共查询到20条相似文献,搜索用时 15 毫秒
1.
番茄叶片光合作用对快速水分胁迫的响应 总被引:3,自引:0,他引:3
采用聚乙二醇(PEG-6000)溶液控制番茄根际水势和叶片离体的方式设置了水分胁迫处理,测算了光合诱导过程中净光合速率、暗呼吸速率和CO2补偿点等光合参数的变化.结果表明:在1000μmol·m-2·s-1光诱导下,水分胁迫处理的番茄叶片净光合速率(Pn)达到最大值所需时间缩短为对照的1/3,气孔导度(gs)快速增大为对照的1.5倍.水分胁迫处理的番茄叶片光饱和点(LSP)比对照降低了65%~85%,而光补偿点(LCP)比对照增加了75% ~100%,缩小了番茄叶片利用光能的有效范围.水分胁迫处理的番茄叶片最大光合能力(Amax)低于对照40%以上,暗呼吸速率(Rd)增大了约45%.可见,快速水分胁迫处理使番茄叶片气孔迅速开放,光合诱导初始阶段消失.水分胁迫导致植物利用光能的效率和潜力降低是植物生产力下降的重要原因,而气孔调节是番茄适应快速水分胁迫的重要生理机制. 相似文献
2.
Use of a model of photosynthesis and leaf microenvironment to predict optimal stomatal conductance and leaf nitrogen partitioning 总被引:4,自引:3,他引:1
A. D. FRIEND 《Plant, cell & environment》1991,14(9):895-905
Abstract. A model of photosynthesis (PGEN) is presented. The model assumes that optimal use is made of the leaf nitrogen available for partitioning between the carboxylase and thylakoid components. This results in predictions of Rubisco and chlorophyll concentrations very similar to those measured elsewhere. A function is incorporated which represents the detrimental effects of negative leaf water potentials on the Calvin cycle, producing a quantitative and mechanistic trade-off between CO2 entering, and H2 O leaving, the leaf. Thus, an optimal stomatal conductance and associated internal partial pressure of CO2 exists for any given set of environmental conditions. The model calculates this optimal state for the leaf, which is its output. The model was subjected to changes in the following parameters: soil water potential, irradiance, ambient CO2 partial pressure, leaf temperature, leaf-to-air vapour pressure deficit, wind speed, atmospheric pressure, leaf nitrogen content, root dry weight and leaf width. These perturbations resulted in changes in predicted optimal conductance which were very similar to what has been observed. In general, as the capacity of the leaf to fix CO2 increased, so did the predicted optimal conductance, with the internal partial pressure of CO2 being maintained close to 22Pa. 相似文献
3.
Bundle sheath extensions (BSEs) are key features of leaf structure with currently little-understood functions. To test the hypothesis that BSEs reduce the hydraulic resistance from the bundle sheath to the epidermis (r(be)) and thereby accelerate hydropassive stomatal movements, we compared stomatal responses with reduced humidity and leaf excision among 20 species with heterobaric or homobaric leaves and herbaceous or woody life forms. We hypothesized that low r(be) due to the presence of BSEs would increase the rate of stomatal opening (V) during transient wrong-way responses, but more so during wrong-way responses to excision (V(e)) than humidity (V(h)), thus increasing the ratio of V(e) to V(h). We predicted the same trends for herbaceous relative to woody species given greater hydraulic resistance in woody species. We found that V(e), V(h), and their ratio were 2.3 to 4.4 times greater in heterobaric than homobaric leaves and 2.0 to 3.1 times greater in herbaceous than woody species. To assess possible causes for these differences, we simulated these experiments in a dynamic compartment/resistance model, which predicted larger V(e) and V(e)/V(h) in leaves with smaller r(be). These results support the hypothesis that BSEs reduce r(be). Comparison of our data and simulations suggested that r(be) is approximately 4 to 16 times larger in homobaric than heterobaric leaves. Our study provides new evidence that variations in the distribution of hydraulic resistance within the leaf and plant are central to understanding dynamic stomatal responses to water status and their ecological correlates and that BSEs play several key roles in the functional ecology of heterobaric leaves. 相似文献
4.
Kanchan Jumrani Virender Singh Bhatia Govind Prakash Pandey 《Photosynthesis research》2017,131(3):333-350
High-temperature stress is a major environmental stress and there are limited studies elucidating its impact on soybean (Glycine max L. Merril.). The objectives of present study were to quantify the effect of high temperature on changes in leaf thickness, number of stomata on adaxial and abaxial leaf surfaces, gas exchange, chlorophyll fluorescence parameters and seed yield in soybean. Twelve soybean genotypes were grown at day/night temperatures of 30/22, 34/24, 38/26 and 42/28?°C with an average temperature of 26, 29, 32 and 35?°C, respectively, under greenhouse conditions. One set was also grown under ambient temperature conditions where crop season average maximum, minimum and mean temperatures were 28.0, 22.4 and 25.2?°C, respectively. Significant negative effect of temperature was observed on specific leaf weight (SLW) and leaf thickness. Rate of photosynthesis, stomatal conductance and water use efficiency declined as the growing temperatures increased; whereas, intercellular CO2 and transpiration rate were increased. With the increase in temperature chlorophyll fluorescence parameters such as Fv/Fm, qP and PhiPSII declined while there was increase in qN. Number of stomata on both abaxial and adaxial surface of leaf increased significantly with increase in temperatures. The rate of photosynthesis, PhiPSII, qP and SPAD values were positively associated with leaf thickness and SLW. This indicated that reduction in photosynthesis and associated parameters appears to be due to structural changes observed at higher temperatures. The average seed yield was maximum (13.2 g/pl) in plants grown under ambient temperature condition and declined by 8, 14, 51 and 65% as the temperature was increased to 30/22, 34/24, 38/26 and 42/28?°C, respectively. 相似文献
5.
Genotypic variation in photosynthesis in cacao is correlated with stomatal conductance and leaf nitrogen 总被引:1,自引:0,他引:1
Variation in photosynthetic parameters was observed between eight contrasting cacao (Theobroma cacao) genotypes. Net photosynthetic rate (PN) ranged from 3.4 to 5.7 μmol(CO2) m−2 s−1 for the genotypes IMC 47 and SCA 6, respectively. Furthermore, genotypic differences were detected in quantum efficiency
ranging from 0.020 to 0.043 μmol(CO2) μmol−1(photon) for UF 676 and AMAZ 15/15, respectively. Differences in PN were correlated with both stomatal conductance (gs) and leaf nitrogen per unit area. Some variation in water use efficiency was observed between genotypes, both intrinsic (PN/gs) and instantaneous (PN/transpiration rate). Both measures of water use efficiency were a negative function of specific leaf area. Evidence was found
for a trade-off mechanism between cacao genotypes in photosynthesis and leaf structure. High photosynthetic rate, expressed
on a mass basis was associated with smaller leaves. Furthermore, thinner leaves were compensated for by a higher nitrogen
content per unit mass. 相似文献
6.
Response of leaf water potential, stomatal resistance, and leaf rolling to water stress 总被引:10,自引:1,他引:10 下载免费PDF全文
Numerous studies have associated increased stomatal resistance with response to water deficit in cereals. However, consideration of change in leaf form seems to have been neglected. The response of adaxial and abaxial stomatal resistance and leaf rolling in rice to decreasing leaf water potential was investigated. Two rice cultivars were subjected to control and water stress treatments in a deep (1-meter) aerobic soil. Concurrent measurements of leaf water potential, stomatal resistance, and degree of leaf rolling were made through a 29-day period after cessation of irrigation. Kinandang Patong, an upland adapted cultivar, maintained higher dawn and midday leaf water potential than IR28, a hybrid selected in irrigated conditions. This was not explained by differences in leaf diffusive resistance or leaf rolling, and is assumed to result from a difference in root system extent. 相似文献
7.
In wheat (Triticum aestivum cv. Soissons) plants grown under three different fertilisation treatments, we quantified the effect of leaf rust (Puccinia triticina) on flag leaf photosynthesis during the whole sporulation period. Bastiaans' model: Y = (1 - x)beta was used to characterize the relationship between relative leaf photosynthesis (Y) and disease severity (x). The evolution of the different types of symptoms induced by the pathogen (sporulating, chlorotic and necrosed tissues) was evaluated using image analysis. The beta-values varied from 2 to 11, 1.4-2, and 0.8-1 during the sporulation period, when considering the proportion of sporulating, sporulating + necrotic, and total diseased area, respectively. Leaf nitrogen (N) content did not change the effect of the disease on host photosynthesis. We concluded that leaf rust has no global effect on the photosynthesis of the symptomless parts of the leaves and that the large range in the quantification of leaf rust effect on the host, which is found in the literature, can be accounted for by considering the different symptom types. We discuss how our results could improve disease assessments and damage prediction in a wheat crop. 相似文献
8.
A. Bímová 《Biologia Plantarum》1992,34(5-6):475-477
The stomatal density on abaxial epidermis of the second wheat(Triticum aestivum L.) leaf increased step by step from the leaf base to its tip. On adaxial epidermis, this increasing tendency was generally maintained, but close to both the base and the apex two maxima were determined. In the direction perpendicular to leaf length, maximum stomatal density was close to the edges, and minimum one was in the central part of the leaf blade. 相似文献
9.
Photosynthesis is reduced at low leaf water potentials (Ψl) but repeated water deficits can decrease this reduction, resulting in photosynthetic acclimation. The contribution of the stomata and the chloroplasts to this acclimation is unknown. We evaluated stomatal and chloroplast contributions when soil-grown sunflower (Helianthus annuus L.) plants were subjected to water deficit pretreatments for 2 weeks. The relationship between photosynthesis and Ψl, determined from gas-exchange and isopiestic thermocouple psychometry, was shifted 3 to 4 bars towards lower Ψl, in pretreated plants. Leaf diffusive resistance was similarly affected. Chloroplast activity, demonstrated in situ with measurements of quantum yield and the capacity to fix CO2 at all partial pressures of CO2, and in vitro by photosystem II activity of isolated organelles, was inhibited at low Ψl but less in pretreated plants than in control plants. The magnitude of this inhibition indicated that decreases in chloroplast activity contributed more than closure of stomata both to losses in photosynthesis and to the acclimation of photosynthesis to low Ψl. 相似文献
10.
长春花叶片发育过程中气孔密度和气孔指数的动态变化 总被引:1,自引:0,他引:1
对长春花叶片近轴面和远轴面上的气孔密度和气孔指数在不同发育阶段的动态变化进行了研究.结果表明:在各个发育阶段,近轴面上的气孔以叶脉两侧居多,远轴面上的气孔则在整个叶片上均匀分布.将一个枝条上的10对真叶按发育顺序界定为10个发育阶段,即从枝条的顶端到基部,分别将第10、第9、第8……第1节位的叶片定义为第1、第2、第3... 相似文献
11.
Eduardo Habermann Eduardo Augusto Dias de Oliveira Daniele Ribeiro Contin Gustavo Delvecchio Dilier Olivera Viciedo Marcela Aparecida de Moraes Renato de Mello Prado Ktia Aparecida de Pinho Costa Marcia Regina Braga Carlos Alberto Martinez 《Physiologia plantarum》2019,165(2):383-402
Global warming is predicted to cause more intense extreme events such as heat waves, flooding and severe droughts, producing significant effects on agriculture. In tropics, climate change will severely impact livestock production affecting water availability, forage quality and food for cattle. We investigated the isolated and combined effects of soil water deficit (wS) and + 2°C increase in canopy temperature (eT) on leaf gas exchange, chlorophyll fluorescence, carbohydrate content, forage quality and in vitro dry matter digestibility (IVDMD) of a field‐grown C4 tropical forage grass Panicum maximum Jacq. using a temperature‐free air‐controlled enhancement (T‐FACE) system. The wS and eT treatments showed no effects on photosystem II photochemistry. However, wS under ambient temperature decreased net photosynthesis rate (A), stomatal conductance (gs) and maximum rate of carboxylation of Rubisco (Vcmax), leading to a reduced starch content in leaves. A 16% reduction in leaf dry mass (LDM) and reduction in forage quality by increasing fibers, reducing crude protein (CP) and decreasing the IVDMD was also observed by effect of wS. Warming under adequate soil moisture (eT) significantly increased LDM by 25% but reduced the forage quality, increasing the lignin content and reducing starch, CP and digestibility. The combined wSeT treatment reduced A, gs, Vcmax and the forage quality. When compared to control, the lignin content in leaves increased by 43, 28 and 17% in wS, eT and wSeT, respectively, causing a significant reduction in IVDMD. We concluded that despite physiological mechanisms to acclimate to warming, both warming and water deficit will impair the quality and digestibility of C4 tropical pastures. 相似文献
12.
Canopy photosynthesis and its relationship to plant productivity in near-isogenic cotton lines differing in leaf morphology 总被引:10,自引:1,他引:10 下载免费PDF全文
A 2-year study was conducted to determine the relationships between plant canopy photosynthesis, canopy light interception, and plant productivity of cotton (Gossypium hirsutum L.) exhibiting differing leaf morphologies. The near-isogenic lines were from a single background (MD 65-11) and represented the leaf shapes Normal (small leaf lobing), Sub-Okra (intermediate leaf lobing), Okra (large leaf lobing), and Super Okra (severe leaf lobing). The F1 of a cross Normal × Okra (intermediate leaf lobing) and the F2 (segregating 1:2:1 for Normal Sub-Okra, and Okra, respectively) were also grown. Reduced plant canopies were produced by Okra and Super Okra lines, which translated into increased light penetration to the ground, and hence, in reduced canopy photosynthesis. Integrated canopy photosynthesis (ICAP) was significantly associated with light interception by the plant canopy. Part of the remaining variability in ICAP was associated with confounding factors associated with plant maturity and other unmeasured genotypic factors. Intermediate (F1 and Sub-Okra) and normal leaf types displayed the largest ICAP values in both years. Lint production was positively related to ICAP (R2 = 0.53). The combination of high ICAP values and competitive lint yields indicate that intermediate lobed leaf morphologies offer promise as productive sources of physiological variation for cotton germplasm development. 相似文献
13.
干旱胁迫对小麦幼苗根系生长和叶片光合作用的影响 总被引:24,自引:1,他引:24
采用水培试验方法,以2个耐旱性不同的小麦品种(敏感型望水白和耐旱型洛旱7号)为材料,研究了干旱胁迫对小麦幼苗根系形态、生理特性以及叶片光合作用的影响,以期揭示小麦幼苗对干旱胁迫的适应机制.结果表明: 干旱胁迫下,2个小麦品种幼苗的根系活力显著增大,而根数和根系表面积受到抑制;干旱胁迫降低了望水白的叶片相对含水量,提高了束缚水/自由水,而对洛旱7号无显著影响;干旱胁迫降低了2个小麦品种叶片的叶绿素含量、净光合速率、蒸腾速率、气孔导度和胞间CO2浓度,但随胁迫时间的延长,洛旱7号的叶绿素含量和净光合速率与对照差异不显著;干旱胁迫降低了2个小麦品种幼苗的单株叶面积,以及望水白的根系、地上部和植株生物量,而对洛旱7号无显著影响.水分胁迫下,耐旱型品种可以通过提高根系活力、保持较高的根系生长量来补偿根系吸收面积的下降,保持较高的根系吸水能力,进而维持较高的光合面积和光合速率,缓解干旱对生长的抑制. 相似文献
14.
通过测定成熟马占相思叶片的水势、气孔导度、蒸腾速率(Tr)、叶面积指数、边材面积等参数,研究了湿季(5月)和干季(11月)叶片的水力导度(K1)、水分和光合特性的关系.结果表明:高大植株(平均树高20 m、胸径0.26 m)的边材面积与叶面积的比率(Asp/Acl)比较小植株(平均树高14.5 m、胸径0.19m)高8.5%,前者的木质部水分通量大于后者,以支持冠层叶片的水分利用.对木质部易损曲线进行分析,K1降低50%时,湿、干季的叶片水势(Ψ1)分别为-1.41和-1.55 MPa,且干季的木质部空穴化的易损性高于湿季.湿、干季的K1峰值分别为5.5和4.5 mmol·m-2·s-1·MPa-1,最大蒸腾速率(Trmax)分别为3.6和1.8 mmol·m-2·s-1,且湿季的K1和Trmax明显大于干季.一天中K1和Tr的多次波动反映了木质部空穴化和修复的往复循环,叶片气孔在K降低超过50%或Ψ1达到-1.6MPa时关闭,气孔导度在K1达到50%前仍保持较高水平.干季的水力导度与光合速率的相关性较湿季明显.季节更迭导致叶片水力导度损失是Tr和CO2交换下降的原因. 相似文献
15.
Identifying the consequences of grass blade morphology (long, narrow leaves) on the heterogeneity of gas exchange is fundamental to an understanding of the physiology of this growth form. We examined acropetal changes in anatomy, hydraulic conductivity and rates of gas exchange in five grass species (including C(3) and C(4) functional types). Both stomatal conductance and photosynthesis increased along all grass blades despite constant light availability. Hydraulic efficiency within the xylem remained constant along the leaf, but structural changes outside the xylem changed in concert with stomatal conductance. Stomatal density and stomatal pore index remained constant along grass blades but interveinal distance decreased acropetally resulting in a decreased path length for water movement from vascular bundle to stomate. The increase in stomatal conductance was correlated with the decreased path length through the leaf mesophyll. A strong correlation between the distance from vascular bundles to stomatal pores and stomatal conductance has been identified across species; our results suggest this relationship also exists within individual leaves. 相似文献
16.
A model of stomatal conductance to quantify the relationship between leaf transpiration, microclimate and soil water stress 总被引:10,自引:1,他引:10
A model of stomatal conductance was developed to relate plant transpiration rate to photosynthetic active radiation (PAR), vapour pressure deficit and soil water potential. Parameters of the model include sensitivity of osmotic potential of guard cells to photosynthetic active radiation, elastic modulus of guard cell structure, soil‐to‐leaf conductance and osmotic potential of guard cells at zero PAR. The model was applied to field observations on three functional types that include 11 species in subtropical southern China. Non‐linear statistical regression was used to obtain parameters of the model. The result indicated that the model was capable of predicting stomatal conductance of all the 11 species and three functional types under wide ranges of environmental conditions. Major conclusions included that coniferous trees and shrubs were more tolerant for and resistant to soil water stress than broad‐leaf trees due to their lower osmotic potential, lignified guard cell walls, and sunken and suspended guard cell structure under subsidiary epidermal cells. Mid‐day depression in transpiration and photosynthesis of pines may be explained by decreased stomatal conductance under a large vapour pressure deficit. Stomatal conductance of pine trees was more strongly affected by vapour pressure deficit than that of other species because of their small soil‐to‐leaf conductance, which is explainable in terms of xylem tracheids in conifer trees. Tracheids transport water by means of small pit‐pairs in their side walls, and are much less efficient than the end‐perforated vessel members in broad‐leaf xylem systems. These conclusions remain hypothetical until direct measurements of these parameters are available. 相似文献
17.
Heterogenous stomatal closure in response to leaf water deficits is not a universal phenomenon 总被引:3,自引:2,他引:3
The extent and occurrence of water stress-induced “patchy” CO2 uptake across the surface of leaves was evaluated in a number of plant species. Leaves, while still attached to a plant, were illuminated and exposed to air containing [14C]CO2 before autoradiographs were developed. Plant water deficits that caused leaf water potential depression to −1.1 megapascals during a 4-day period did result in heterogenous CO2 assimilation patterns in bean (Phaseolus vulgaris). However, when the same level of stress was imposed more gradually (during 17 days), no patchy stomatal closure was evident. The patchy CO2 assimilation pattern that occurs when bean plants are subjected to a rapidly imposed stress could induce artifacts in gas exchange studies such that an effect of stress on chloroplast metabolism is incorrectly deduced. This problem was characterized by examining the relationship between photosynthesis and internal [CO2] in stressed bean leaves. When extent of heterogenous CO2 uptake was estimated and accounted for, there appeared to be little difference in this relationship between control and stressed leaves. Subjecting spinach (Spinacea oleracea) plants to stress (leaf water potential depression to −1.5 megapascals) did not appear to cause patchy stomatal closure. Wheat (Triticum aestivum) plants also showed homogenous CO2 assimilation patterns when stressed to a leaf water potential of −2.6 megapascals. It was concluded that water stress-induced patchy stomatal closure can occur to an extent that could influence the analysis of gas exchange studies. However, this phenomenon was not found to be a general response. Not all stress regimens will induce patchiness; nor will all plant species demonstrate this response to water deficits. 相似文献
18.
以玉米17个自交系和10个杂交种为试材,在田间条件下研究了不同光强、不同叶位、不同生育期、不同源库比例和株间差异状态下的气孔阻力及其与光合(PH)、蒸腾(TR)和叶片水分利用效率(WUE)的关系,结果表明,不同自交系之间RS具有显著的差异,相差最大可达2.3倍以上;光照条件变弱、穗叶位差增加、生育期推延和源/库比例改变等均可引起RS值的增加;在各种情况下导致RS变化的同时也引起TR和PH产生相应的变化,RS与TR、PH表现出显著或极显著的负相关,且相关系数rRS-TR>rRS-PH;RS与WUE的相关关系在不同的条件下表现出不稳定性. 相似文献
19.
Partitioning stomatal and non-stomatal limitations to photosynthesis 总被引:21,自引:12,他引:9
H. G. JONES 《Plant, cell & environment》1985,8(2):95-104
Abstract. Plant scientists concerned both with crop improvement and with understanding the control mechanisms of complex processes such as photosynthesis need to identify those processes that are most important in restricting the overall rate and to quantify the relative importance of different components. The techniques that have been used for quantifying the relative importance of component processes in limiting net assimilation rate are reviewed and related to a fundamental definition based on sensitivity analysis. It is concluded that many methods currently in use, including standard resistance analysis, frequently give very misleading answers.
In addition, possible methods for apportioning the contributions of different component processes to observed changes in net photosynthetic rate (for example after stress) are also reviewed and compared against a fundamental approach based on sensitivity analysis. Unfortunately, the detailed time course of changes in mesophyll and stomatal properties that is required for application of the basic sensitivity analysis is seldom likely to be available, so that it is usually necessary to adopt an approximate method. The standard approximation that is recommended for calculating the contributions of different component processes to a change in assimilation rate, involves measurements at the initial and final states only. The various methods discussed in this paper are compared using published photosynthetic data for a range of species. 相似文献
In addition, possible methods for apportioning the contributions of different component processes to observed changes in net photosynthetic rate (for example after stress) are also reviewed and compared against a fundamental approach based on sensitivity analysis. Unfortunately, the detailed time course of changes in mesophyll and stomatal properties that is required for application of the basic sensitivity analysis is seldom likely to be available, so that it is usually necessary to adopt an approximate method. The standard approximation that is recommended for calculating the contributions of different component processes to a change in assimilation rate, involves measurements at the initial and final states only. The various methods discussed in this paper are compared using published photosynthetic data for a range of species. 相似文献