occasions, over five years (2005–2009). Combining all sampling dates, there were 377 ponds and 1954 sample‐unit observations. Vegetation biomass was used as a proxy for productivity, and biodiversity was represented by species richness, evenness, and their interaction. Environmental variables comprised pond area, depth and internal heterogeneity. Productivity and species richness were not directly related at the metacommunity level, and were positively related at the community level. Taking environmental variables into account revealed positive species richness‐productivity relationships at the metacommunity level and positive quadratic relationships at the community level. Productivity showed both positive and negative linear and nonlinear relationships with the size and heterogeneity of ponds. We found a weak relationship between productivity and evenness. The identity of variables associated with productivity changed between spatial scales and through time. The pattern of relationships between productivity and diversity depends on spatial scale and environmental context, and changes idiosyncratically through time within the same ecosystem. Thus, the diversity‐productivity relationship is not only a property of the study system, but also a consequence of environmental variations and the temporal and spatial scale of analysis.  相似文献   

20.
Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号