首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
人CCR5Delta32突变个体能有效抵制HIV-1感染,主要是由于该个体淋巴细胞内表达的CCR5Delta32突变蛋白能通过反式显性失活效应(TDN)抑制细胞表面HIV-1辅受体CCR5和CXCR4的产生.通过构建CCR5Delta32慢病毒载体,体外转染人外周血单个核细胞(PBMCs),研究细胞内表达CCR5Delta32蛋白对HIV-1感染的抑制作用.结果表明,表达CCR5Delta32蛋白的人PBMCs对HIV-1 R5、X4及R5X4毒株感染均具有显著的抑制作用.这些工作为后续的AIDS基因治疗研究奠定了基础.  相似文献   

2.
We investigated the occurrence of the CCR5Delta32 mutation in various regional ethnic groups in Brazil and tested the resistance of mutant peripheral blood mononuclear cells (PBMCs) to infection by HIV-1 in vitro. The heterozygous prevalence was 5.3% in uninfected African descendents and 8.8% in HIV-1-positive individuals (neither population had Delta32/Delta32). German descendents were 11% heterozygous and l% Delta32/Delta32. Amerindians were exclusively CCR5/CCR5. Heterozygous uninfected PBMCs showed partial resistance to R5-HIV-1 strains in vitro, but no resistance to X4 virus. HIV-1-positive CCR5/CCR5 had higher viral loads than did heterozygous cells.  相似文献   

3.
4.
The Delta32 mutation at the CCR5 locus is a well-studied example of natural selection acting in humans. The mutation is found principally in Europe and western Asia, with higher frequencies generally in the north. Homozygous carriers of the Delta32 mutation are resistant to HIV-1 infection because the mutation prevents functional expression of the CCR5 chemokine receptor normally used by HIV-1 to enter CD4+ T cells. HIV has emerged only recently, but population genetic data strongly suggest Delta32 has been under intense selection for much of its evolutionary history. To understand how selection and dispersal have interacted during the history of the Delta32 allele, we implemented a spatially explicit model of the spread of Delta32. The model includes the effects of sampling, which we show can give rise to local peaks in observed allele frequencies. In addition, we show that with modest gradients in selection intensity, the origin of the Delta32 allele may be relatively far from the current areas of highest allele frequency. The geographic distribution of the Delta32 allele is consistent with previous reports of a strong selective advantage (>10%) for Delta32 carriers and of dispersal over relatively long distances (>100 km/generation). When selection is assumed to be uniform across Europe and western Asia, we find support for a northern European origin and long-range dispersal consistent with the Viking-mediated dispersal of Delta32 proposed by G. Lucotte and G. Mercier. However, when we allow for gradients in selection intensity, we estimate the origin to be outside of northern Europe and selection intensities to be strongest in the northwest. Our results describe the evolutionary history of the Delta32 allele and establish a general methodology for studying the geographic distribution of selected alleles.  相似文献   

5.
6.
C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis.  相似文献   

7.
Choosing CCR5 or Rev siRNA in HIV-1   总被引:3,自引:0,他引:3  
  相似文献   

8.
9.
A 32-bp deletion in CCR5 (CCR5 Delta 32) confers to PBMC resistance to HIV-1 isolates that use CCR5 as a coreceptor. To study this mutation in T cell development, we have screened 571 human thymus tissues for the mutation. We identified 72 thymuses (12.6%) that were heterozygous and 2 (0.35%) that were homozygous for the CCR5 Delta 32 mutation. We found that thymocyte development was normal in both CCR5 Delta 32 heterozygous and homozygous thymuses. In 3% of thymuses we identified a functional polymorphism of CD45RA, in which cortical and medullary thymocytes failed to down-regulate the 200- and 220-kDa CD45RA isoforms during T cell development. Moreover, we found an association of this CD45 functional polymorphism in thymuses with the CCR5 Delta 32 mutation (p = 0.00258). In vitro HIV-1 infection assays with CCR5-using primary isolates demonstrated that thymocytes with the heterozygous CCR5 Delta 32 mutation produced less p24 than did CCR5 wild-type thymocytes. However, the functional CD45RA polymorphism did not alter the susceptibility of thymocytes to HIV-1 infection. Taken together, these data demonstrate association of the CCR5 Delta 32 mutation with a polymorphism in an as yet unknown gene that is responsible for the ability to down-regulate the expression of high m.w. CD45RA isoforms. Although the presence of the CCR5 Delta 32 mutation down-regulates HIV-1 infection of thymocytes, the functional CD45RA polymorphism does not alter the susceptibility of thymocytes to HIV-1 infection in vitro.  相似文献   

10.
Prognostic value of a CCR5 defective allele in pediatric HIV-1 infection   总被引:1,自引:0,他引:1  
BACKGROUND: A deletion of 32 base pairs in the CCR5 gene (delta32 CCR5) has been linked to resistance to HIV-1 infection in exposed adults and to the delay of disease progression in infected adults. MATERIALS AND METHODS: To determine the role of delta32 CCR5 in disease progression of HIV-1 infected children born to seropositive mothers, we studied a polymerase chain reaction in 301 HIV-1 infected, 262 HIV-1 exposed-uninfected and 47 HIV-1 unexposed-uninfected children of Spanish and Italian origin. Infected children were further divided into two groups according to their rate of HIV-1 disease progression: rapid progressors who developed severe clinical and/or immunological conditions within the second year of life, and delayed progressors with any other evolution of disease. Among the latter were the long-term, non-progressors (LTNP) who presented with mild or no symptoms of HIV-1 infection above 8 years of age. Viral phenotype was studied for 45 delayed progressors. RESULTS: No correlation was found between delta32 CCR5 and mother-to-child transmission of HIV-1. However, the frequency of the deletion was substantially higher in LTNP, compared with delayed (p = 0.019) and rapid progressors (p = 0.0003). In children carrying the delta32 CCRS mutation, the presence of MT-2 tropic virus isolate was associated with a severe immune suppression (p = 0.028); whereas, the presence of MT-2 negative viruses correlated with LTNP (p = 0.010). CONCLUSIONS: Given the rapidity and simplicity of the assay, the delta32 CCR5 mutation may be a useful predictive marker to identify children with delayed disease progression who, consequently, may not require immediate antiretroviral treatment.  相似文献   

11.
Recovery from acute hepatitis B virus (HBV) infection requires a broad, vigorous T-cell response, which is enhanced in mice when chemokine receptor 5 (CCR5) is missing. To test the hypothesis that production of a nonfunctional CCR5 (CCR5Delta32 [a functionally null allele containing a 32-bp deletion]) increases the likelihood of recovery from hepatitis B in humans, we studied 526 persons from three cohorts in which one person with HBV persistence was matched to two persons who recovered from an HBV infection. Recovery or persistence was determined prior to availability of lamivudine. We determined genotypes for CCR5Delta32 and for polymorphisms in the CCR5 promoter and in coding regions of the neighboring genes, chemokine receptor 2 (CCR2) and chemokine receptor-like 2 (CCRL2). Allele and haplotype frequencies were compared among the 190 persons with viral recovery and the 336 with persistence by use of conditional logistic regression. CCR5Delta32 reduced the risk of developing a persistent HBV infection by nearly half (odds ratio [OR], 0.53; 95% confidence interval [CI], 0.33 to 0.83; P = 0.006). This association was virtually identical in persons with and without a concomitant human immunodeficiency virus infection. Of the nine individuals who were homozygous for the deletion, eight recovered from infection (OR, 0.25; 95% CI, 0.03 to 1.99; P = 0.19). None of the other neighboring polymorphisms examined were associated with HBV outcome. These data demonstrate a protective effect of CCR5Delta32 in recovery from an HBV infection, provide genetic epidemiological evidence for a role of CCR5 in the immune response to HBV, and suggest a potential therapeutic treatment for patients persistently infected with HBV.  相似文献   

12.
Yang JY  Togni M  Widmer U 《Cytokine》1999,11(1):1-7
CC chemokine receptor 5 (CCR5) is a cell entry cofactor for macrophage-tropic isolates of human immunodeficiency virus 1 (HIV-1). An inactive CCR5 allele with a 32-nucleotide deletion (CCR5Delta32) has been described that confers resistance to HIV-1 infection in homozygotes and slows the rate of progression to AIDS in heterozygotes. We found the allele CCR5Delta32 to be not rare in 399 Swiss blood donors with a frequency of 0.080. To assess the influence of defective CCR5 on production of its ligands we determined the capacity to produce the chemokines macrophage inflammatory protein (MIP)-1alpha, MIP-1beta and RANTES in comparison with the production of the CXC chemokine IL-8 which does not bind to CCR5. Production of chemokines was determined during endotoxin stimulation of whole-blood samples ex vivo. Both, basal and LPS-induced chemokine production in 32 blood donors heterozygous for CCR5Delta32 were not significantly different when compared with 55 blood donors who were homozygous for the wild type CCR5 allele.  相似文献   

13.
Human immunodeficiency virus type 1 (HIV-1) infection of individuals carrying the two alleles of the CCR5Delta32 mutation (CCR5(-/-)) has rarely been reported, but how the virus overcomes the CCR5Delta32 protective effect in these cases has not been delineated. We have investigated this in 6 infected (HIV(+)) and 25 HIV(-) CCR5(-/-) individuals. CD4(+) T lymphocytes isolated from HIV(-) CCR5(-/-) peripheral blood mononuclear cells (PBMCs) showed lower levels of CXCR4 expression that correlated with lower X4 Env-mediated fusion. Endogenous CCR5Delta32 protein was detected in all HIV(-) CCR5(-/-) PBMC samples (n = 25) but not in four of six unrelated HIV(+) CCR5(-/-) PBMC samples. Low levels were detected in another two HIV(+) CCR5(-/-) PBMC samples. The expression of adenovirus 5 (Ad5)-encoded CCR5Delta32 protein restored the protective effect in PBMCs from three HIV(+) CCR5(-/-) individuals but failed to restore the protective effect in PBMCs isolated from another three HIV(+) CCR5(-/-) individuals. In the latter samples, pulse-chase analyses demonstrated the disappearance of endogenous Ad5-encoded CCR5Delta32 protein and the accumulation of Ad5-encoded CCR5 during the chase periods. PBMCs isolated from CCR5(-/-) individuals showed resistance to primary X4 but were readily infected by a lab-adapted X4 strain. Low levels of Ad5-encoded CCR5Delta32 protein conferred resistance to primary X4 but not to lab-adapted X4 virus. These data provide strong support for the hypothesis that the CCR5Delta32 protein actively confers resistance to HIV-1 in vivo and suggest that the loss or reduction of CCR5Delta32 protein expression may account for HIV-1 infection of CCR5(-/-) individuals. The results also suggest that other cellular or virally induced factors may be involved in the stability of CCR5Delta32 protein.  相似文献   

14.
15.
Macrophage tropic (M-tropic) human immunodeficiency virus (HIV) infection of primary human T cells and macrophages requires optimal cell surface expression of the chemokine receptor CCR5 in addition to CD4. Natural mutations of CCR5 that impair surface expression bestow in the homozygous state complete resistance to M-tropic HIV infection. ccr5Delta32 is the major prototype of such mutants. ccr5Delta32 heterozygosity is associated with delayed onset of AIDS and reduced risk of initial transmission, and this correlates with reduced levels of CCR5 and reduced infectability of CD4+ cells. In addition to gene dosage, sequestration of wild type (WT) CCR5 by mutant protein has been proposed as a mechanism to explain reduced surface expression of CCR5 in cells from ccr5Delta32 and CCR5-893(-) heterozygotes. However, here we demonstrate that a molar excess of ccr5Delta32 or related deletion mutants does not significantly impair the cell surface density of co-expressed WT receptor either in human epithelial cells or Jurkat T cells. Further, ligand-dependent signaling and M-tropic HIV usage of WT receptor are also unaffected. Nascent WT receptor does associate with ccr5Delta32 and related mutant proteins and with other unrelated CC and CXC chemokine receptors under transient labeling conditions. However, using confocal microscopy, we demonstrate that in the steady state, WT and truncated CCR5 proteins segregate into nonoverlapping subcellular compartments. These findings together with the observed and known variability in the cell surface density of CCR5 on quiescent PBLs lead us to conclude that reduced CCR5 gene dosage rather than receptor sequestration is the major determinant of reduced CCR5 expression in cells from ccr5Delta32 heterozygotes.  相似文献   

16.
Studies of mice with a targeted disruption of the CCR5 gene suggest that the CC chemokine receptor 5 (CCR5) is a determinant of the cytokine response to endotoxin. In humans, a naturally occurring mutation of the CCR5 gene is a 32-basepair (bp) deletion which precludes the translation of the gene into a functional transmembrane protein. To evaluate the cytokine phenotype of heterozygosity for the 32 deletion, we studied the endotoxin-stimulated release of tumor necrosis factor-alpha, Interleukin (IL)-6, IL-8, IL-10, and IL-12 in whole blood ex-vivo of healthy volunteers and patients undergoing elective cardiac bypass surgery. This operation represents a major surgical trauma associated with ischemia-reperfusion-injury and triggers a profound inflammatory response. In these patients, cytokine plasma concentrations were measured during and after cardiac surgery. No difference was found between the frequencies of the observed and expected CCR5 genotypes in the groups of individuals studied. Furthermore, no significant difference in ex-vivo or peri- and postoperative cytokine plasma concentrations was detected between CCR5 wild-type homozygotes and individuals carrying one defective CCR5 allele. Our results indicate that heterozygosity for the 32bp deletion of CCR5 is not associated with an altered cytokine response to endotoxin or to a major surgical trauma when compared with individuals homozygous for the wild-type allele.  相似文献   

17.
艾滋病药物治疗主要障碍是难以彻底清除病毒、副作用大、成本高且需长期用药。CCR5是HIV侵染的主要辅助受体,缺陷型CCR5(CCR5△32)的CD4+T细胞对R5嗜性HIV-1病毒感染有高度抵抗力。通过骨髓移植CCR5△32干细胞到患者体内可以降低HIV病毒载量至无法检出水平,同时可维持T细胞数目在正常范围内。但由于CCR5△32基因缺失的人群所占比例少、配型困难等问题,CCR5△32干细胞移植无法广泛用于艾滋病的临床治疗。通过锌指核酸酶(ZFNs)或类转录激活因子效应物核酸酶(TALENs)两种方法可以将自体细胞CCR5基因人为部分缺失,将产生的CCR5缺陷细胞回输体内可阻断HIV-1入侵途径,稳定CD4细胞群体并最终清除病毒。而脐带血干细胞具有对配型要求低等优点,使其作为修饰的靶细胞具有广阔的应用前景。  相似文献   

18.
19.
HIV-1 variants resistant to small molecule CCR5 inhibitors recognize the inhibitor-CCR5 complex, while also interacting with free CCR5. The most common genetic route to resistance involves sequence changes in the gp120 V3 region, a pathway followed when the primary isolate CC1/85 was cultured with the AD101 inhibitor in vitro, creating the CC101.19 resistant variant. However, the D1/86.16 escape mutant contains no V3 changes but has three substitutions in the gp41 fusion peptide. By using CCR5 point-mutants and gp120-targeting agents, we have investigated how infectious clonal viruses derived from the parental and both resistant isolates interact with CCR5. We conclude that the V3 sequence changes in CC101.19 cl.7 create a virus with an increased dependency on interactions with the CCR5 N-terminus. Elements of the CCR5 binding site associated with the V3 region and the CD4-induced (CD4i) epitope cluster in the gp120 bridging sheet are more exposed on the native Env complex of CC101.19 cl.7, which is sensitive to neutralization via these epitopes. However, D1/86.16 cl.23 does not have an increased dependency on the CCR5 N-terminus, and its CCR5 binding site has not become more exposed. How this virus interacts with the inhibitor-CCR5 complex remains to be understood.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号